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Abstract: This article establishes a hybrid model by adding into the Heston-Vasicek model an
additional regime switching factor, which combines the advantages of the stochastic interest rate,
regime switching, and multi-factor stochastic volatility. It assumes a Vasicek stochastic interest rate,
and uses two stochastic factors for asset volatility, one of which follows Heston stochastic volatility and
another can switch according to a continuous-time Markov chain. Such a setting considers both effects
of economic cycles and the correlation between the stock and interest rate, while still ensuring the
existence of an analytical solution for European option pricing. We further showed how option prices
evolve when varying certain model parameters. An empirical study was also carried out to demonstrate
the model performance if it was to be applied in practice.
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1. Introduction

In 1973, Black and Scholes [5] introduced a groundbreaking formula used to value European
options, assuming a normal distribution for logarithmic asset returns. This model, while widely
acclaimed [21,58], has faced significant challenges, primarily due to the overly simplistic assumptions
made to facilitate analytical solutions. One such limitation is assumed constant volatility, which
contradicts real market behavior, particularly the “volatility smile” effect [16]. This discrepancy has
spurred extensive research aimed at refining or adjusting the Black-Scholes framework to better reflect
actual market dynamics.
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Stochastic volatility models have become widely adopted by incorporating volatility as an additional
random process alongside the asset price. While this adjustment more accurately captures the
variability of volatility over time, it complicates the option pricing problem significantly. In many
cases, maintaining analytical tractability is no longer feasible, necessitating the use of numerical
methods [35, 46, 52]. However, these numerical techniques are often impractical due to their high
computational demands and the time-consuming process of model calibration, particularly in the
context of modern algorithmic trading. As a result, there is a strong push within the research
community to develop stochastic volatility models that retain analytical solvability.

When volatility is modeled as a geometric Brownian motion, prices of European options are
expressed as a power series [31], assuming the uncorrelated underlying-volatility relationship.
However, this assumption contradicts the observed “leverage effect”, which suggests a negative
correlation between the two [3]. Alternatively, when volatility follows an Ornstein-Uhlenbeck
process [45, 49], analytical solutions for European options are possible, though this approach has
the drawback of allowing negative volatility values. A key breakthrough in volatility modeling was
achieved by Heston [29], who introduced the use of a Cox-Ingersoll-Ross (CIR) process for stochastic
volatility. This formulation ensures the non-negativity of volatility while capturing the mean-reverting
dynamics empirically observed in financial markets [4]. Heston’s model provides a closed-form pricing
solution for European options, facilitating efficient calibration. As a result of the Heston model’s
effectiveness, there have been extensive applications in valuing financial derivatives [6, 19, 55].

However, stochastic volatility models, including the Heston model, are often limited in their ability
to fully capture underlying dynamics. To enhance the flexibility in fitting real market data, more
advanced modeling approaches have been developed. A notable example is the time-varying Heston
model, where its constant parameters are allowed to change over time [42]. Additionally, multi-factor
stochastic volatility models have gained popularity [27,41,48], as these models are better at describing
volatility smile [13]. Another recent development in derivative pricing is the use of Markov-modulated
models [8], which are empirically inspired by actual market behaviors [24]. Regime switching has even
been integrated into the Heston framework [18, 28], as it improves the predictive power of stochastic
volatility models and helps account for significant market events, as noted by Vo [50]. More recently,
combining regime switching with multi-factor stochastic volatility models has emerged as a promising
approach, benefiting from the strengths of both frameworks in modeling asset dynamics [30, 39].
Recently, the persistence and roughness of volatility have prompted the development of various rough
volatility models [20, 51].

Apart from stochastic volatility models, relaxing the assumption of a constant interest rate in
the Black-Scholes framework is also important. Research has shown that incorporating a stochastic
interest rate helps to improve the degree of fitness significantly [1], which has given rise to various
hybrid models combining both stochastic volatility and stochastic interest rates. However, integrating
a Heston-type volatility model with a stochastic interest rate presents a challenge: when the interest rate
is correlated with the underlying asset price, analytical pricing formulas are not available [2], and only
approximation methods can be used [10,22,23,56]. Closed-form solutions for these hybrid models are
only possible when the interest rate and asset price are assumed to be independent [40, 53, 57].

This paper introduces a novel two-factor hybrid model, where the volatility factors are driven
by the Heston process and a Markov chain, and the interest rate evolves according to the Vasicek
model. Although incorporating these three elements increases the model’s complexity, we can still
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value European options analytically. This is achieved by working out the underlying logarithmic
characteristic function, leveraging the numeraire change technique and the tower rule of expectation.
A key advantage of our approach is that it preserves analytical tractability, even with the correlation
between underlying and interest rate. To showcase our model’s effectiveness, we perform numerical
simulations to analyze the behavior of the pricing formula and present empirical results based on
real data, highlighting our model’s superiority compared to existing alternatives. Note that in our
framework, the short rate is correlated solely with the regime-switching volatility component, not with
the Heston-type variance factor. This simplification is necessary to derive a closed-form characteristic
function. Despite this specific correlation structure, the model still captures a key channel of equity-
interest rate dependence. This feature also distinguishes our model from those in the literature [11,53],
which do not incorporate stochastic interest rates or explicit equity-rate dependence.

This paper is organized as follows. Section 2 outlines the proposed two-factor Heston-Vasicek
hybrid model. In Section 3, we derive a general pricing formula for European options, initially
involving an unknown characteristic function, which is subsequently determined using the conditional
characteristic function, assuming full knowledge of the Markov chain’s information. Section 4 presents
numerical examples along with a discussion of the results. Section 5 features an empirical analysis,
and the final section offers concluding remarks.

2. The two-factor Heston-Vasicek hybrid model

We work on a filtered probability space (Ω,F , {Ft}t≥0,Q), where the filtration {Ft} is generated by
the Brownian motions {WS

1,t,W
S
2,t,W

v
t ,W

r
t } and the continuous-time Markov chain Xt, augmented with

the Q-null sets. The following structural assumptions are made throughout the paper.

1. The Brownian motions {WS
1,t,W

S
2,t,W

v
t ,W

r
t } and the Markov chain Xt are mutually independent.

2. The variance process vt follows CIR dynamics under Q; to ensure its positivity, we assume the
Feller condition 2kθ ≥ σ2 holds. If the condition is violated, the SDE (stochastic differential
equation) remains well-defined and the model can still be used in practice, as is common in the
Heston literature.

3. The Vasicek short-rate process rt allows for negative interest rates, which is not only
mathematically convenient but also empirically relevant in the post-2008 and post-pandemic
financial environment, where several major economies have experienced periods of negative
nominal rates.

4. The regime-switching volatility factor ξXt is a piecewise-constant process modulated by Xt; it does
not possess its own diffusion dynamics.

5. The correlation structure is restricted as follows:

dWS
1,tdWv

t = ρ1dt, dWS
2,tdWr

t = ρ2dt,

while all other pairwise correlations are zero.
6. All model coefficients are adapted to {Ft} and satisfy suitable integrability conditions for the SDEs

and the characteristic function to be well-defined.

The model involves the following parameters in Table 1, which will be kept fixed unless stated
otherwise in numerical examples and empirical analysis.
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Table 1. Model parameters and their meanings.

Symbol Meaning Typical domain
k speed of mean reversion of vt k > 0
θ long-run level of vt θ > 0
σ volatility of volatility σ > 0
α speed of mean reversion of rt α > 0
β long-run level of rt β ∈ R

η volatility of rt η > 0
ρ1 correlation between WS 1 and Wv −1 ≤ ρ1 ≤ 1
ρ2 correlation between WS 2 and Wr −1 ≤ ρ2 ≤ 1
v0 initial variance v0 > 0
r0 initial short rate r0 ∈ R

ξi volatility level in regime i (i = 1, . . . ,N) ξi ≥ 0
λi j transition intensity from regime i to j λi j ≥ 0

We now introduce the two-factor Heston-Vasicek hybrid model, where both volatility and interest
rates are treated as stochastic processes. The volatility is modeled using two components: one driven by
a CIR process and the other governed by regime switching, while the interest rate follows an Ornstein-
Uhlenbeck process. It should be pointed out that this is not a “two-factor Heston model” in the usual
sense, where two independent CIR-type variance factors are assumed. Instead, the second factor is a
Markov-modulated constant that captures discrete shifts in volatility levels. This choice is financially
motivated by the observation that volatility regimes often persist over medium-term horizons, and it
allows us to maintain analytical tractability while still capturing regime-dependent smile patterns. To
establish the connection between the proposed two-factor model and existing approaches, we begin by
outlining the classical one-factor Heston-Vasicek model under the risk-neutral measure Q:

dS t

S t
= rtdt +

√
vtdWS

1,t,

dvt = k(θ − vt)dt + σ
√

vtdWv
t ,

drt = α(β − rt)dt + ηdWr
t .

(2.1)

Here, S t represents the underlying asset price. Note that Wr
t is assumed to be independent of the other

two to maintain analytical tractability. Consequently, to account for the asset-interest relationship, a
two-factor model is naturally adopted, as described below.

dS t

S t
= rtdt +

√
vtdWS

1,t + ξdWS
2,t,

dvt = k(θ − vt)dt + σ
√

vtdWv
t ,

drt = α(β − rt)dt + ηdWr
t ,

(2.2)

with the second factor of the volatility being a constant ξ.
As previously noted, empirical studies have provided substantial evidence of regime-switching

behavior in actual markets [24]. To incorporate this feature into our model, we introduce a continuous-
time Markov chain with a finite set of states Xt ∈ {e1, e2, ..., eN}, which operates independently of
the four Brownian motions. Each ei represents a unit vector in the N-dimensional space, where
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the i-th component is equal to one. This structure, according to the semi-martingale representation
theorem [17], can be expressed as follows:

Xt = X0 +

∫ t

0
Λ(s)Xsds + Lt, (2.3)

with Λ(t) = [λi j(t)]i, j=1,2,...,N being its generating matrix. Lt is a martingale increment process. We
further assume that the second factor of the volatility is regime switching, i.e., rather than remaining
fixed, ξXt is now permitted to transition between various states according to the behavior of the Markov
chain. Thus, model dynamics evolve to reflect these state-dependent changes, as described by the
following formulation:

dS t

S t
= rtdt +

√
vtdWS

1,t + ξXtdWS
2,t,

dvt = k(θ − vt)dt + σ
√

vtdWv
t ,

drt = α(β − rt)dt + ηdWr
t .

(2.4)

Here, we have ξXt = < ξ̄, Xt >, ξ̄ = (ξ1, ξ2, ..., ξN)T if we assume that < ·, · > represents two vectors’
inner product, and for each t, ξXt produces a scalar value.

By incorporating a second regime-switching component for volatility and considering the asset-
interest correlation, a key question arises: Can we maintain analytical tractability? Analytical pricing
formulas are highly valuable in practice, so addressing this issue is crucial. A thorough discussion of
this matter is presented in the following section.

3. European option pricing

This section introduces a general formula for evaluating European call options through the
application of measure transformation. Following this, under the forward measure, the underlying
logarithmic characteristic function is derived, ensuring that the resulting formula is both fully analytical
and exact.

3.1. The general pricing approach

One can use
U(S , v, r, Xt, t) = EQ

[
e−

∫ T
t r(s)ds max(S T − K, 0)|S t, vt, rt, Xt

]
(3.1)

to compute the value of a European call. The formula can be further simplified as

U(S , v, r, Xt, t) = P(r, t,T )EQ
T

[max(S T − K, 0)|S t, vt, rt, Xt] . (3.2)

Here, QT is the T -forward measure. P(r, t,T ) represents bond prices under Q expiring at T with no
coupon, and its formula can be straightforwardly derived according to the results in [27]:

P(r, t,T ) = eA(τ)−B(τ)r, τ = T − t, (3.3)

with

A(τ) =

(
η2

2α2 − β

)
τ +

1
α

(
η2

α2 − β

) (
e−ατ − 1

)
−

η2

4α2

(
e−2ατ − 1

)
,

AIMS Mathematics Volume 11, Issue 2, 3986–4007.



3991

B(τ) =
1
α

(
1 − e−ατ

)
.

One should expect that the expectation involved in (3.2) needs to be computed before obtaining an
analytical pricing formula. Since we take expectations under QT , the first step is to determine the
dynamics under this forward measure.

To apply the measure transform technique, we introduce four independent Brownian motions WQ
1,t,

WQ
2,t, WQ

3,t, and WQ
4,t as 

dWS
1,t

dWS
2,t

dWv
t

dWr
t

 = C ×


dWQ

1,t

dWQ
2,t

dWQ
3,t

dWQ
4,t

 , (3.4)

where the correlation matrix C is

C =


1 0 0 0
0 1 0 0

ρ1 0
√

1 − ρ2
1 0

0 ρ2 0
√

1 − ρ2
2


. (3.5)

With

µQ =


rt

k(θ − vt)
α(β − rt)

 , Σ =


√

vt ξXt 0 0
0 0 σ

√
vt 0

0 0 0 η

 , (3.6)

we can alternatively represent our model dynamics as
dS t

S t
dvt

drt

 = µQdt + Σ ×C ×


dWQ

1,t

dWQ
2,t

dWQ
3,t

dWQ
4,t

 . (3.7)

With a systematic expression of the model dynamics as presented in (3.7), one can compute µQ
T

using the theory in [7]:

µQ
T

= µQ − Σ ×
(
CCT

)
×

(
σN1,t

N1,t
−
σN2,t

N2,t

)
, (3.8)

if under Q and QT , σN1,t and σN2,t respectively denote the numeraires’ volatility terms with respect to
the original correlated Brownian vector [7,9]. Clearly, the derivation of µQT

needs to represent the two
numeraires, the definitions of which are

N1,t = e
∫ t

0 r(s)ds, N2,t = P(r, t,T ).

Thus, one could easily present

dN1,t = N1,tr(t)dt,
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dN2,t = N2,t

{[
dA
dt
−

dB
dt

r − α(β − r)B +
1
2
η2B2

]
dt − ηBdWr

t

}
,

implying that σN1,t is a four-dimensional column zero vector, and σN2,t is also a column vector with its
first three entries being 0 and the last one being −ηBN2,t. This provides

µQ
T

=


rt

k(θ − vt)
α(β − rt)

 −

√

vt ξXt 0 0
0 0 σ

√
vt 0

0 0 0 η

 ×


1 0 ρ1 0
0 1 0 ρ2

ρ1 0 1 0
0 ρ2 0 1

 ×


0
0
0
ηB


=


(rt − ρ2ηξXt B)

k(θ − vt)
αβ − Bη2 − αrt

 . (3.9)

We now finish the measure transformation by presenting underlying dynamics under QT :


dS t

S t
dvt

drt

 =


(rt − ρ2ηξXt B)

k(θ − vt)
αβ − Bη2 − αrt

 dt + Σ ×C ×


dWQT

1,t

dWQT

2,t

dWQT

3,t

dWQT

4,t

 . (3.10)

To validate the measure transform, we need to check whether
S t

P(rt, t,T )
is a QT -martingale. By

applying the product rule of stochastic differentiation, we can derive

d
[

S t

P(rt, t,T )

]
= P̃(rt, t,T )dS t + S tdP̃(rt, t,T ) + dS tdP̃(rt, t,T ),

where P̃(rt, t,T ) =
1

P(rt, t,T )
= eB(τ)r−A(τ). Applying Ito’s lemma further yields

dP̃(rt, t,T ) = P̃(rt, t,T )
{[

dB
dt

r −
dA
dt

+ B(αβ − Bη2 − αr) +
1
2

B2η2
]

dt

+ Bη
(
ρ2dWQT

2,t +

√
1 − ρ2

2dWQT

4,t

)}
.

Thus, one can obtain

d
[

S t

P(rt, t,T )

]
= µS/Pdt +

√
vtdWQT

1,t + ξXtdWQT

2,t + Bη
(
ρ2dWQT

2,t +

√
1 − ρ2

2dWQT

4,t

)
,

where

µS/P =

(
dB
dt
− αB + 1

)
r + αβB −

1
2

B2η2 −
dA
dt
.

Since B and A satisfy [27]
dB
dt

= αB − 1,
dA
dt

= αβB − 1
2 B2η2,
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we must have µS/P = 0, which indicates that
S t

P(rt, t,T )
is a QT -martingale.

Let yt = ln(S t). The general formula (3.2) can thus be reformulated as

U(y, v, r, Xt, t) = P(r, t,T ) (P1 − KP2) , (3.11)

where

P1 =

∫ +∞

ln K
eyT p(yT )dyT , P2 =

∫ +∞

ln K
p(yT )dyT .

Under QT , p(yt) is the density of yt, whose characteristic function, with j =
√
−1, can be defined by

f (φ; t,T, yt, vt, rt, Xt) = EQT (
e jφyT |yt, vt, rt

)
=

∫ +∞

−∞

e jφyT p(yT )dyT .

Setting φ = − j in the above equation yields

f (− j; t,T, yt, vt, rt, Xt) =

∫ +∞

−∞

eyT p(yT )dyT .

Both sides of this equation, if divided by f (− j; t,T, yt, vt, rt, Xt), produce∫ +∞

−∞

eyT p(yT )
f (− j; t,T, yt, vt, rt, Xt)

dyT = 1.

Thus, it is straightforward that

P1 = f (− j; t,T, yt, vt, rt, Xt)
{

1
2

+
1
π

∫ +∞

0
Real

[
e− jφ ln K f (φ − j; t,T, yt, vt, rt, Xt)

jφ f (− j; t,T, yt, vt, rt, Xt)

]
dφ

}
. (3.12)

Of course, P2 can be directly simplified as

P2 =
1
2

+
1
π

∫ +∞

0
Real

[
e− jφ ln K f (φ; t,T, yt, vt, rt, Xt)

jφ

]
dφ. (3.13)

It should be remarked that we require −1 ≤ ρ1, ρ2 ≤ 1 for the formulae (3.12) and (3.13) to be valid,
and the inversion integrals are taken along lines in the complex plane where the integrand is integrable.

After completing all of these steps, the pricing formula now contains the characteristic function f
under QT as the only unknown term, solving which would yield the final analytical pricing formula,
and the details are provided in the next subsection.

3.2. The characteristic function

The characteristic function derivation procedure is broken down into two steps. In the first step, it is
assumed that all information about the Markov chain up to the maturity time is available at the present
time, leading to the formulation of a conditional characteristic function. One should then proceed to
the second step to find the expected value of this intermediate result.

Let us first fix a realization of the Markov chain path {Xs, t ≤ s ≤ T }, denoted by xs, and define the
conditional characteristic function

h(φ; t,T, yt, vt, rt, xs) = EQ
T (

e jφyT |yt, vt, rt, xs

)
.
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Then, h satisfies the following PDE:

∂h
∂τ

=

(
1
2

v +
1
2
ξ2

t

)
∂2h
∂y2 +

1
2
σ2v

∂2h
∂v2 +

1
2
η2∂

2h
∂r2 + ρ1σv

∂2h
∂y∂v

+ ρ2ηξt
∂2h
∂y∂r

+

(
rt − ρ2ηξtB −

1
2

v −
1
2
ξ2

t

)
∂h
∂y

+ k(θ − v)
∂h
∂v

+
(
αβ − Bη2 − αr

) ∂h
∂r
, (3.14)

with the initial condition h|τ=0 = e jφyt . As we assume here that the path xs is pre-given, ξXt is no longer
random, but just time dependent, producing a scalar value for each time moment t, and we have thus
denoted it as ξt. In this case, following much of the existing literature [12, 26, 29, 38, 43], we denote
τ = T − t, and the substitution of

h = eG(φ;τ)+D(φ;τ)vt+E(φ;τ)rt+ jφyt (3.15)

into PDE (3.14) yields

dD
dτ

=
1
2
σ2D2 + ( jφρ1σ − k)D −

1
2

( jφ + φ2), D(φ; 0) = 0,

dE
dτ

= jφ − αE, E(φ; 0) = 0,

dG
dτ

=
1
2
η2E + kθD + (αβ − η2B)E + jφρ2ηξt(E − B) −

1
2

( jφ + φ2)ξ2
t , G(φ; 0) = 0.

D(φ; τ) solves a Riccati equation whose coefficients are constant, and one can write its solution as:

D =
d − ( jφρ1σ − k)

σ2 ·
1 − edτ

1 − gedτ , (3.16)

with
d =

√
( jφρ1σ − k)2 + σ2( jφ + φ2), g =

( jφρ1σ − k) − d
( jφρ1σ − k) + d

.

E(φ; τ) satisfies a first-order linear ODE, and one can apply the general solution to derive

E(φ; τ) =
jφ
α

(1 − e−ατ). (3.17)

As the terms on the right-hand side of the ODE governing G(φ; τ) are all known by now, working
out G(φ; τ) just requires us to integrate its ODE directly, resulting in

G(φ; τ) = Ḡ(φ; τ) + G̃(φ; τ), (3.18)

with

Ḡ(φ; τ) = −
η2(φ2 + 2 jφ)

2α2

[
τ −

2
α

(1 − e−ατ) +
1

2α
(1 − e−2ατ)

]
+ β jφ

[
τ −

1
α

(1 − e−ατ)
]

+
kθ
σ2

{[
d − ( jφρ1σ − k)

]
τ − 2 ln

(
1 − gedτ

1 − g

)}
,

AIMS Mathematics Volume 11, Issue 2, 3986–4007.



3995

and

G̃(φ; τ) = ( jφ + φ2)
∫ T

t
−
ρ2η

α

[
1 − e−α(T−s)

]
< ξs, Xs > −

1
2
< ξ2

s , Xs > ds.

It should be remarked that when ξ ≡ 0 and ρ2 = 0, one can easily find G̃(φ; τ) = 0, and Ḡ(φ; τ) is
exactly the constant term of the characteristic function corresponding to the classical Heston-Vasicek
hybrid model, which partially verifies the correctness of our derivation.

Once h has been successfully derived, the target characteristic function f can be calculated by
applying the tower property of expectation:

f = eḠ(φ;τ)+D(φ;τ)vt+E(φ;τ)rt+ jφyt EQ
T (

eG̃(φ;τ)|Xt

)
.

According to [18, Proposition 3.2], we can calculate the involved expectation as

E
(
eC̃(φ;τ)|Xt

)
=<

(
eΛT τ+Z

)
Xt, I>. (3.19)

Here, all elements of the N-dimensional vector I are equal to 1. Z =

diag
[
p(φ; τ)ξ̄ −

1
2

( jφ + φ2)ξ̄2τ

]
, with

p(φ; τ) = −
ρ2η( jφ + φ2)

α

[
τ −

1
α

(1 − e−ατ)
]
.

The notation diag[·] refers to the diagonal matrix formed by placing a vector’s elements along the main
diagonal. Thus, we finally arrive at

f = eC̄(φ;τ)+D(φ;τ)vt+E(φ;τ)rt+ jφyt <
(
eΛT τ+Z

)
Xt, I>. (3.20)

Based on the model dynamics described in (3.7), an analytical solution for European options can
be formulated by combining Eqs (3.11) and (3.20). In the following section, numerical simulations are
performed to explore European options’ characteristics within our specific model, where the additional
factor introduces regime switching.

4. Numerical experiments and discussions

In this section, our formula is validated numerically first to guarantee that no algebraic
errors occurred when it was derived, and then the second regime-switching* factor’s influence is
demonstrated. Note that when implementing our formula, the integration over the Fourier variable
was computed using the trapezoidal rule, with the truncation range as [0, 100] and the step size as 0.1.
Unless otherwise stated in the following, the parameters are

ξ1 = 0.01; ξ2 = 0.1; λ12 = λ21 = 10; k = 10;α = 5;σ = 0.1; θ = 0.2; β = 0.1; ρ1 = −0.8;
ρ2 = −0.5; η = 0.05; r0 = 0.03; v0 = 0.1; S 0 = K = 100; τ = 1; X0 = (1, 0)T .

*We consider a two-state Markov chain in this section’s numerical experiments and the next section’s empirical analysis.
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Figure 1. Accuracy verification.

Figure 1(a) presents the prices of European call options for State 1, as calculated using our analytical
formula, alongside those obtained from direct Monte Carlo simulations by using a Euler scheme
to exactly simulate the model dynamics with 500,000 sampling paths and the time discretization
step 0.01. Both pricing methods exhibit an upward trend in relation to the underlying asset price, which
aligns with typical financial intuition. It is also evident that the newly derived formula delivers highly
accurate results, as the computed values closely match those from the Monte Carlo simulations. As
demonstrated in Figure 1(b), their relative difference is bounded up by 0.5%, providing strong evidence
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that our formula is reliable and suitable for practical implementation. Regarding computational
performance, our approach computes an option price in approximately 0.07 seconds†, which is over 400
times faster than the 28.36 seconds consumed by a standard Monte Carlo simulation for the same task.
While this highlights the substantial efficiency of our method, we acknowledge that achieving the
speed and stability required for real-time calibration in high-frequency trading may demand further
refinement, a challenge we propose to address in future work.
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Figure 2. The difference among the three models.

Figure 2 provides a comparison of option prices generated by three distinct models: the traditional
Heston-Vasicek hybrid model, its two-factor version without switching, and our proposed one
considering regime switching. All models are implemented using identical parameter values. A key
observation is that the option prices from the one-factor model are the lowest, which can be attributed
to the absence of an additional volatility factor, resulting in lower risk and, consequently, a lower price.
In contrast, the two-factor models incorporate additional volatility factors, which naturally increase
both risk and price.

Our model’s option prices for both states are higher than those from the two-factor model without
regime switching when the second factor, ξ, is set to ξ1. However, when ξ is set to ξ2, our model’s
prices are lower. This difference arises because, in our model, the second factor switches between high
and low values, whereas in the two-factor model without regime switching, the second factor is fixed
throughout the option’s life. Additionally, it is noteworthy that the price for State 1 in our model is
consistently lower than that for State 2. This is due to the second factor in State 1 being smaller than in
State 2. Furthermore, with an increase in time to maturity, the price gap of both states narrows, since
a longer time to expiration allows the second factor to fluctuate more between its higher and lower

†All the results in this section are produced using MATLAB R2019b on a desktop with a 2.5 GHz Intel Core i5 CPU and 16 GB
RAM.
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values for States 1 and 2, respectively.
To further demonstrate the effects of the regime-switching mechanism, we set the two transition

rates to be identical and illustrate in Figure 3 how the resultant option prices vary with changes in these
rates. As anticipated, when the transition rates are set to zero, i.e., λ12 = λ21 = 0, the numerical option
prices from our model align perfectly with those from the two-factor model without regime switching.
This is because, in this scenario, regime switching does not occur in our model. As the transition rates
increase, we observe that the option price for State 1 rises, while the price for State 2 decreases. This
can be attributed to the fact that State 1 provides more possibility for higher volatility values, while
smaller volatility values are more likely to be attained in State 2, influencing the respective option
prices. It should also be noted that the rate of change for option prices of both states with respect to
the transition rates are decreasing since larger transition rates imply more frequent regime switching,
making the impact of the initial state of the second factor less significant on option prices. One can also
observe that the regime-switching feature has larger impact on options with shorter maturities, where
the volatility smile is more sensitive to regime shifts.

While the distinction between our model and the traditional Heston-Vasicek hybrid model is
evident when using identical model parameters, this difference alone does not imply that our model
will necessarily outperform the classical model when employing real data. In practice, model
parameters must be calibrated based on actual market conditions. To address this, empirical results
using SSE50ETF options are provided in the following section.
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Figure 3. Option prices with respect to the transition rates.

5. Empirical studies

This section compares our newly proposed model’s performance with the traditional Heston-
Vasicek hybrid model to highlight the significance of including regime switching and the asset-interest
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correlation. This comparison serves to demonstrate the added value of these factors in improving model
accuracy. Before empirical results are presented in the last subsection, it is necessary to introduce the
data set and the approach used for this empirical study, which forms the main content of the first and
second subsections, respectively.

5.1. Data description

For calibrating both models, we use European options on the SSE50ETF from January to
December 2023. Following several existing studies [3, 25], we rely exclusively on call options.
While including both call and put options would offer a more comprehensive assessment of model
performance, particularly in capturing volatility smiles/smirks, we leave this extension to future
research. Note that this raw data is not used directly, as it is well recognized that unfiltered data often
contains noise that can lead to inaccurate or misleading conclusions. Therefore, several data filtering
techniques are applied to ensure the quality and reliability of the dataset.

Consistent with the approach in [3, 15] and other studies, we select only Wednesday option data
for model calibration. Wednesday exhibits the lowest probability of being a public holiday and is less
influenced by the “day-of-the-week” effect, making it a more reliable choice for analysis. Additionally,
options with very short or long times to expiration are excluded, as those with fewer than 30 days or
over 90 days to maturity tend to exhibit high price volatility or inflated premiums, which can distort
results [37]. Furthermore, options that are deeply in-the-money or deeply out-of-money are removed
due to their association with liquidity issues [47]. Specifically, options with an absolute moneyness
greater than 10%, with moneyness calculated as (S − K)/K.

After applying these filters, we obtain approximately 20–40 options per Wednesday, with a total
of 1240 option quotes across the 48 calibration dates. The resulting dataset is ready for parameter
estimation. To determine the model parameters, an appropriate method must be selected, which is
explained in detail below.

5.2. Parameter estimation

The process of determining model parameters involves identifying the “optimal” set that ensures the
model-generated option prices closely match those observed in the real market. This can be framed as
an optimization problem, where the goal is to minimize the discrepancy between the model’s prices and
the actual market prices. If N refers to the observed number in one estimation, CMarket represents one
observed option price in the market, and Cmodel denotes the price predicted by the model. A commonly
used approach to achieve this is by minimizing the dollar mean-squared error (MSE) [14, 54]:

MS E =
1
N

N∑
i=1

(CMarket −CModel)2 . (5.1)

To minimize Eq (5.1), an appropriate optimization technique must be employed. These techniques
generally fall into two main categories: local and global optimization. Local optimization methods are
relatively straightforward and quick to implement but are often criticized for getting trapped in local
minima, which is a concern in our case, as multiple local minima may exist when minimizing (5.1)
since it is not convex. On the other hand, global optimization methods, which incorporate stochastic
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elements in the search process, are better equipped to avoid local minima and are therefore commonly
preferred when calibrating option pricing models.

Simulated annealing (SA) [36] has received a lot of attention among global optimization approaches
ever since it was proposed due to its remarkable advantages. In addition to being simple to
implement and having minimal parameters that need adjustment, it also offers a theoretical assurance
of converging to the global minimum. This is a highly desirable characteristic, as it guarantees that
the global minimum can be reached. However, the SA converges very slowly, posing an obstacle for
its practical applications, and various modifications to the SA have thus been proposed. What we
adopt here is one of its well-known variations, the so-called adaptive simulated annealing (ASA) [32].
The ASA algorithm offers significant improvements over the traditional SA [34]. It is not only more
efficient but also less reliant on user-defined parameters, making it a more robust approach. The
widespread use of ASA across various fields, such as model calibration [42,44], highlights its growing
popularity and versatility.

The ASA can be implemented using the open-source code available in [33], offering increased
flexibility and enhanced capabilities through ongoing user feedback. We summarize the calibrated
parameter bounds and their daily averaged estimates in Table 2. In executing the ASA algorithm, we
employ 10 restarts to avoid local minima and ensure the robustness of the optimization.

Table 2. Parameter bounds and estimated results.

Lower bound Upper bound Ours Heston-Vasicek model
k 0 20 6.3870 13.6140
θ 0 1 0.0866 0.0121
σ 0 5 2.5205 2.1216
α 0 20 12.2883 13.9418
β -1 1 0.0824 0.1055
η 0 5 1.9487 2.2573
ρ1 -1 1 -0.1398 -0.0683
ρ2 -1 1 -0.0823
v0 0 1 0.0137 0.0383
ξ1 0 1 0.0174
ξ2 0 1 0.1672
λ12 0 20 7.2033
λ21 0 20 7.9157

ξ1, ξ2, λ12, and λ21, are shown in Figure 4, and exhibit meaningful variation without erratic instability
over the sample period. The low-volatility regime parameter ξ1 remains relatively stable at low levels,
while the high-volatility regime parameter ξ2 shows considerable fluctuations, often reaching values
an order of magnitude larger than ξ1. Both transition intensities λ12 and λ21 vary substantially across
dates, reflecting shifts in the frequency of regime transitions. This pattern supports the economic
interpretation of the model capturing distinct volatility regimes with time-varying persistence, and
indicates that the additional parameters are well-identified and stable enough for practical use.

Following the estimation, the performance of both models on this specific dataset can be evaluated,
and the results will be discussed in the following subsection.
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Figure 4. The additional parameters introduced by regime switching.

5.3. Empirical comparison

Since the model calibration involves minimizing the discrepancy between the market and model
prices of the options used for parameter estimation, it is logical to consider the residual value of Eq (5.1)
in this context, which is also named as the “in-sample error”, after model calibration to show the model
performance, since its magnitude measures the closeness between the two prices. On the other hand, a
different measure of the model’s performance can be assessed through the “prediction error” or “out-
of-sample error”. This is computed using Eq (5.1), which compares the market prices from a separate
dataset with the model ones generated from the calibrated parameters. Data from Thursday is utilized
for this evaluation. Table 3 presents both models’ daily averaged in-sample and out-of-sample errors,

both in terms of MSE and MAPE (mean absolute percentage error), defined as
|CMarket −CModel|

CMarket
.

Table 3. Both models’ pricing errors.

Ours Heston-Vasicek model
In-sample MSE 3.46E-6 4.31E-6

In-sample MAPE 1.14E-2 1.43E-2
Out-of-sample MSE 4.89E-5 1.18E-4

Out-of-sample MAPE 5.50E-2 6.95E-2

Table 2 reports the in-sample and out-of-sample pricing errors of the proposed model and the
benchmark Heston-Vasicek model. The results indicate that our model consistently achieves lower
errors across all metrics. For in-sample performance, our model yields an MSE of 3.46E-6 and
an MAPE of 1.14E-2, compared to 4.31E-6 and 1.43E-2 for the Heston-Vasicek model, reflecting an
improvement in both accuracy measures. More notably, in out-of-sample tests, the superiority of our
model becomes even more pronounced: Our MSE (4.89E-5) is less than half of that of the Heston-
Vasicek model (1.18E-4), and our MAPE (5.50E-2) is substantially lower than the benchmark’s 6.95E-
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2. These results demonstrate that the proposed model not only fits the historical data more closely
but also generalizes better to unseen data, offering enhanced pricing accuracy and robustness.

To further assess model performance, we categorize options into three moneyness
groups: In-the-money (ITM, [0.03, 0.1]), at-the-money (ATM, [−0.03, 0.03]), and out-of-the-
money (OTM, [−0.1,−0.03]). The out-of-sample errors across these categories are reported in Table 4.
Overall, the proposed model yields consistently lower MSE and MAPE values than the Heston-
Vasicek benchmark in all moneyness segments. The improvement is most pronounced for OTM
options, where the MSE is reduced by 74.9%. A similarly substantial reduction of 69.6% is observed
for ATM options. In terms of MAPE, the proposed model also outperforms the benchmark across all
categories, with the strongest relative improvement, an 18.9% decrease, occurring in the ATM group.
These findings suggest that the proposed model not only enhances pricing accuracy uniformly but is
particularly effective in the OTM and ATM regions, where conventional models tend to exhibit larger
pricing deviations.

Table 4. Out-of-sample errors in different moneyness categories.

Moneyness OTM ATM ITM

Ours
MSE 2.94E-5 4.04E-5 5.81E-5
MAPE 1.34E-1 5.22E-2 1.94E-2

Heston-Vasicek model
MSE 1.17E-4 1.33E-4 1.02E-4
MAPE 1.59E-1 6.44E-2 2.31E-2

Number of observations 361 501 752

To examine performance across the contract horizon, we partition the sample into two maturity
groups: Short-term (time to maturity ≤ 60 days) and long-term (time to maturity > 60 days). The
corresponding out-of-sample errors are presented in Table 5. Overall, the proposed model outperforms
the Heston-Vasicek benchmark in both maturity segments across MSE and MAPE metrics. The
improvement is especially marked for long-term options, where the MSE is reduced by 57.6%. For
short-term options, the reduction in MSE is more moderate at 19.7%. In terms of MAPE, the proposed
model also achieves lower errors in both groups, with a noticeable reduction of 30.6% in the long-
term category. These results indicate that the proposed model delivers robust pricing accuracy across
maturities, while offering particularly substantial error reduction for longer-dated options, where the
benchmark model tends to exhibit larger deviations.

Table 5. Out-of-sample errors in different maturity categories.

Time to maturity ≤ 60 days > 60 days

Ours
MSE 1.39E-5 7.72E-5
MAPE 4.70E-2 5.06E-2

Heston-Vasicek model
MSE 1.73E-5 1.82E-4
MAPE 4.78E-2 7.29E-2

Number of observations 893 721
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6. Conclusions

This study explores the combined effects of multi-factor stochastic volatility, regime switching, and
stochastic interest rates by integrating the Vasicek model for interest rates with a two-factor stochastic
volatility model. In this framework, the volatility dynamics are governed by a continuous-time Markov
chain and the Heston model. With the Markov chain being predefined, we derive the underlying
logarithmic conditional characteristic function, from which the unconditional one is obtained, leading
to an analytical formulation of European options. The accuracy of this new formula is validated through
numerical experiments, which also highlight the significant influence of the second regime-switching
volatility factor on option pricing. Our results empirically confirm that across the tested data set, the
proposed model performs better over the classical one-factor model, suggesting that it could serve as a
strong alternative to the Heston-Vasicek framework in practical applications.
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