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1. Introduction

The study of inequalities is still expanding, and it has become a practical and effective tool for
investigating a wide range of problems in numerous mathematical fields. This theory has attracted
the attention of many academics in recent years, inspiring new research directions and influencing
various facets of mathematical analysis and its applications. Inequalities such as those attributed
to Jensen, Hadamard, Hilbert, Hardy, Opial, Sobolev, Levin, and Lyapunov are among the many
classical varieties that have a long history and significant influence across diverse areas of mathematics.
Key ideas in the study of inequalities include Minkowski’s inequality, Holder’s inequality, and the
arithmetic mean geometric mean inequality. Given the widespread use of these and many other
fundamental inequalities, it is not surprising that numerous studies have been conducted, achieving
a variety of significant results. The last few decades have witnessed rapid progress in inequality
theory, leading to new results as well as simpler proofs of previously established findings. Although
the concepts of convex sets and convex functions are relatively simple to explain, it is remarkable
how many diverse ideas they inspire. Numerous important fields, including statistical mechanics,
thermodynamics, mathematical economics, and statistics, rely fundamentally on convexity. Given
how simple it is to explain the concepts of convex sets and functions, it might be surprising to
discover how many different ideas they can inspire. Convexity turns out to be essential in many
real-world disciplines, including statistical mechanics, thermodynamics, mathematical economics, and
statistics. Fractional calculus is a subfield of mathematical analysis that studies integrals and derivatives
of arbitrary order. The field has gained considerable prominence in recent years due to its wide
range of applications across different disciplines. Over the past several decades, scientific activity
in this area has increased significantly. Fractional derivatives and integrals, which are often more
accurate and flexible than their classical counterparts, have attracted growing interest for modeling
and simulating complex systems in numerous applications. In fact, fractional calculus provides a
variety of powerful tools for solving problems involving special functions in mathematical physics,
as well as their extensions and generalizations in one or more variables, including differential and
integral equations. In [1-4], several researchers discussed applications of fractional calculus in
physics, the theory and applications of fractional differential equations, bioengineering applications of
fractional calculus, and introductory aspects of fractional derivatives, fractional differential equations,
methods for their solutions, and related applications. In [5], the authors developed new fractional
derivatives based on an extended Mittag-Leffler function, leading to the introduction of nonlocal
and nonsingular kernels. One derivative is formulated within the Riemann-Liouville framework,
while the other is defined in the Caputo sense. The corresponding fractional integral was obtained
by applying the Laplace transform. These novel derivatives were employed to model heat flow
in heterogeneous media with multiple scales. In [6], the authors proposed a new definition of
a fractional derivative with a smooth kernel, assuming distinct roles for the temporal and spatial
variables. In [7], the researchers investigated general fractional derivatives involving a nonsingular
power law kernel. Furthermore, Losada et al. [8] studied related fractional differential equations
and derived the fractional integral associated with the newly introduced Caputo-Fabrizio fractional
derivative. In [9], Yang et al. introduced a new fractional derivative in the form of a normalized
function, which employs a singular kernel. These works illustrate the development of generalized
fractional calculus. A generalized system of fractional derivatives and integrals, together with the
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corresponding Laplace transforms, was discussed by Jarad and Abdeljawad [10]. In [11], Samraiz et
al. demonstrated how such generalized operators can be applied to solve fractional partial differential
equations arising in mathematical physics. In [12], the author extended this theory by defining new
fractional operators whose kernels are based on the multivariate Mittag-Leffler function. The Laplace
transform was also employed to obtain analytical solutions to anomalous heat diffusion problems.
Abdeljawad et al. [13] characterized the right fractional derivative and its corresponding right fractional
integral associated with a newly introduced nonlocal fractional derivative with a Mittag-Leffler kernel,
and they also derived the corresponding integration-by-parts formula. In [14], a monotonicity result for
the Caputo-type fractional difference operator was established, along with a variant of the mean value
theorem that extends to fractional differences and compares them with the classical discrete fractional
case. Furthermore, Abdeljawad et al. [15] presented an integration-by-parts formula, characterized the
right fractional derivative and its associated right fractional integral with an exponential kernel, and
validated the results using the g-operator.

In both pure and applied mathematics, fractional integral inequalities play a crucial role in the
advancement and development of numerous mathematical methods. The precise formulation of
these inequalities is key to ensuring the existence and uniqueness of fractional models. Convexity
theory plays a foundational role in this area due to its distinctive properties and structure. Convex
functions are also fundamental in optimization, economics, and machine learning, as they guarantee
a unique global minimum and predictable behavior. Interested researchers can study the details of
monotonicity, convexity, and inequalities involving generalized elliptic integrals in [16]. In [17],
Sun et al. established new local fractional Hermite-Hadamard-type and Ostrowski-type inequalities
with generalized Mittag-Leffler kernels for generalized h-preinvex functions. Furthermore, in [18],
Hyder et al. proved a new class of fractional inequalities through the concept of convexity and extended
Riemann-Liouville integrals. In recent years, several researchers have derived Hermite-Hadamard
inequalities by combining convex function theory with Riemann-Liouville fractional integrals [19-21].
Building on this framework, Wu et al. [22] investigated Hermite-Hadamard inequalities for the k-
fractional integral operator.

Today, numerous researchers are concerned with the developments of new results related to both
classical and weak inequalities involving fractional integrals, such as Hermite-Hadamard, Hermite-
Hadamard-Fejér, midpoint, trapezoidal-type, and many others. In [23], Sarikaya et al. obtained
new fractional integral inequalities based on the Riemann-Liouville fractional integral. Their work
generalized trapezoidal- and midpoint-type inequalities associated with the Eulerian Beta function.
In [24], the authors introduced new fractional integral inequalities, including Hermite-Hadamard-type
inequalities and their refinements, using classical convex functions and fractional integral operators.
In the present work, we establish new inequalities involving extended notions of convexity. Moreover,
the validity of the obtained results is illustrated through graphical representations and numerical tables.

2. Preliminaries

The key terms and ideas that aid in our comprehension of our primary findings are covered in
this part.

Definition 2.1. The function {: I C R — R is called convex if it satisfies the following inequality:
{(tar + (1 —0by) < 1d(ar) + (1 - 4(by), 2.1)
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where a;,by € I C Randt € [0,1]. The usefulness and richness of such a basic description is
surprising. For more information, scholars can refer to [25].

Definition 2.2. Let { : I C R — R be a convex function defined on the interval I of real numbers and
ai, by € I with ay < by. The inequality

aj +b1 1 b {(al) +{(b1)
( > ) < ). {(dr < === (2.2)

is frequently referred to as Hermite-Hadamard’s inequality in literature. For more details, see [26].
Definition 2.3. A function {: I C R — R is called an exponential trigonometric convex function if

0s(%)

et

sin(%)

Lliay + (1 - Db)) < ) +

{(by), (2.3)

e]—t

forevery a;,by € I CR, t €[0,1]. The expressions Sl:f,%:) < tand Cose(,%[) <1-—tholdforallte0,1].
Consequently, every exponential trigonometric convex function is convex in the classical sense, but
the converse is not generally true. This stronger condition often leads to more precise inequalities
in analysis, particularly for establishing tighter bounds in fractional and integral operator theory.
Introducing such a specialized class allows mathematicians to prove refined versions of classical
results (like Hermite-Hadamard, Ostrowski, or trapezoidal inequalities) under a more restrictive,

structured assumption. For further details, please visit [27].

Definition 2.4. A function {: I — (0, ) is said to be log-convex if log { is convex or, equivalently, if
forevery a;,by € I and t € [0, 1], one has the inequality

logg(ta, + (1 = 0)by) < tlog[{(an)] + (1 = Dlog[{(by)]. (2.4)

Dragomir in [28,29] developed some integral inequalities for log-convex functions. These inequalities
are closely related to the standard Hermite-Hadamard inequality. Log-convex functions are frequently
employed in statistics, optimization, and probability theory.

Definition 2.5. The Riemann-Liouville left- and right-side fractional integrals of order 3 can be defined

by [2] ;
(I5)¢(x) = Fi(ﬁ) f (x — 0P~ (), (2.5)
where x > a, and ,
1 .
(17 ) (x) = B f (t - xP ¢y, (2.6)

where x < b.

Definition 2.6. Let [a, b] C R be a finite interval. Then, the left- and right-side Katugampola fractional
integrals of order 8 > 0 of £ € X2(a, b) are defined by [2]

-8 px
CIE(x) = lli—(ﬂ)f T =t 2.7
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where x > a, and
1 -B

1 )¢ (x) = r(ﬁ) zf’”(zf’—f)ﬂ“at)dr, (2.8)

where x < b.

Lemma 2.7. [24] Suppose that { : [¥],¥]] € R — R is a differentiable mapping on (x{,y;) with
0 < x1 < yy. Thus, if the fractional integrals exist, then the following equality is valid:

X+ BT (B + 1)
(=5)-
= f xfl) f [(1 =Y = PPl ' (P X + (1 = )y,

L O+ L))

where p >0, >0, and t € [0, 1].
Lemma 2.8. [30] For 0 < p < 1, we have |d| — V| < (by — a, ).

Lemma 2.9. [30] If h : [a;,b] — R is a function such that it is non-negative, symmetric, and

integrable to ‘”;b‘ , then the following result is valid:

I (W) (by) = I, _(h)(ar) = [ (b)) + 1, _(h)(an)].
3. Main results

This section uses exponential trigonometric and log-convex functions along with Katugampola
fractional operators to prove some novel findings involving Hermite-Hadamard, Fejér, and a few other
fractional integral inequalities. First, we use an exponentially trigonometric convex function to create
a new Hermite-Hadamard-type inequality.

Theorem 3.1. Suppose that /: [a,,b;] — R is L'[a,, b,] and an exponentially trigonometric convex
function, and then we have

a, + by \F 1 b \F{(aow(bl)
(5= Z(bl—al)fm O e

Proof. Let [x1,y1] C [a;1,b1] € R, and then by the exponential trigonometric convex function, we have

X1+ 1 1
g < {(x) + —=L(On).
(557) Vae o Ve
Set x; = ta; + (1 — )by, y; = (1 — t)a; + tby, and then we have
a+b 1
(=)= Tt + (1= 0b) + (1 = Day + 1b))
Integrating both sides w.r.t ¢ over [0, 1]:
a+b !
Z( ‘2 5) | dt< Ddt D).
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By selecting a feasible replacement, we obtain

a + b, 1 1 b 1 b
( 2 ) < NACETSAA {(w)du + — \/_(51 ) {(w)dw.
Hence,
a + b, 2 1 b
( > )< \/gm ) L(u)du. 3.1)

In order to show the second part of the inequality, we proceed as

2 1(by),

sin’g cos
{(fal + (1 - l)b]) < ol g(al) + ;

and

ﬂ'l‘

{1 = nar + Wb) £ —2glay) + 2Ly,

Adding both of the inequalities above yields

o

{(tay + (1 = 1)b )
Since (U2 + 22 < 1, for € [0, 1], then
{(tay + (1 = 0by) + {(( = Day + (DD z 1) < {(ay) + {(by).

Integrating both sides w.r.t # over [0, 1]:

1 1 1
f C(tay + (1 = )by )t + f {((1—t)a1+t(b1))dts(§(a1)+§(b1)) f dr
0 0 0

Following the same process as previously used, we have

2 1 b 2
2t f CGdu < +|>(ar) + £(by)). (3.2)
e(by—ay) Jg, e

When (3.1) and (3.2) are combined, we have

a, + by 2 1 b \F{(aow(bl)
(=3 )S\/;(bl—al)fm O e

Now, we develop a Hermite-Hadamard-type fractional inequality with Katugampola-type fractional
operators and an exponentially trigonometric convex function.

Theorem 3.2. Suppose that { : [x],)]] CR — R is a positive function with 0 < ay < by and { € X! If
{ is also an exponential trigonometric convex function, then we have, for f > 0 and p > 0,

A+ TB+1) Py P (d)) + (V)
< LW+ ) < (F—="L)
)5 (bﬁ—a@ﬂ( AW+ 1 @) < Vae )
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Proof. We have the exponential trigonometric convexity function

X
(<]

1
: L0 + —=¢0).

- V2e V2e
Set X = °d| + (1 — ")V and y| = (1 — )| + 1°/], where 1 € [0, 1], and then

d + 1
(- ; b < @{(zpa‘; +(1=P))) + L((1 - ")d] + V). (3.3)

By multiplying both sides of (3.3) by #°~!, then integrating w.r.t z over [0, 1], we have

& [
(252 [ o

By using appropriate substitution, we get

_ L
L) + (1 - P))dt + vy fo PN - )d] + PVt

u’ = (uP)du

&+ ¥ B 1 (M —wy

g(%) < ?(bp_af) a (bﬁ_ )
P 1 o
Ve —d) J, (b" a’lf) V70N

— 5_/2)_@(12? 1 a‘f)(f l (Z:f a’f) up—lg“(uﬂ)du + f;l (Z:}:ZE)B_IVP—IK(V’))CZV).

Therefore,
ai+by T+l o pP ot e
=57+ V2e (l—a‘{)ﬁ(rw) , Gy L
p'r JN S |
"5 W — PV g(vp)dv).
Hence,

{(“F;;b‘l})sr(ﬁ+1) o

B
T a,i)ﬁ( .40 + 1 L)) G4

To prove the inequality ‘s second part, we have

7rﬂJ it

Sin = 0S =
{0+ (- ) = Sy + S,
and

nt

(-0 + ) < T ety + Slln 2 1),

1
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Adding both of the inequalities above yields

it it

LPd)+ (1= W) + 21 = ), + OB) < (D=2 + —2 L) + W) < L) + ).

1=t

P

i 2 s
Fort € [0, 1], (S::—,% + 2 )S 1, we have

el

{(tdy + (1 = *)b) + {((1 = ")a) + (D)) < £(d)) + L(B)). (3.5)

Multiplying both sides of (3.5) by ##~!, then integrating w.r.t # over [0, 1], we have

1 1 1
f PP(rd] + (1= 9)Y)dt + f PP = )] + )Pt < () + L)) f Py,
0 0 0
By repeating the same criteria to prove the first part of the inequality, we get

rg+1) o
V2e () -d)f

From (3.4) and (3.6), we get

(1hcoh) + 17 ) < WL\;@.
e

(3.6)

a’ + b
5( 1J2r 1)§F(,3+1) o’

Vaze () -diY

(d)) + {(B)

(18004 17 2@ < =
e

Corollary 3.3. We obtain the result for the Riemann-Liouville fractional integrals if p — 1 in
Theorem 3.2:

aj+by T@E+1) 1 g 5 \/2{(a1)+§(b1)
ey Bl o ) (E2352)

Corollary 3.4. We obtain the Hermite-Hadamard-type inequality for the exponentially trigonometric
convex function proved in Theorem 3.1 by replacing p — 1 as well as § — 1:

ai + by 2 1 b \Faal)w(bl)
4 2 )S\/;(bl—al) . §uydu < Z( 2 )

Corollary 3.5. For graphical representation, we choose p = 2, a; = 0, by = 3, (t) = e in (3.2) to
obtain the following inequality:

in 9 2B (f% 2061 sint f32—1 i L+
e’z < 19—t e™dt + P e“ntdt) < ) 3.7
Ve Jy 07 : Ve >

For a two-dimensional graphical representation in Figure 1, we fix § = 0.0001.
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11 —— LHS
_______________________________________________ Middle Term
—- RHS

0.0 05 10 2.0 2.5 3.0

Figure 1. The figure presents a 2D comparison graph of the function given in (3.7) for
0<t<3.

For a three-dimensional graphical representation in Figure 2, we choose 0 < 8 < 0.01.

3D Graphical Representation of the Inequality for 0 < B < 0.01

B LHS
[ MIDDLE TERM
s RHS

0.000

3.0

Figure 2. The figure illustrates a 3D comparison plot of the function defined in (3.7) over
the interval 0 < ¢ < 3.

Table 1 numerically illustrates inequality (3.7).

Table 1. Numerical illustration of inequality (3.7).

B Left Middle Right

0.0010 0.3762 0.9259 1.0765
0.0050 0.3762 0.9382 1.0765
0.0100 0.3762 0.9533 1.0765
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Using an exponentially trigonometric convex function, we will now define a new Hermite-
Hadamard fractional inequality involving the interval’s midpoint as an upper and lower limit.

Theorem 3.6. Suppose that { : [x],)]] CR — R is a positive function with 0 < a; < by and { € X?. If
{ is also an exponential trigonometric convex function, then we have, for f > 0 and p > 0,

i+ T@E+1) Qpf (s L)) + L)
< I 4 Plﬁ a’ St S £ )
=57+ v_eafapf(””“” i, €0) 5 (T )
Proof. By exponential trigonometric convexity,
N+ 1
< )+ ——=L(F).
Set x| = Ld + (E5)V, and ] = (E5)d] + £V, and then
dy + b : :
(—5) < \/_4( L+ G2l + 4((—)a” B)). (3.8)

Multiplying both sides of (3.8) by #°~!, then integrating w.r.t # from [0, 1], we have

R A Ut 2
( > )j; # dtsﬁjglﬁp {(Ea’fwt(T)b‘i)dt

+Lf’ﬁp‘1§(<2‘
V5 s 2

By using appropriate substitution, we get

a + b 1 by — P
{( 12 1) < \l‘j&(bp ap) a"+1/’ 2 (ﬁf—lup—lg(up)du

# 0
Jay + S (W)

( ) W —
Bp ¥ A Hpm
= oA ap)ﬂ(f g B =Y lg(up)du+f o —d)yY v lg(v‘))dv),

ap bp r 1 2 1-8 b
{( 1;' 1)S B+1) (P)ﬂ (P M)(bﬂ)—up)ﬁ_lup_lé(u")du

V2e (W) -y \IB)
ap+l/)
pl_ﬂ (%) ap)ﬁ—lvp—l vpd
g - L0 dv)
Hence,
@+ _T@E+D_Qpf (P
< )+ &) 3.9
5= e ap)ﬁ( o, SO Py 0@) (3.9)
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So to find the inequality’s second part, we have

[y + 222 1)

2 1/ = 2-1P 1 o 17°
e Zt e 12
and

2—1 CcoS

2

¥
(5] + () £ —22d) + —2 ).

ez e 2

Adding both of the inequalities above yields

i 2—1 2—1 g
5(5‘1[1) + (T)b’f) + 5((7)0[1) + (5))

ol b
) (Smﬁpz L 255 Je + can < @+ eny.
e ez

Multiplying both sides of (3.10) by ##~!, then integrating w.r.t ¢ from ¢ € [0, 1], we have

L 21 b 2= * s
fzﬂp zj(Ea‘f+(T)b‘f)dt+f # g((T)a‘H(E))dts(é(a’f)+{(b’f))f #ldr.
0 0 0

By repeating the same criteria to prove the first part of the inequality, we get

TG+ 2V (s p L) + L)
I W+ 1, (d))<|———=2L) 3.10
e P\, S g 1)< (T (.10)

After combining (3.9) and (3.10), we get

al+b\ TE+1) Qpf (4 CARTUA)
< i p) +° 1P M) < (22 TV
5 G\, S Mg, 1) s ()

Corollary 3.7. We obtain the following inequality for Riemann-Liouville fractional integrals, which
results from replacing p — 1 in Theorem 3.6:

a+by _T@+1) 2 (4 5 \ﬁ{(m)w(bl)
5= V2e (bl—al)ﬁ(1<“'2”‘>+§(bl)”(C“;”‘)—aal))S e( )

Corollary 3.8. We obtain the Hermite-Hadamard-type inequality for an exponentially trigonometric
convex function proved in (3.1) after replacing p — 1 and 3 — 1, where f is symmetrical about the

point (%):
a+by_ 21 7 \F Za) + by
=5)= \ﬁﬁ | dwans (FEESEE)
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Corollary 3.9. For graphical representation, we choose p =2, a; = 0, by = 3, (t) = ¢*™ in (3.6), and
we have the following inequality:

o p2PH (fg Bl s f“-5 81 o 1 4 ¢5in?
SNy < 181 ¢ sinf gy + H(— — P! S””dt) < —. 3.11
S g [, e , G Voo GAD

For a two-dimensional graphical representation of relation (3.11) in Figure 3, we fix 5 = 0.0001.

Gr i Repr ion of the lity for $=0.0001

11 == LHS
e e e el e - e 3 e - e - s Middle Term
=+ RH.S

a
t(0<t<9)

Figure 3. The figure displays a 2D visualization of the three sides of inequality (3.11) for
0<rt<3.

For a three-dimensional graphical representation of relation (3.11) in Figure 4, we choose 0 < 8 <
0.01.

3D Graphical Representation of the Inequality for 0 < B < 0.01

B LHS
@ MIDDLE TERM
s RHS

8 0.000

Figure 4. This figure showcases a 3D graph comparing the functions specified in (3.11) for
0<rt<3.
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Table 2 illustrates the numerical interpretation of inequality (3.11).

Table 2. Further, we fix some more values for § in the inequality (3.11).

B Left Middle Right

0.0010 0.3762 0.8122 1.0765
0.0050 0.3762 0.8249 1.0765
0.0100 0.3762 0.8411 1.0765

Here, we formulate a new Hermite-Hadamard-type inequality through a log-convex function.

Theorem 3.10. Let { : I C R — (0, o) be a log-convex mapping on I and a,,b, € I with a < b. Then
we have

a, +b 1 b
(——)= f {ydu < \Z(ani(by).
2 (bl —ap) ai
Proof. Let x1,y; € a1, b] C R, and then for the log-convex function, we have

(e  ERVCESN/DY

Set x; = ta; + (1 — )by, y; = (1 — t)a; + thy, and then we have

éV(Cll ;‘bl

) < &l + (1= b)) \J2((1 — Day + 1by).
Integrate both sides w.r.t # over [0, 1], we have

a1+b1

1 1
b f dt < f VZGar + (1= 060 V2 = Dar + 1By )ydr.
0 0

f(

By using the Roger-Holder inequality,

1 1
g(‘“;bl)s\/f é“(ta1+(1—t)b1)dt\/f 4((1 = Day + thy)dt.
0 0

By selecting a feasible replacement, we obtain

ai + by 1 g g 1 g
(= )Swl—al)[\/ é(u)du][\/ L= s | L,

ap 1

This implies that

b1

(11+b1 1
()= Gan ).

{(u)du. (3.12)
On the other hand,
{(tay + (1 = Dby) < [L@)]'[LbD],

AIMS Mathematics Volume 11, Issue 2, 4008—4042.
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and

(1 = Day + (Oby) < (@) (b))

If the two previous inequalities are multiplied, we have

{(tay + (1 = 0b))Z((1 = Day + (Ob1) < [L@)]'IZBD) @] ™ LB < L@ (by).

Now taking the square root on both sides, we have

V<(ta; + (1 = b)) V(1 = Day + (Oby) < \L(a)l(by).

Integrating both sides with respect to # € [0, 1] gives us

1 1
fo Ve(ta, + (1 = Dby L1 = Day + thydt < \JL(a)(by) fo dt.

Following the same process as previously used, we have

b
wydu < E(a)l(by). (3.13)

(by —ay) ai
When (3.12) and (3.13) are combined, we have

a; + bl 1 b
(=)= ( {ydu < NL(anZ(by).

by —ay) ay

We now have a novel Hermite-Hadamard-type fractional integral inequality via log-convex
functions.

Theorem 3.11. Suppose that { : [)c’f,yf] C R — (0, ) is a positive function with 0 < a; < b; and
¢ € XV If ¢ is also a log-convex function, then we have, for B > 0 and p > 0,

T+V TEB+1 NP
() < (b(? - a‘?)oj(\/plfl+§(b‘f)plfl_§(af)) SN CAA

Proof. By log-convexity,
X+
(57 = VLD o).

Set X = *d + (1 — ")V and | = (1 — )| + °1/], and then

&
(=

+V
D22 < Jatwd, + (1= 008 2 - 00 + 0. (3.14)
Multiplying both sides of (3.14) by ##~!, then integrating w.r.t ¢ from [0, 1] gives us

1 1
(4 [ s [ e e+ - o) e - o+ vepe,

AIMS Mathematics Volume 11, Issue 2, 4008—4042.



4022

By the Roger-Holder inequality, we get

1 1
L@t \/ [ #rewd; + - i \/ [ e -+ oy
Bp 2 0 0
By using an appropriate substitution, we get
by —
sty [y o
b1 0 — ap
\/ (bfp 7 (;p 7y
ﬁ by by
‘/(bp pap)ﬁ (bp—up)ﬁ - 1§(up)du,/(bp 77 (vp—ap)ﬂ W1 (P)d.
So, we have
_ b1 — by
ey, B B o
Hence,
| r 1
o ‘; ) < (b(f+ aﬁ’)f (Vricwivrs, o) (3.15)

Now, we prove the inequality’s second part:
LPd] + (1= ")) < [La@)] L)',
and
(1 =) + (OIW) < [L@)]' " [c@))” .
Multiplying both of the above inequalities, and simplifying, gives us
L) + (1 = )1 = )] + (W) < [L@)] [ L@ L))" < La)h).

Applying a square root on both sides of the above inequality, we have

JE@d + (1= W) 21 =), + )W) < L))o, (3.16)

Multiplying both sides of (3.16) by #°~!, then integrating w.r.t ¢ from ¢ € [0, 1] gives us

! 1
f " \/é(tpa’f + (1 - )by \/{((1 — )dy + (")) < \/g(a’;)g(bﬁ) f 7 dr.
0 0
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By repeating the same process as to obtained the first part of the inequality, we have

I+ Dpf
(b‘{—a’f)ﬁ

By combining (3.15) and (3.17), we get

@+ b\ T+ 1)y’
(55 < G (et a@) < Jeapew)

Corollary 3.12. We establish the Riemann-Liouville fractional integral result if p — 1 in
Theorem 3.11:

[PE LB E_a@) < \Jeda). G.17)

a1+b1 F(ﬁ-l—l) B
(P57 % G ag Ve £BDE, Ltan) < VE@Zm)

Corollary 3.13. We establish the Hermite-Hadamard-type inequality proved in (3.10) if we replace
p—landpB — 1, ie.,

a; + by 1
()<= 4(u)du < (@i

We now establish a new Hermite-Hadamard-type inequality where the midpoint of the interval is a
lower and upper limit.

Theorem 3.14. Suppose that { : [x],¥]] € R — (0,0) is a positive function with 0 < a; < by and
. € XV If ¢ is also a log-convex function, then we have, for B > 0 and p > 0,

(bP_ p)ﬂ Iap W g(bl) plﬁ‘ﬁ;yf) {(a)y < \/f(af)f(b/f)

1

ai+ b\ QpfrE+1)
()= N

Proof. By the log-convex function, we have

) < e,

Set x| = £d} + (B5)V, and y; = (E5)d] + (5)I;, and then

+b/f) < \/é(ga?

Multiplying both sides of (3.18) by ##~!, then integrating w.r.t ¢ from [0, 1] gives us

o 1 1
4(—%;%) fo P < fo ! \/g(gaﬁ’

After using the Roger-Holder inequality, we get

1
(E)b’f)]- (3.13)

t I
da; + (E)bﬁ))df-

P, 7Y
)a| + (E)bﬁ]dt

a+b\ 1 ! * 21 ! 2 -1
5(%)@ < \/‘f0 tﬁp‘lg(aa’f+(T)b’f)dt>< \/fo E((
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Defining a suitable substitution, we get

a"+b’” w
fM Tt a‘f)ﬂ w1 (uP)du

\/ f s ap)>2ﬁ< b’f >ﬁ—1vp-1§<vp>dv

ZIBBP o aj o
(b;l)_a;l)f (a/l);bﬁ))(b‘])—up)ﬁ Lyp 1§(up)du)( \/j(:/f;b’{)(vp_allj)ﬂ Lyp 1§(Vp)dv.
So, we have
@ +bl\_ CpYTE+1)
4757 = - Y f A r(ﬁ)(bp_”p)ﬁ w1 (uP)du
\/ At ur(ﬂ)” AP LG,
Hence,
d + b\ QpfT@B+1)
o) ¥ - \/pl(vﬁ% LWy I 4o, ). (3.19)

For the inequality’s second part, we have

# 2-1° # 2t
{5+ CSOB) < L@nF e

and

2
4 )a + & )bp) < @I L)1

Multiplying both of the above inequalities, after simplification, we get

é(ga‘f 2

){(( Ly + (& )b”)<§(a”>§(b*’)

Taking the square root on both sides, we have

2-v 2-r
\/4(§a';+< ) \/§<<T”>aﬁ’+<§>b‘f> < L), (3.20)

Multiplying both sides of (3.20) by ##~!, then integrating w.r.t # from 7 € [0, 1] gives us

1 2_ 2_ 1
fo ol \/é(ga‘fﬂ ) \/§<<Ttp>a'f+(§)b’f>s NR fo s
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By repeating the same criteria as already used in the above inequalities, we get

Q2pYTB+1)
W - )

After combining (3.19) and (3.21), we get

& +V, (2pfr@+1
d ]; ])S(fb)f (i,:;ﬁ )\/ Ly SOV Lo, §@) < LD,
1~ %

Lo, SO gy L) < NOA) (3.21)

(11

Corollary 3.15. For the inequality involving Riemann-Liouville fractional integrals, we use p — 1 in
Theorem 3.14:

a +b LB+ 1)2°
{( 12 1) < (bl _al)ﬁ al+bl) (( 1) gl+h1 g(al) < \/g’(al)g“(bl)

Corollary 3.16. We can find the Hermite-Hadamard-type inequality proved in (3.10) if we replace
o — 1, and  is symmetrical about the point @:

a +b 1 b1
(=)= T, f  ddu < NL(@nZ(by).

We now have a mid point-type inequality with a log-convex function.

Theorem 3.17. Suppose that { : [d],b]] € R — (0, ) is a differentiable mapping on (d, b)) with
0 < a; < by. If|| is log-convex on [d], B, then the following inequality holds:

1719
W -dy) )

BB+

1
‘{(ap)+g(bp) _pﬁ e+ 1) +§(b) 4P 1/5 )| <

& —ay |
under the conditions | (a})| # 0 and | (V)| # 0.

Proof. From [24], we have

‘é(af)+{(b€) _PATB+D
—dy
(bﬁ — a'?) fl pB+H-1
B 0

L= +01) =L (¢ + (1 -
_ 1
_ _ @) fo ,pw+1>—1(|g'(<1 - )} + ) + | (¢ + (1 - t">b’f>l)df

L, .L(b) + 1) _{(a))]

IA

Since " is log-convex, then

L)+ LW  pPIT@+ 1)
2 &~y

v-d) [ , o e
<4 5 k fo POV @I G+ I @I @I

P12+ 1 Ca)]
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For | (d))| > 0,1 (#))| > 0,2 > 0,1 —# > 0 with ¢ € [0, 1], use the inequality a®b” + c*d < (a+c)**
with c = band a = d:

'é(a’f>+4“<b?> _PTEED s L))+ 1, _L(a)]

. - d)p
_ 1
. M f POV (@) + Bl
O —a)) '
_ ﬂl(ﬁ 1 |§(a‘1’)+§(b’f)|-

Hence,

(1 ]
BB+ 1)

‘é(a") +{@)  pPITB A+ 1)

B
Gy Lt )+ 1 L@ <

Corollary 3.18. For graphical representation, we choose p =2, a; = 1, by =4, {(t) = €' in (3.17), and
we have the following inequality:

e+e'6 B 2\8-1 t f —1 ¢ M
( > _ﬁ)(f;ammﬂ e'dr + 1r(z 1y d)‘_ BB -1 (3.22)

For the two-dimensional graphical representation of inequality (3.22) given in Figure 5, we fix
B =0.0001.

lell 2D Graphical Repr ion of the ity for =0.0001

== LHS
— RHS

Figure 5. This figure features a 2D representation of the two components of the inequality
givenin (3.22) for 1 <t < 4.

For the three-dimensional graphical representation of inequality (3.22) given in Figure 6, we choose
0<pB<0.01.
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3D Graphical Representation of the Inequality for 0 < B < 0.01

B LHsS
RH.S

S = ~ w = o o

0.010

3.5

a0 0.000

Figure 6. The figure illustrates a 3D plot capturing the two sides of the inequality given
in (3.22) for 1 <t < 4.

Table 3 illustrates the numerical interpretation of inequality (3.22).

Table 3. Further, we fix additional values of § in inequality (3.22).

B Left-hand side Right-hand side
0.0010 4443027.9816 66579270020.9018
0.0050 4443028.0628 13262855580.2831
0.0100 4443028.1629 6598598939.6953

We now build up a mid point-type inequality that is exponentially trigonometric convex.

Theorem 3.19. Suppose that { : [a,V]] € R — R is a differentiable mapping on (d;, 1)) with 0 <
ay < by. If || is exponential trigonometric convex on [d’ |, b\, then the following inequality holds:

—d)

)[If @)+ @I,

() + W) FTE+ D, Y |
' (bp Clp)ﬁ I 1+§(b1) + bl_{(al)]
under the condition that (% 4 5 7 2 STy <1, fort € [0, 1].

Proof. From [24], we have

&)+ ) PTE
'a ) + L) _pib‘; —(ﬁag’_)ﬂ) L)+ I _{a)]

_ 1
—(blfﬁ <) fo PN @ + (L= )W) = L (W) + (1 - )a))dt

IA

_ 1
_ @ - 4) fo DN ] + (1= W)+ I @V + (1= #)a)ldr.
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Using an exponentially trigonometric convex function, we have

'{(a’f)+§(b’f) pﬁlr(ﬂ+1)plﬁ
G a")ﬁ

PLlb) L Lay)]

it

b‘O o) ,
k Ié(bp)|+ il |§(ap)|+ ?ﬂ £ W)

< f lp(ﬂ+l) 1 Illt/ |€ (ap)|+ cos 7

bp ) ) . a
_ ( 1 1)|§ (a,])) e (b;;)lf tp(ﬁ+1)—1( 11;1_; N COslpz )dt.
B 0 e e

Hence,

'é(a?) + (b)) pﬁ ‘F(,B+ 1

7y L, L(b) + 1) _L(a)]| <

V-d) , !
( 5 1>|§(aﬁ>+§(b’f)| fo #E gy,

Finally,

{(d) + L) pﬂlr(ﬂﬂ)plﬁ
2 W) - d)y

(1_ 1)
BpB +

We now have a Fejer type inequality involving a log-convex function.

bl b)) + 1 _L(an)]| < [|4’(aq’> +Z B)II.

Theorem 3.20. Let { : [d, V] = (0,0), d| < V| be a log-convex function with d} < b, and { € X!. If

d| b”
g:[d,V)] > Risa functlon such that it is non-negative, symmetric and integrable to -5, then we

have the following inequality:

&+ ¥\ "I Q) +PI (9)(d)
=5 )

< BT o) < Juaan)

oL () + plfl_<g><a‘;>)
5 :

where [a,b]] CR.

Proof. Let X,y € [&], V], and then by log-convexity, we have

)« e ey

Set X = t°d + (1 — ")V, Y} = (1 — #*)d] + 1°V/, and then we have
d; + V]

(=)=

Multiplying both sides of (3.23) by #*#~'g(#V/] + (1 — #*)d/)), then integrating w.r.t  from [0, 1], we have

) < L@, + (1 =) \JT(1 = #)d; + 715, (3.23)

1
(—af ; b?) f (9 gV, + (1 — #°)af1dt
0

1
< f [P 5, + (1= )] X L, + (1= W) L =~ 0)d, + (W)
0
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By applying the Roger-Holder inequality, we get

() [l -t

1
\/ f #1g(r) + (1 — ) ) (] + (1 - 1)) dr)
0

1
X \/ f tﬂﬁ—lg(tpb’f +(1- zﬂ)af)g((l — )] + (tp)bfdt).
0

By using substations, we get

1 a + b,
G apt(C) | e - s
1 1 ai

by
\/(bp 1ap)ﬁ (ur — af)ﬁ_lg(up)f(a’f + b‘f — uP)du
1 1 a

1

by
X \/ 1 W — a1 (w)g(w)du.

(bflj_a[]))ﬁ a
Hence,
1 a; + b
T—ar 2 = | [(up &g )du

b1
‘/(bp lap)ﬂ \/f (we — &) PgwP)(d] + V] — w)dur
b1
X {(bp — 7y \/ (w — a)P1{(w)g(uf)du.
14 a

L e
T l)f [~ )™ g0
1 1 ai

This implies that

1 pi (" :
e a’f)ﬁ[\/ms) , [yl

\/ ﬁ(ﬂ’; W — Y L) )du]

I pir (" o
=i\t | 0= w¥ e + ] - w)ia)du
1 1 ai

\/’r)(;) W — Y L) )du]
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1 pl—ﬂ b
= G \fE | e s
1 1 ai

P (uﬂ — &P (u)g(w)du).
r'(g)

By using Lemma 2.8, we have

& + 0\ LI () +PI (9)(d)
{ 1; N : 2 s 1) \/”Bw({g)(bp YL _(£9)d). (3.24)

To prove the inequality’s second part, we have
{(d) + (1 = )B) < [L@)]" 1L,
and
L =)] + V) < [L@)]' " [LW))" .
By multiplying both of the above inequalities, we get
{(Fd] + (1 = )L = )y + 1) < [L@)) LD L@ LW < L@,

Applying a square root on both sides gives us

VE@d + (1= W) (L= 03 + 00, < L)L), (3.25)

Multiplying both sides of (3.25) by #*#~!g(#V/] + (1 —#)d’, then integrating w.r.t  over 7 € [0, 1] gives us

1
f e (P V) + (1 = P)d) \/é(tpa‘{ +(1 - ) \/g(l — ), + b dt
0

1
e fo PGB + (1 = )V,

By repeating the same process as we used in the above inequality, we get

L)) +7 ,,_(g)(ap))

VL COUAYE, (o)) < \/é(a?)abf)( .

(3.26)

From (3.24) and (3.26), we get

P+ b P (W) +PE (9)(d))
4(91;1)( 8 1J2fb1g 1)

< B QURPT, (9 < D)

oL () + PIf_(g)(a';))
. .
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Corollary 3.21. We gain the inequality involving the Riemann-Liouville fractional integral result if
p — 1in Theorem 3.20:

by (LB + I _(9)ar)
()
£ ()b)+ I _(g)ar)
< €00 _Eoan < VE@ED)| )

Corollary 3.22. For graphical representation, we choose p = 2, a; = 1, by = 4, {(t) = e in (3.17),
and we have the following inequality:

esinl +esin16 ﬁ sl s 5 ny
#—ﬁ( 1 1(16 — Y teldr + 1 1(r - 1P edt)‘

[15(cos 1es™! + cos 16¢*M16)]

3.27
= BB 1) 320

For the two-dimensional graphical representation of inequality (3.27) in Figure 7, we fix § = 0.0001.

2D Graphical Representation of the Inequality for §=0.001

- s
4000 4 —— RHS

3500 o

3000 4

25001

20004

Value

1500 -

1000

Figure 7. This figure shows a 2D plot depicting the three components of the inequality given
in (3.27) for 1 <t < 4.

For the three-dimensional graphical representation of inequality (3.27) in Figure 8, we choose
0<B<0.01.
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3D Graphical Representation of the Inequality for 0 < B < 0.01

Figure 8. The figure displays a 3D visualization of the function from (3.27), comparing its
behavior for 1 < 7 < 4.

Table 4 illustrates the numerical interpretation of inequality (3.27).

Table 4. Numerical results of (3.27) for fixed values of .

B Left-hand side Right-hand side
0.0010 0.1398 4010.7022
0.0050 0.1377 798.9478
0.0100 0.1352 397.4963

We now have a Fejér-type inequality involving an exponentially trigonometric convex function.

Theorem 3.23. Let { : [d),V]] —» R, d] < V] be a exponential trigonometric convex function with
d} <V and { € Ld],b}). If g : [a], V)] = R is a function such that it is non-negative, integrable, and

symmetric to # then the following inequality for fractional integrals holds:

&+ I () +7I 1_(g)(ap)

(=) — ]

Jj[plﬂ]+(§*g)(bp) +7 bl_(f* g)(ap)] \/2[5(0!?) + (D)) [p1“1+(8)(bp) +7 bl_(g)(ap)]
e 2 e 2 2 ’

where [d],b]] CR.

Proof. Let x|, y| € [d}, D], and then by exponential trigonometric convexity, we have

X+ W 1 1
A+ —=L0ON).

AIMS Mathematics Volume 11, Issue 2, 4008—4042.




4033

Set X = t°d| + (1 — ")V, Y} = (1 — #*)d] + 1°V/, and then we have

g(df i b?) <« L vd + (=) + 21 - ) + 0B (3.28)
2 - @ 1 1 1 174 :
Multiplying both sides of (3.28) by #~! g(tpb‘l’ + (1 - tp)af , then integrating w.r.t t over [0, 1], we have

ad +b o
(552 [ sl + (=
1 b
< = fo 7 g (1 + (1 = ) ) (1] + (1 = )it
1
s [ g(ert 4 (L= ) = 3t + ).
2e Jo

By using appropriate substitution, we get

d + b, (b -
(b‘l’—l ﬁ’)ﬁg( 1; 1)]; (up—a’f)ﬁ 1g(bt’”)du

1 1

V2e (V) - @)

1 1 bi g
+\/_2_e(bp —d)P f (“p‘ T)ﬁ {W)g)du.
1 1 ap

b1 .
f (1w = ) 9] + 1 — )

This can be written as

& + v
4(1;1

b1
) f (W — Y g()du

by "
- x/lz_ (0" = Y™ g ) + V] — ) + \/% W - &Y )8
e Ja eJa
1 by B-1 1 by
= \/—2_6 (bf - up) g(d + V] — ") (W)du + \/_2_6 W - aﬁ;)ﬂ—lé(up)g(up)du
1 lbl ﬁ_l 1 bl 1
T Ve (#h =) swrcarans T, @ = a g du.
eJa; eJa

Finally, we have

{(a? + b’f)[p151+(g)(bf) +p12',_(g)(af)] - [? Lo (L V) + 71, _(* g)d))

5 > z[ > ]. (3.29)

Now to prove the inequality’s second part, we have

L v it

(P + (1= W) < 24 + — L)),

and
cos 22 in 22
(@) + — ).

LA =)y + ()bY) <
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After adding, we have

Lo x
(P + (1= )+ L((1 = ) + (D)) < (S + — 2Ll + W)

1-1#

sin Ccos 2

Since f € [0, 1], then( 2 +

)< 1and

(d] + (1 = °))) + (A - )d] + (DY)

(0 .
< (S;l-,i + C":tp )W) + L) < L) + L)) (3.30)

= ((Fd + (1 - )W)+ (1 - )] + )W) < () + L(B).

Multiplying both sides of (3.30) by ##~'g(#°b; + (1 — #)d’), then integrating w.r.t 7 over [0, 1], we have

1
f [~ g’V + (1 — ")\ {(d] + (1 — )b dl1]

0

1
+f [tﬁp_lg(tpbf + (1 = P)a)(((1 = )] + °D)]dt
0

1
< [é(a’f)+§(b’f)]f0tﬁp_lg(tpbfﬂl—t”)a’f)dt-

By repeating the same process as we use to prove the first part of the inequality, we get
\/7 270 (W) +P1, (£ + g)(d] ) g(ap) + g(bp)pl"]+(g)(bp ) +°1 ()] )
e 2 2
From (3.29) and (3.31), we get

g(af;+b*;p151+(g><bﬁ’)+p1;,1_(g)<a§’) ) \ﬁ PI“H((*g)(b"w (¢ *g))
2 2 -

\[ s“(a")+§(b*’)p1’1+(g)(b")+'31“ (g)(a")

Corollary 3.24. If p — 1 in Theorem 3.23, then we get the result for the Riemann-Liouville fractional
integrals:

by Lo (@b + B _(9)ar) 1
() = el a0+ 1 @ ga)

1 (§(a1)+§(b1)
V2e 2

4. Further inequalities by exponentially trigonometric convex functions

IA

J(22 @m0+ £ @)

The findings of Jleli et al. [26] are further generalized in this section. Let { : [a;,b;] — R be a
given function, where a; and b; are positive real numbers. Define W(x) := {(x) + {(a; + b; — x). Then
it is easy to show that if {(x) is convex on [a, b,], and then ¥(x) is also convex. The function ¥ has a
number of unique characteristics, particularly,
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(i) P(x) is symmetric to 220

(i) W(a1) = Y(b1) = {(ar) + {(by);

.o ay+by _ a1 +by
(i) P(52) = 27(452t).
Theorem 4.1. If { is an exponentially trigonometric convex function on [ai,b\] and { € Lla,, b], then
Y is also integrable, and the following inequalities hold:

a1+b]) \/’r(ﬁﬂ)pﬂ[ a1+lP(b1)+prl\P(al)]<‘1’(a1)+\P(b1)

( W —dy > < N

with 8> 0 and p > 0.

Proof. Since { is an exponentially trigonometric convex function and x;,y; € [a;,b;], then by
definition,

(F5) < \/_5( )+ v%—f(yl)'

Set x; = ta; + (1 — )by, y; = (1 — t)a; + thy, and then we have

b 1
(57) < Tl + (1= + 41 = D + tby)L,
e
a + l’)]

2
25( )< \/;[{(tal + (1 =0by) + (1 = Nay + thy)].

We convert the previous expression into ¥:

lF(%bl) < \/g‘l’((l ~ Day + thy). @.1)

Multiplying both sides of (4.1) by [b,)(_((l(?_);; T:l;;;)lo);l]l-ﬂ , then integrating w.r.t # over [0,1], we have
1

a, + b \/7]' (1 -Da, + tbl)p—l )
R )'Bp(bl - "1) (D) = (1 = ay + tbl)p]l—ﬁq’((l Day + tby)dt.

Using some suitable substitutions, we get

o Uy e PRy,
B 2 ) ,D(bl —(11) fl (bp_up)l B F )bl - - b, pIaH—\P(bl).

Hence,

a, +b I'e+1)
W(———) < \[ (b(f ap’)f oI (D). (4.2)
Similarly, if we multiply both sides of (4.1) by [((12)_“ t)j't;t;' r 7T and integrate w.r.t ¢ over [0,1], we get
1 4
a, +b I'e+1)
W(——) < \[ (b({f ap’)f °r Wa). (4.3)
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Adding (4.2) and (4.3), we get

a1+b1) \[r(ﬁﬂ)pﬁ[ a1+‘P(b1)+prl_‘I’(a1)]
B ¥, —d)y 2 '

P( 4.4)

To prove the second part of the inequality, we have

L@y + (1= 0by) < = 24@) + —2(by)

and

L1 = Day + 1) £ —2g(a) + —2(by)

CO:

< 1, we have

Adding both of the above inequalities and using the result for 7 € [0, 1], mll f +

{(ta; + (1 = 0)by) + {((1 — Day + tby) < {(a1) + {(by).
Using the Y(x) relation, we have

(1 = Day + thy) < w. 4.5)

. . . e _1 . .
Multiplying both sides of (4.5) by [bp(_((l(l ’_)f)‘c:f’tllr)p]l,ﬁ, then integrating w.r.t  over [0,1], we have
1

(ﬁ)pﬁ— T s iy < GG @) + Fby)
bi—a, VT Bo(by —ay) 2
Hence,
'+ 1)/?5 8 Y(a,) + ¥ (b))
(bp ap)ﬁ Pla1+‘I’(b1) < — 4.6)

(1- t)a1+tb1)/’
—nay +tby)P—d|]'P

Similarly, if we multiply both sides of (4.5) by [ and integrate w.r.t f over [0,1], we get

B+ 1)pf B W(ap) + ¥ (1)
o ap)ﬂpl Wlan) € = 4.7)
Adding (4.6) and (4.7), we get
\[Wf + 1)pﬁ[" L .Y(b) + plfl_‘P(al)] L W) +¥(b) “s)
(b —d)y 2 V2e

From (4.4) and (4.8), we have

¥(

a + bl) \/’r(ﬁ+ 1)e? [P L. Y(b) +p1fl_‘I’(a1)] _ Wa) + Wby
“NeW -&y 2 =T Ve
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Theorem 4.2. If  is an exponentially trigonometric convex function on [a,b] and { € Lla,, b;], then
Y(x) is also exponentially trigonometric convex, and ¥ € Llay,b;]. If g;la1,b1] — R is a function
which is non-negative and integrable, then the following fractional integral inequality is valid:

b ogb) +°I°
P ;bb\[ PE QOB (@¥)a) < ‘P(“‘);‘P“’O 8 1)\;2_ n-8@)
e

with B> 0 and p > 0.

Proof. Let x1,y; € [a;,b;] and t € [0, 1], and we have

P(x, + (1 =0y) = {@x + (1 =0y +{(ay + by — (tx; + (1 = 1)yy))
= {(txi+ =0y +L(ar + by —x)t + (1 = 0)a, + by —y1)).

Since { is an exponentially trigonometric convex function, then

osZt
2 f(a; + by —y)

—X1)+

§(Y1)

Wex, + (1= 1y) < — =2 2 ) + &

2 ) + 2y + by — ).

sin3t
= (§(x1)+§(a+b—xl))+
So,

sin cos
Yx + (1 -0y < ‘P(Xl) +

‘P(y1)

Hence, Y is an exponential trigonometric convex function.
Since {(x;) is an exponentially trigonometric convex function and x;,y; € [a,b;], then by

definition,
X1+

1
4 < J(xr) + —=<¢0On).
T v— |
Set x; = ta; + (1 — )by, y; = (1 — t)a; + thy, and then we have
a +b 1
(=)= It + (L= 0by) + (1 = ar + 1by))
a, +b 2
24(—5—) = \/;[g(ml + (1= 0b1) + (1 = Day + thy)].
Convert the previous expression into W(x,):
+b 2
p&t )< \/:I’((l — Ny + thy). (4.9)
e
Multiplying both sides of (4.9) by [bp(((l(lt):’)gftz)f)p —&((1 — t)a + tb) and integrating w.r.t  over [0,1], we
have i
r +b
RO T

1- b1
\/7f 4 (_(((1 t_)C;)IaJ: i ;;):l)p]l_ﬁg((l —tay +tb))Y((1 - t)a; + tb)dt.
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By using substitution, we get

PP, s a1+b1 \[ " \[ LB, s
e B e i T Lt e IO

Hence,

AL 1”’ 5 < \[ [, (@¥)(B1)]. (4.10)

Similarly, if we multiply both sides of (4.9) by =0 o((1 — )a; + thy) and integrate W.r.t ¢
1

over [0,1], we get

b
Plfl_g(ao%“” b < \[ 1) _(g¥)(a)]. (4.11)
Adding (4.10) and (4.11), we get
ay +b1 oy p 2 018 o1B
V(=L 8(0) + 7L gan] < [ ST L€ 9)(b) + 71, _(g¥)(@)]. (4.12)

For the inequality’s second part, we use

L@y + (1= 0by) < =2 4@ + —22(by)

and

(1 =1ta, +1th) < &

2 f(ay) + S:f_?abl).

at
sin 2 cos 5
o

Adding both of the above inequalities and using the result for ¢ € [0, 1],

< 1, we have

{(tar + (1 = 0)by) + {((1 — Day + tby) < {(a1) + {(b).
Using the W(x) relation, we have

(1 = Day + thy) < w. 4.13)

Multiplying both sides of (4.13) by [H’(((l(lt)ta); T:bz;z)lpy’]l —8((1 — Ha, +th;) and integrating w.r.t  over [0,1],

we have
I;(ﬂ)pﬂ‘ b (P)by) < (ﬁ)pﬁ‘ p1,31+ (bl)w(al);‘{'(bl).
1
Hence,
I (b <71 (b e T (@.14)
Similarly, we can get . Wi
I _(g¥)(ar) < Plfl_gml)[wl. (4.15)

2
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Adding (4.14) and (4.15), we get

W(a,) + ¥ (by) [Plfl+g(b1) +°1) _g(ar)
2 V2e

2
\/; L, . (e¥) B )L _(g¥)(ar) < . (4.16)

From (4.12) and (4.16),

W(ay) + qj(bl)(plfl+g<bl) + Plf,i_g(al))
2 V2e '

Remark 4.3. If p — 1 in Theorem 4.2, we get the result for the Riemann-Liouville fractional integrals.

b 2
P \/; VL (0B I, (9@ <

5. Discussion

Figures 1 and 2 illustrate the 2D and 3D visualizations of the left, middle, and right-hand terms
in inequality (3.7). For specific parameter values, the corresponding numerical results of these terms
are provided in Table 1. The left, middle, and right expressions of inequality (3.11) are graphically
represented in Figure 3 (2D) and Figure 4 (3D). Numerical evaluations of these expressions for selected
values are summarized in Table 2. Graphical representations of the left-hand side and right-hand
side of (3.22) are presented in Figure 5 with 2D plots, while Figure 6 shows 3D plots. Furthermore,
the quantitative comparison of these three components for assigned parameter values is tabulated in
Table 3. To support the analytical findings, inequality (3.27) is examined both visually and numerically.
Figures 7 and 8 provide 2D and 3D depictions of its two components (left and right). A corresponding
numerical summary for specific input values is presented in Table 4. In each case, the left-hand side is
less than the right-hand side, thus confirming the existence of the proposed inequality.

6. Conclusions

Convex functions are closely related to several important inequalities that have important
ramifications for many different fields. Among these, Jensen’s inequality is a fundamental concept in
probability theory and statistics, offering crucial information about distributions and expected values.
In a similar vein, the Hermite-Hadamard inequality improves our capacity to examine the behavior of
convex functions by providing useful bounds for their integrals. These inequalities are useful tools in
mathematical analysis, optimization, and other areas of mathematics in addition to shedding light on
the inherent characteristics of convex functions. Understanding and using these inequalities can open
up important viewpoints and approaches for dealing with challenging issues in these domains.

A flexible and reliable tool for simulating complex systems and phenomena in a variety of fields
is the Katugampola fractional integral. It offers a more thorough framework for capturing nonlocal
and memory-dependent effects by expanding and generalizing conventional fractional integrals. These
effects are crucial in systems where past states affect future behavior. This integral is used in the
study of fractional quantum mechanics, viscoelastic materials, and anomalous diffusion processes in
physics, where it aids in the description of phenomena that depart from classical models. By simulating
memory effects in recurrent networks and enhancing learning efficiency and long-term dependency
handling, it facilitates the development of sophisticated neural network architectures. In the larger
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field of science, it helps with biological modeling by simulating intricate physiological processes,
improves signal processing by making it possible to analyze non-stationary signals more effectively,
and advances control theory by optimizing systems with fractional dynamics. Because of its broad
applicability, the Katugampola fractional integral is a fascinating and quickly developing field of study
with significant potential to improve our comprehension and analysis of complex systems in physics,
neural networks, and other scientific fields.

With an emphasis on log-convex and exponentially trigonometric convex functions, this study has
successfully explored novel approaches to investigate some fractional inequalities using Katugamapola
fractional operators. Novel connections between inequalities, such as Hermite-Hadamard, Fejér,
and Holder inequalities, are established with Katugamapola fractional operators using exponentially
trigonometric and log-convex functions. We also used p — 1 to develop several corollaries in almost
all theorems. Additionally, we verified that our findings reduce to standard Hermite-Hadamard and
Fejér-type inequalities. This inequality may give a strict estimate of the mean square displacement
in a fractional diffusion equation model, which has a theoretical limitation on the extent of spread
of the particles in a complicated medium, such as porous rock or biological tissues. In gradient-
based algorithm functions that fulfill our convexity property, the inequality can be exploited to obtain
a new error bound on the new iteration of the algorithm, which may then be used to obtain a more
efficient convergence criterion. In a filter design problem where the system is described by a fractional-
order transfer function, the inequality may be used to provide conditions that determine stability in
the frequency domain. Future research directions include constructing more generalized inequalities
using advanced fractional operators and extending trigonometric and log-convexity to interval-valued
functions. These concepts can also be applied in quantum calculus and multivariate calculus.
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