Research article

A variant of the Sylvester–Kac matrix which exhibits subsets of integer squared singular values for all orders

  • Published: 10 February 2026
  • MSC : 05A15, 15A18, 15B36

  • In [T. Boros, P. Rozsa, Linear Algebra Appl., 421 (2007), 407–416.], the authors showed that for the Sylvester–Kac matrix of odd order, $ 2n+1 $ ($ n\ge0 $), $ n $ of the squared singular values were integers. We present a variation of this matrix for which analogous results are obtained in both the odd- and even-order cases, and we derive explicit formulae for computing the corresponding squared singular values. In the even-order case, we also obtain an explicit form for the determinant. Owing to its simple matrix with a subset of easily calculated singular values makes this matrix a useful test case for numerical software for computing singular values. In addition, report several interesting empirical results regarding the singular values of this variant which we obtained using Maple high precision floating-point arithmetic.

    Citation: Abdullah Alazemi, Tim Hopkins, Emrah Kılıç. A variant of the Sylvester–Kac matrix which exhibits subsets of integer squared singular values for all orders[J]. AIMS Mathematics, 2026, 11(2): 4068-4081. doi: 10.3934/math.2026163

    Related Papers:

  • In [T. Boros, P. Rozsa, Linear Algebra Appl., 421 (2007), 407–416.], the authors showed that for the Sylvester–Kac matrix of odd order, $ 2n+1 $ ($ n\ge0 $), $ n $ of the squared singular values were integers. We present a variation of this matrix for which analogous results are obtained in both the odd- and even-order cases, and we derive explicit formulae for computing the corresponding squared singular values. In the even-order case, we also obtain an explicit form for the determinant. Owing to its simple matrix with a subset of easily calculated singular values makes this matrix a useful test case for numerical software for computing singular values. In addition, report several interesting empirical results regarding the singular values of this variant which we obtained using Maple high precision floating-point arithmetic.



    加载中


    [1] M. G. Beker, G. Cella, R. DeSalvo, M. Doets, H. Grote, J. Harms, et al., Improving the sensitivity of future GW observatories in the 1–10 Hz band: newtonian and seismic noise, Gen. Relativ. Gravit., 43 (2011), 623–656. https://doi.org/10.1007/s10714-010-1011-7 doi: 10.1007/s10714-010-1011-7
    [2] R. A. Bustos-Marun, E. A. Coronado, H. M. Pastawski, Buffering plasmons in nanoparticle waveguides at the virtual-localized transition, Phys. Rev. B, 82 (2010), 035434. https://doi.org/10.1103/PhysRevB.82.035434 doi: 10.1103/PhysRevB.82.035434
    [3] S. Dursun, A. M. Grigoryan, Nonlinear L2-by-3 transform for PAPR reduction in OFDM systems, Comput. Electr. Eng., 36 (2010), 1055–1065. https://doi.org/10.1016/j.compeleceng.2010.03.008 doi: 10.1016/j.compeleceng.2010.03.008
    [4] C. F. Fischer, R. A. Usmani, Properties of some tridiagonal matrices and their application to boundary value problems, SIAM J. Numer. Anal., 6 (1969), 127–142. https://doi.org/10.1137/0706014 doi: 10.1137/0706014
    [5] J. J. Sylvester, Thoreme sur les determinants de M. Sylvester, Nouvelles Annales de Mathématiques, 13 (1854), 305.
    [6] T. Muir, The theory of determinants in the historical order of development, New York: Dover Publications Inc., 1960.
    [7] M. Kac, Random walk and the theory of Brownian motion, The American Mathematical Monthly, 54 (1947), 369–391. https://doi.org/10.1080/00029890.1947.11990189 doi: 10.1080/00029890.1947.11990189
    [8] R. Askey, Evaluation of Sylvester type determinants using orthogonal polynomials, Advances in analysis, the 4th International ISAAC Congress, Toronto, Canada, 2003, 1–6. https://doi.org/10.1142/9789812701732_0001
    [9] W. C. Chu, X. Y. Wang, Eigenvectors of tridiagonal matrices of Sylvester type, Calcolo, 45 (2008), 217–233. https://doi.org/10.1007/s10092-008-0153-4 doi: 10.1007/s10092-008-0153-4
    [10] P. A. Clement, A class of triple-diagonal matrices for test purposes, SIAM Rev., 1 (1959), 50–52. https://doi.org/10.1137/1001006
    [11] T. Boros, P. Rózsa, An explicit formula for singular values of the Sylvester–Kac matrix, Linear Algebra Appl., 421 (2007), 407–416. https://doi.org/10.1016/j.laa.2006.10.008 doi: 10.1016/j.laa.2006.10.008
    [12] A. Alazemi, T. Hopkins, E. Kılıç, A four parameter extension to the Clement matrix and its role in numerical software testing, J. Comput. Appl. Math., 450 (2024), 115986. https://doi.org/10.1016/j.cam.2024.115986 doi: 10.1016/j.cam.2024.115986
    [13] W. Chu, Y. Zhao, H. Yuan, A modified inverse iteration method for computing the symmetric tridiagonal eigenvectors, Mathematics, 10 (2022), 3636. https://doi.org/10.3390/math10193636 doi: 10.3390/math10193636
    [14] C. M. da Fonseca, E. Kılıç, A new type of Sylvester–Kac matrix and its spectrum, Linear Multilinear A., 69 (2021), 1072–1082. https://doi.org/10.1080/03081087.2019.1620673 doi: 10.1080/03081087.2019.1620673
    [15] W. C. Chu, Spectrum and eigenvectors for a class of tridiagonal matrices, Linear Algebra Appl., 582 (2019), 499–516. https://doi.org/10.1016/j.laa.2019.08.017 doi: 10.1016/j.laa.2019.08.017
    [16] G. W. Stewart, Matrix algorithms volume II: eigensystems, Philadelphia: SIAM, 2001. https://doi.org/10.1137/1.9780898718058
    [17] P. Rozsa, Bemerkungen über die spektralzerlegung einer stochastischen matrix, (Hungarian) [Remarks on the spectral decomposition of a stochastic matrix], Magyar Tud. Akad., Mat. Fiz. Tud. Oszt. Közl., 7 (1957), 199–206. http://zbmath.org/0101.25404
    [18] R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge: Cambridge University Press, 1994. https://doi.org/10.1017/CBO9780511840371
    [19] F. Z. Zhang, Matrix theory: basic results and techniques, 2 Eds., New York: Springer, 2011. https://doi.org/10.1007/978-1-4757-5797-2
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(106) PDF downloads(15) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog