This article establishes a hybrid model by adding into the Heston-Vasicek model an additional regime switching factor, which combines the advantages of the stochastic interest rate, regime switching, and multi-factor stochastic volatility. It assumes a Vasicek stochastic interest rate, and uses two stochastic factors for asset volatility, one of which follows Heston stochastic volatility and another can switch according to a continuous-time Markov chain. Such a setting considers both effects of economic cycles and the correlation between the stock and interest rate, while still ensuring the existence of an analytical solution for European option pricing. We further showed how option prices evolve when varying certain model parameters. An empirical study was also carried out to demonstrate the model performance if it was to be applied in practice.
Citation: Xin-Jiang He, Sha Lin. Analytically pricing European options under a two-factor Heston-Vasicek model with regime switching and stochastic interest rate[J]. AIMS Mathematics, 2026, 11(2): 3986-4007. doi: 10.3934/math.2026160
This article establishes a hybrid model by adding into the Heston-Vasicek model an additional regime switching factor, which combines the advantages of the stochastic interest rate, regime switching, and multi-factor stochastic volatility. It assumes a Vasicek stochastic interest rate, and uses two stochastic factors for asset volatility, one of which follows Heston stochastic volatility and another can switch according to a continuous-time Markov chain. Such a setting considers both effects of economic cycles and the correlation between the stock and interest rate, while still ensuring the existence of an analytical solution for European option pricing. We further showed how option prices evolve when varying certain model parameters. An empirical study was also carried out to demonstrate the model performance if it was to be applied in practice.
| [1] |
M. Abudy, Y. Izhakian, Pricing stock options with stochastic interest rate, Int. J. Portfolio Anal. Manage., 1 (2013), 250–277. https://doi.org/10.1504/IJPAM.2013.054408 doi: 10.1504/IJPAM.2013.054408
|
| [2] |
R. Ahlip, M. Rutkowski, Pricing of foreign exchange options under the Heston stochastic volatility model and CIR interest rates, Quant. Financ., 13 (2013), 955–966. https://doi.org/10.1080/14697688.2013.769688 doi: 10.1080/14697688.2013.769688
|
| [3] |
G. Bakshi, C. Cao, Z. Chen, Empirical performance of alternative option pricing models, J. Financ., 52 (1997), 2003–2049. https://doi.org/10.1111/j.1540-6261.1997.tb02749.x doi: 10.1111/j.1540-6261.1997.tb02749.x
|
| [4] | S. Beckers, Variances of security price returns based on high, low, and closing prices, J. Bus., 56 (1983), 97–112. |
| [5] | F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. |
| [6] |
B. S. K. Bolaky, J. Narsoo, N. Thakoor, D. Y. Tangman, M. Bhuruth, Deep neural networks for the valuation of equity and real-estate index American options under models with stochastic volatility, China Financ. Rev. Int., 2025, 1–27. https://doi.org/10.1108/CFRI-07-2024-0389 doi: 10.1108/CFRI-07-2024-0389
|
| [7] | D. Brigo, F. Mercurio, Interest rate models-theory and practice: With smile, inflation and credit, Springer Science & Business Media, 2006. |
| [8] |
J. Buffington, R. J. Elliott, American options with regime switching, Int. J. Theor. Appl. Fin., 5 (2002), 497–514. https://doi.org/10.1142/S0219024902001523 doi: 10.1142/S0219024902001523
|
| [9] |
J. Cao, T. R. N. Roslan, W. Zhang, Pricing variance swaps in a hybrid model of stochastic volatility and interest rate with regime-switching, Methodol. Comput. Appl., 20 (2018), 1359–1379. https://doi.org/10.1007/s11009-018-9624-5 doi: 10.1007/s11009-018-9624-5
|
| [10] |
J. Cao, T. R. N. Roslan, W. Zhang, The valuation of variance swaps under stochastic volatility, stochastic interest rate and full correlation structure, J. Korean Math. Soc., 57 (2020), 1167–1186. https://doi.org/10.4134/JKMS.j190616 doi: 10.4134/JKMS.j190616
|
| [11] |
W. Chen, X. J. He, An analytical approximation for European options under a Heston-type model with regime switching, N. Am. J. Econ. Financ., 80 (2025), 102500. https://doi.org/10.1016/j.najef.2025.102500 doi: 10.1016/j.najef.2025.102500
|
| [12] |
W. Chen, Z. Yang, X. J. He, Pricing energy futures options: The role of seasonality and liquidity, Energ. Econ., 149 (2025), 108737. https://doi.org/10.1016/j.eneco.2025.108737 doi: 10.1016/j.eneco.2025.108737
|
| [13] |
P. Christoffersen, S. Heston, K. Jacobs, The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well, Manage. Sci., 55 (2009), 1914–1932. https://doi.org/10.1287/mnsc.1090.1065 doi: 10.1287/mnsc.1090.1065
|
| [14] |
P. Christoffersen, K. Jacobs, The importance of the loss function in option valuation, J. Financ. Econ., 72 (2004), 291–318. https://doi.org/10.1016/j.jfineco.2003.02.001 doi: 10.1016/j.jfineco.2003.02.001
|
| [15] | P. Christoffersen, K. Jacobs, K. Mimouni, An empirical comparison of affine and non-affine models for equity index options, SSRN Electron. J., 2006. |
| [16] |
B. Dumas, J. Fleming, R. E. Whaley, Implied volatility functions: Empirical tests, J. Financ., 53 (1998), 2059–2106. https://doi.org/10.1111/0022-1082.00083 doi: 10.1111/0022-1082.00083
|
| [17] | R. J. Elliott, L. Aggoun, J. B. Moore, Hidden Markov models: Estimation and control, Springer Science & Business Media, 29 (2008). |
| [18] |
R. J. Elliott, G. H. Lian, Pricing variance and volatility swaps in a stochastic volatility model with regime switching: Discrete observations case, Quant. Financ., 13 (2013), 687–698. https://doi.org/10.1080/14697688.2012.676208 doi: 10.1080/14697688.2012.676208
|
| [19] |
F. Fang, C. W. Oosterlee, A Fourier-based valuation method for Bermudan and barrier options under heston's model, SIAM J. Financ. Math., 2 (2011), 439–463. https://doi.org/10.1137/100794158 doi: 10.1137/100794158
|
| [20] |
J. Gatheral, T. Jaisson, M. Rosenbaum, Volatility is rough, Quant. Financ., 18 (2018), 933–949. https://doi.org/10.1080/14697688.2017.1393551 doi: 10.1080/14697688.2017.1393551
|
| [21] |
C. A. Grajales, S. Medina Hurtado, S. Mongrut, Pricing, risk and hedging of European options: uncertainty versus stochastic approaches, China Financ. Rev. Int., 15 (2025), 821–843. https://doi.org/10.1108/CFRI-10-2024-0606 doi: 10.1108/CFRI-10-2024-0606
|
| [22] |
L. A. Grzelak, C. W. Oosterlee, On the Heston model with stochastic interest rates, SIAM J. Financ. Math., 2 (2011), 255–286. https://doi.org/10.1137/090756119 doi: 10.1137/090756119
|
| [23] |
L. A. Grzelak, C. W. Oosterlee, S. V. Weeren, Extension of stochastic volatility equity models with the Hull–White interest rate process, Quant. Financ., 12 (2012), 89–105. https://doi.org/10.1080/14697680903170809 doi: 10.1080/14697680903170809
|
| [24] |
J. D. Hamilton, Analysis of time series subject to changes in regime, J. Econometrics, 45 (1990), 39–70. https://doi.org/10.1016/0304-4076(90)90093-9 doi: 10.1016/0304-4076(90)90093-9
|
| [25] |
X. J. He, H. Chen, S. Lin, A closed-form formula for pricing European options with stochastic volatility, regime switching, and stochastic market liquidity, J. Futures Markets, 45 (2025), 429–440. https://doi.org/10.1002/fut.22573 doi: 10.1002/fut.22573
|
| [26] |
X. J. He, W. Chen, T. Lu, S. Lin, Variance and volatility swap valuation with stochastic liquidity and regime switching stochastic volatility, Commun. Nonlinear Sci., 154 (2026), 109558. https://doi.org/10.1016/j.cnsns.2025.109558 doi: 10.1016/j.cnsns.2025.109558
|
| [27] |
X. J. He, S. Lin, Analytically pricing foreign exchange options under a three-factor stochastic volatility and interest rate model: A full correlation structure, Expert Syst. Appl., 246 (2024), 123203. https://doi.org/10.1016/j.eswa.2024.123203 doi: 10.1016/j.eswa.2024.123203
|
| [28] |
X. J. He, W. Wei, S. Lin, A closed-form formula for pricing exchange options with regime switching stochastic volatility and stochastic liquidity, Int. Rev. Financ. Anal., 103 (2025), 104159. https://doi.org/10.1016/j.irfa.2025.104159 doi: 10.1016/j.irfa.2025.104159
|
| [29] |
S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
|
| [30] |
S. Y. Hong, H. M. Zhang, Y. Q. Lu, Y. Y. Jiang, A closed-form pricing formula for European options under a multi-factor nonlinear stochastic volatility model with regime-switching, Jpn J. Ind. Appl. Math., 41 (2024), 1079–1095. https://doi.org/10.1007/s13160-023-00642-2 doi: 10.1007/s13160-023-00642-2
|
| [31] |
J. Hull, A. White, The pricing of options on assets with stochastic volatilities, J. Financ., 42 (1987), 281–300. https://doi.org/10.1111/j.1540-6261.1987.tb02568.x doi: 10.1111/j.1540-6261.1987.tb02568.x
|
| [32] |
L. Ingber, Very fast simulated re-annealing, Math. Comput. Model., 12 (1989), 967–973. https://doi.org/10.1016/0895-7177(89)90202-1 doi: 10.1016/0895-7177(89)90202-1
|
| [33] | L. Ingber, Home page of Lester Ingber, 2025. |
| [34] | H. A. O. Junior, L. Ingber, A. Petraglia, M. R. Petraglia, M. A. S. Machado, Adaptive simulated annealing, In: Stochastic global optimization and its applications with fuzzy adaptive simulated annealing, Springer, 35 (2012), 33–62. https://doi.org/10.1007/978-3-642-27479-4_4 |
| [35] |
H. Johnson, D. Shanno, Option pricing when the variance is changing, J. Financ. Quant. Anal., 22 (1987), 143–151. https://doi.org/10.2307/2330709 doi: 10.2307/2330709
|
| [36] |
S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simmulated annealing, Science, 220 (1983), 671–680. https://doi.org/10.1126/science.220.4598.671 doi: 10.1126/science.220.4598.671
|
| [37] |
A. Le, Separating the components of default risk: A derivative-based approach, Q. J. Financ., 5 (2015), 1550005. https://doi.org/10.1142/S2010139215500056 doi: 10.1142/S2010139215500056
|
| [38] |
S. Lin, M. Chen, X. J. He, Analytically pricing crude oil options under a jump-diffusion model with stochastic liquidity risk and convenience yield, N. Am. J. Econ. Financ., 78 (2025), 102424. https://doi.org/10.1016/j.najef.2025.102424 doi: 10.1016/j.najef.2025.102424
|
| [39] |
S. Lin, X. J. He, Analytically pricing variance and volatility swaps with stochastic volatility, stochastic equilibrium level and regime switching, Expert Syst. Appl., 217 (2023), 119592. https://doi.org/10.1016/j.eswa.2023.119592 doi: 10.1016/j.eswa.2023.119592
|
| [40] |
C. Ma, S. Yue, H. Wu, Y. Ma, Pricing vulnerable options with stochastic volatility and stochastic interest rate, Comput. Econ., 56 (2020), 391–429. https://doi.org/10.1007/s10614-019-09929-4 doi: 10.1007/s10614-019-09929-4
|
| [41] |
F. Mehrdoust, N. Saber, Pricing arithmetic Asian option under a two-factor stochastic volatility model with jumps, J. Stat. Comput. Sim., 85 (2015), 3811–3819. https://doi.org/10.1080/00949655.2015.1046072 doi: 10.1080/00949655.2015.1046072
|
| [42] | S. Mikhailov, U. Nögel, Heston's stochastic volatility model: Implementation, calibration and some extensions, John Wiley and Sons, 2004. |
| [43] |
P. Pasricha, X. J. He, Vulnerable options under a Hawkes jump-diffusion model with two-factor stochastic volatility, Int. Rev. Financ. Anal., 111 (2026), 105095. https://doi.org/10.1016/j.irfa.2026.105095 doi: 10.1016/j.irfa.2026.105095
|
| [44] | W. P. Koziell, Stochastic volatility models: Calibration, pricing and hedging, PhD thesis, University of the Witwatersrand, Johannesburg, 2012. |
| [45] |
R. Schöbel, J. Zhu, Stochastic volatility with an Ornstein–Uhlenbeck process: An extension, Eur. Financ. Rev., 3 (1999), 23–46. https://doi.org/10.1023/A:1009803506170 doi: 10.1023/A:1009803506170
|
| [46] |
L. O. Scott, Option pricing when the variance changes randomly: Theory, estimation, and an application, J. Financ. Quant. Anal., 22 (1987), 419–438. https://doi.org/10.2307/2330793 doi: 10.2307/2330793
|
| [47] |
J. Shu, J. E. Zhang, Pricing S & P 500 index options under stochastic volatility with the indirect inference method, J. Deriv. Account., 1 (2004), 1–16. https://doi.org/10.1142/S021986810400021X doi: 10.1142/S021986810400021X
|
| [48] |
T. K. Siu, H. Yang, J. W. Lau, Pricing currency options under two-factor Markov-modulated stochastic volatility models, Insur. Math. Econ., 43 (2008), 295–302. https://doi.org/10.1016/j.insmatheco.2008.05.002 doi: 10.1016/j.insmatheco.2008.05.002
|
| [49] |
E. M. Stein, J. C. Stein, Stock price distributions with stochastic volatility: An analytic approach, Rev. Financ. Stud., 4 (1991), 727–752. https://doi.org/10.1093/rfs/4.4.727 doi: 10.1093/rfs/4.4.727
|
| [50] |
M. T. Vo, Regime-switching stochastic volatility: Evidence from the crude oil market, Energ. Econ., 31 (2009), 779–788. https://doi.org/10.1007/s10529-009-9933-4 doi: 10.1007/s10529-009-9933-4
|
| [51] |
X. Wang, W. Xiao, J. Yu, Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process, J. Econometrics, 232 (2023), 389–415. https://doi.org/10.1016/j.jeconom.2021.08.001 doi: 10.1016/j.jeconom.2021.08.001
|
| [52] |
J. B. Wiggins, Option values under stochastic volatility: Theory and empirical estimates, J. Financ. Econ., 19 (1987), 351–372. https://doi.org/10.1016/0304-405X(87)90009-2 doi: 10.1016/0304-405X(87)90009-2
|
| [53] |
H. Wu, Z. Jia, S. Yang, C. Liu, Pricing variance swaps under double heston stochastic volatility model with stochastic interest rate, Probab. Eng. Inform. Sci., 36 (2022), 564–580. https://doi.org/10.1017/S0269964820000662 doi: 10.1017/S0269964820000662
|
| [54] |
D. Yan, X. J. Huang, G. Ma, X. J. He, Pricing American options with exogenous and endogenous transaction costs, Comput. Math. Appl., 200 (2025), 85–101. https://doi.org/10.1016/j.camwa.2025.09.008 doi: 10.1016/j.camwa.2025.09.008
|
| [55] |
D. Yan, W. Ye, X. J. He, American option pricing under a two-factor stochastic volatility model with nonlinear exogenous costs, Math. Method. Appl. Sci., 48 (2025), 14868–14879. https://doi.org/10.1002/mma.11219 doi: 10.1002/mma.11219
|
| [56] |
B. Z. Yang, J. Yue, N. J. Huang, Equilibrium price of variance swaps under stochastic volatility with Lévy jumps and stochastic interest rate, Int. J. Theor. Appl. Financ., 22 (2019), 1950016. https://doi.org/10.1142/S021902491950016X doi: 10.1142/S021902491950016X
|
| [57] |
Y. Yang, S. Liu, Y. Wu, B. Wiwatanapataphee, Pricing of volatility derivatives in a Heston–CIR model with Markov-modulated jump diffusion, J. Comput. Appl. Math., 393 (2021), 113277. https://doi.org/10.1016/j.cam.2020.113277 doi: 10.1016/j.cam.2020.113277
|
| [58] |
T. Zaevski, On the $\epsilon$-optimality of American options, China Financ. Rev. Int., 15 (2025), 688–714. https://doi.org/10.1108/CFRI-06-2024-0361 doi: 10.1108/CFRI-06-2024-0361
|