The theory of integral inequalities is significantly advanced by the relationship between fractional calculus and convexity. The current study used extended convex functions and Katugampola fractional operators to derive Hermite-Hadamard, Fejér-Hermite-Hadamard-type inequalities as well as a few other fractional integral inequalities. We used two extended-type convex functions: log-convex and exponentially trigonometric convex functions. Our conclusions were supported by tabular data and graphical representations, which offer numerical and visual validation of the explored results. This study improves mathematical analysis and expands the scope of these inequalities by emphasizing their applicability across different forms of convexity. The knowledge acquired is highly valuable for theoretical investigation as well as real-world applications in a variety of scientific fields.
Citation: Muhammad Imran, Ahsan Mehmood, Shahid Mubeen, Muhammad Samraiz, Ishtiaq Ali. An innovative perspective on fractional inequalities through fractional operators and extended convexity[J]. AIMS Mathematics, 2026, 11(2): 4008-4042. doi: 10.3934/math.2026161
The theory of integral inequalities is significantly advanced by the relationship between fractional calculus and convexity. The current study used extended convex functions and Katugampola fractional operators to derive Hermite-Hadamard, Fejér-Hermite-Hadamard-type inequalities as well as a few other fractional integral inequalities. We used two extended-type convex functions: log-convex and exponentially trigonometric convex functions. Our conclusions were supported by tabular data and graphical representations, which offer numerical and visual validation of the explored results. This study improves mathematical analysis and expands the scope of these inequalities by emphasizing their applicability across different forms of convexity. The knowledge acquired is highly valuable for theoretical investigation as well as real-world applications in a variety of scientific fields.
| [1] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
| [2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
| [3] | R. L. Magin, Fractional calculus in bioengineering, Begell House Publishers, 2006. |
| [4] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
| [5] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
|
| [6] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
| [7] |
F. Gao, X. J. Yang, Fractional Maxwell fluid with fractional derivative without singular kernel, Thermal Sci., 20 (2016), 871–877. https://doi.org/10.2298/TSCI16S3871G doi: 10.2298/TSCI16S3871G
|
| [8] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. |
| [9] |
X. J. Yang, F. Gao, J. A. T. Machado, D. Baleanu, A new fractional derivative involving the normalized sinc function without singular kernel, Eur. Phys. J. Spec. Top., 226 (2017), 3567–3575. https://doi.org/10.1140/epjst/e2018-00020-2 doi: 10.1140/epjst/e2018-00020-2
|
| [10] |
F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
|
| [11] |
M. Samraiz, A. Mehmood, S. Iqbal, S. Naheed, G. Rehman, Y. M. Chu, Generalized fractional operator with applications in mathematical physics, Chaos Solitons Fract., 165 (2022), 112830. https://doi.org/10.1016/j.chaos.2022.112830 doi: 10.1016/j.chaos.2022.112830
|
| [12] |
M. Samraiz, A. Mehmood, S. Naheed, G. Rehman, A. Kashuri, K. Nonlaopon, On novel fractional operators involving the multivariate Mittag-Leffler function, Mathematics, 10 (2022), 3991. https://doi.org/10.3390/math10213991 doi: 10.3390/math10213991
|
| [13] | T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. |
| [14] |
T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 2017 (2017), 78. https://doi.org/10.1186/s13662-017-1126-1 doi: 10.1186/s13662-017-1126-1
|
| [15] |
T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. https://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9
|
| [16] |
M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39 (2019), 1440–1450. https://doi.org/10.1007/s10473-019-0520-z doi: 10.1007/s10473-019-0520-z
|
| [17] |
W. B. Sun, H. Y. Wan, New local fractional Hermite-Hadamard-type and Ostrowski-type inequalities with generalized Mittag-Leffler kernel for generalized $h$-preinvex functions, Demonstratio Math., 57 (2024), 20230128. https://doi.org/10.1515/dema-2023-0128 doi: 10.1515/dema-2023-0128
|
| [18] |
A. A. Hyder, M. A. Barakat, A. H. Soliman, A new class of fractional inequalities through the convexity concept and enlarged Riemann-Liouville integrals, J. Inequal. Appl., 2023 (2023), 137. https://doi.org/10.1186/s13660-023-03044-7 doi: 10.1186/s13660-023-03044-7
|
| [19] |
A. A. Hyder, M. A. Barakat, A. Fathallah, Enlarged integral inequalities through recent fractional generalized operators, J. Inequal. Appl., 2022 (2022), 95. https://doi.org/10.1186/s13660-022-02831-y doi: 10.1186/s13660-022-02831-y
|
| [20] |
A. A. Hyder, M. A. Barakat, A. Fathallah, C. Cesarano, Further integral inequalities through some generalized fractional integral operators, Fractal Fract., 5 (2021), 282. https://doi.org/10.3390/fractalfract5040282 doi: 10.3390/fractalfract5040282
|
| [21] |
M. Z. Sarikaya, H. S. Yildirim. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. https://doi.org/10.18514/MMN.2017.1197 doi: 10.18514/MMN.2017.1197
|
| [22] |
S. Wu, S. Iqbal, M. Aamir, M. Samraiz, A. Younus, On some Hermite-Hadamard inequalities involving $k$-fractional operators, J. Inequal. Appl., 2021 (2021), 32. https://doi.org/10.1186/s13660-020-02527-1 doi: 10.1186/s13660-020-02527-1
|
| [23] |
M. Z. Sarikaya, G. Kozan, On the generalized trapezoid and midpoint type inequalities involving Euler's beta function, Creat. Math. Inform., 32 (2023), 55–68. https://doi.org/10.37193/CMI.2023.01.07 doi: 10.37193/CMI.2023.01.07
|
| [24] |
H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. https://doi.org/10.1016/j.jmaa.2016.09.018 doi: 10.1016/j.jmaa.2016.09.018
|
| [25] | A. W. Roberts, Convex functions, In: Handbook of convex geometry, 1993, 1081–1104. https://doi.org/10.1016/B978-0-444-89597-4.50013-5 |
| [26] |
M. Jleli, D. O'Regan, B. Samet, On Hermite-Hadamard type inequalities via generalized fractional integrals, Turkish J. Math., 40 (2016), 1221–1230. https://doi.org/10.3906/mat-1507-79 doi: 10.3906/mat-1507-79
|
| [27] |
M. Kadakal, I. Iscan, P. Agarwal, M. Jleli, Exponential trigonometric convex functions and Hermite-Hadamard type inequalities, Math. Slovaca, 71 (2021), 43–56. https://doi.org/10.1515/ms-2017-0410 doi: 10.1515/ms-2017-0410
|
| [28] | S. S. Dragomir, B. Mond, Integral inequalities of Hadamard type for log-convex functions, Demonstratio Math., 31 (1998), 355–364. |
| [29] | S. S. Dragomir, Refinements of the Hermite-Hadamard integral inequality for log-convex functions, RGMIA Res. Rep. Collect., 3 (2000), 527–533. |
| [30] | İ. İscan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Stud. Univ. Babes Bolyai Math., 60 (2015), 355–366. |