Research article Special Issues

Topological analysis with some techniques for solving a fractional tsunami shallow water mathematical model-based on Hausdorff–locally compact structures and their analytical implications

  • Published: 09 February 2026
  • MSC : 35R11, 35B35, 44A10, 76B15

  • This paper provides a comprehensive analytical study of the fractional Whitham–Broer–Kaup equations (WBKEs), formulated using the Atangana–Baleanu–Caputo (ABC) fractional derivative to model nonlinearoscillatory behavior and the dynamics of tsunami shallow water waves. Within the framework of Banach spaces endowed with the compact–open topology, we rigorously establish the existence, uniqueness, and Hyers–Ulam stability of solutions by applying fixed–point theorems. To construct approximate analytical solutions, we develop a hybrid approach that integrates fractional power series expansions (FPSEs) with the new iterative method (NIM), referred to as the expansion new iterative method (ENIM). This methodology efficiently handles nonlinearities and fractional–order effects, yielding rapidly convergent series solutions that remain consistent with exact analytical results. Overall, the study demonstrates the robustness of the fractional WBKE model under small perturbations and confirms its effectiveness in capturing the complex dynamics of tsunami shallow water wave propagation.

    Citation: Faten H. Damag, Fozaiyah Alhubairah, Maryam F. Alshammari, Khaled M. Saad, Adem Kiliçman, Amin Saif, Najah Alshammari. Topological analysis with some techniques for solving a fractional tsunami shallow water mathematical model-based on Hausdorff–locally compact structures and their analytical implications[J]. AIMS Mathematics, 2026, 11(2): 3957-3985. doi: 10.3934/math.2026159

    Related Papers:

  • This paper provides a comprehensive analytical study of the fractional Whitham–Broer–Kaup equations (WBKEs), formulated using the Atangana–Baleanu–Caputo (ABC) fractional derivative to model nonlinearoscillatory behavior and the dynamics of tsunami shallow water waves. Within the framework of Banach spaces endowed with the compact–open topology, we rigorously establish the existence, uniqueness, and Hyers–Ulam stability of solutions by applying fixed–point theorems. To construct approximate analytical solutions, we develop a hybrid approach that integrates fractional power series expansions (FPSEs) with the new iterative method (NIM), referred to as the expansion new iterative method (ENIM). This methodology efficiently handles nonlinearities and fractional–order effects, yielding rapidly convergent series solutions that remain consistent with exact analytical results. Overall, the study demonstrates the robustness of the fractional WBKE model under small perturbations and confirms its effectiveness in capturing the complex dynamics of tsunami shallow water wave propagation.



    加载中


    [1] R. Ashraf, R. Nawaz, O. Alabdali, N. Fewster–Young, A. H. Ali, F. Ghanim, et al., A new hybrid optimal auxiliary function method for approximate solutions of non–linear fractional partial differential equations, Fractal Fract., 7 (2023), 673. http://dx.doi.org/10.3390/fractalfract7090673 doi: 10.3390/fractalfract7090673
    [2] F. H. Damag, On comparing analytical and numerical solutions of time Caputo fractional Kawahara equations via some techniques, Mathematics, 13 (2025), 2995. http://dx.doi.org/10.3390/math13182995 doi: 10.3390/math13182995
    [3] H. Qu, X. Liu, Z. She, Neural network method for fractional–order partial differential equations, Neurocomputing, 414 (2020), 225–237. http://dx.doi.org/10.1016/j.neucom.2020.07.025 doi: 10.1016/j.neucom.2020.07.025
    [4] Y. Li, F. Liu, I. W. Turner, T. Li, Time–fractional diffusion equation for signal smoothing, Appl. Math. Comput., 326 (2018), 108–116. http://dx.doi.org/10.1016/j.amc.2017.12.037 doi: 10.1016/j.amc.2017.12.037
    [5] K. S. Miller, B. Ross, An introduction to fractional calculus and fractional differential equations, Wiley, 1993.
    [6] X. J. Yang, A new integral transform method for solving steady heat–transfer problem, Therm. Sci., 20 (2016), 639–642. http://dx.doi.org/10.2298/TSCI16S3639Y doi: 10.2298/TSCI16S3639Y
    [7] S. T. Mohyud–Din, A. Yildirim, G. Demirli, Traveling wave solutions of Whitham–Broer–Kaup equations by homotopy perturbation method, J. King Saud Univ. Sci., 22 (2010), 173–176. http://dx.doi.org/10.1016/j.jksus.2010.02.001 doi: 10.1016/j.jksus.2010.02.001
    [8] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [9] F. H. Damag, A. Saif, A. Kilicman, $\phi$–Hilfer fractional Cauchy problems with almost sectorial and Lie bracket operators in Banach algebras, Fractal Fract., 8 (2024), 741. http://dx.doi.org/10.3390/fractalfract8120741 doi: 10.3390/fractalfract8120741
    [10] J. Biazar, H. Aminikhah, Study of convergence of homotopy perturbation method for systems of partial differential equations, Comput. Math. Appl., 58 (2009), 2221–2230. http://dx.doi.org/10.1016/j.camwa.2009.03.034 doi: 10.1016/j.camwa.2009.03.034
    [11] M. Kumar, Numerical solution of singular boundary value problems using advanced Adomian decomposition method, Eng. Comput., 37 (2021), 2853–2863. http://dx.doi.org/10.1108/EC–02–2020–0063 doi: 10.1108/EC–02–2020–0063
    [12] F. Xie, Z. Yan, H. Zhang, Explicit and exact traveling wave solutions of Whitham–Broer–Kaup shallow water equations, Phys. Lett. A, 285 (2001), 76–80. http://dx.doi.org/10.1016/S0375–9601(01)00086–5 doi: 10.1016/S0375–9601(01)00086–5
    [13] J. Ahmad, M. Mushtaq, N. Sajjad, Exact solution of Whitham–Broer–Kaup shallow water wave equations, J. Sci. Arts, 15 (2015), 5.
    [14] S. T. Mohyud–Din, M. A. Noor, Homotopy perturbation method for solving partial differential equations, Z. Naturforsch. A, 64 (2009), 157–170.
    [15] S. Yuzbasi, N. Sahin, Numerical solutions of singularly perturbed one–dimensional parabolic convection–diffusion problems by the Bessel collocation method, Appl. Math. Comput., 220 (2013), 305–315.
    [16] L. Wang, X. Chen, Approximate analytical solutions of time fractional Whitham–Broer–Kaup equations by a residual power series method, Entropy, 17 (2015), 6519–6533.
    [17] R. Adel, A. M. Abdulqawi, Redefined quintic B–spline collocation method to solve the time–fractional Whitham–Broer–Kaup equations, Comput. Math. Methods, 2024. http://dx.doi.org/10.1155/2024/7326616
    [18] S. M. El–Sayed, D. Kaya, Exact and numerical traveling wave solutions of Whitham–Broer–Kaup equations, Appl. Math. Comput., 167 (2005), 1339–1349. http://dx.doi.org/10.1016/j.amc.2004.08.012 doi: 10.1016/j.amc.2004.08.012
    [19] H. Yasmin, Numerical analysis of time–fractional Whitham–Broer–Kaup equations with exponential–decay kernel, Fractal Fract., 6 (2022), 142. http://dx.doi.org/10.3390/fractalfract6030142 doi: 10.3390/fractalfract6030142
    [20] R. Shah, H. Khan, D. Baleanu, Fractional Whitham–Broer–Kaup equations within modified analytical approaches, Axioms, 8 (2019), 125. http://dx.doi.org/10.3390/axioms8040125 doi: 10.3390/axioms8040125
    [21] S. Azzh, U. Roman, A. Nehad, S. Rasool, N. Kamsing, Implementation of Yang residual power series method to solve fractional non–linear systems, AIMS Math., 8 (2023), 8294–8309. http://dx.doi.org/10.3934/math.2023418 doi: 10.3934/math.2023418
    [22] A. Shams, E. Mohamed, A. Abdelgabar, H. Walid, Numerical solutions of time–fractional Whitham–Broer–Kaup equations via Sumudu decomposition method, J. Math., 2023. http://dx.doi.org/10.1155/2023/4664866
    [23] A. Ali, K. Shah, R. A. Khan, Numerical treatment for traveling wave solutions of fractional Whitham–Broer–Kaup equations, Alex. Eng. J., 57 (2018), 1991–1998.
    [24] H. Xu, W. Cheng, J. Cui, Multiple–soliton and periodic solutions to space–time fractional Whitham–Broer–Kaup equations, Eur. Phys. J. Spec. Top., 231 (2022), 2353–2357.
    [25] H. Sirajul, M. Ishaq, Solution of coupled Whitham–Broer–Kaup equations using optimal homotopy asymptotic method, Ocean Eng., 84 (2014), 81–88.
    [26] S. Ahmad, A. Ullah, A. Akgul, M. De la Sen, A novel homotopy perturbation method with applications to nonlinear fractional–order KdV and Burger equation with exponential–decay kernel, J. Funct. Space., 2021.
    [27] B. A. Kupershmidt, Mathematics of dispersive water waves, Commun. Math. Phys., 99 (1985), 51–73. http://dx.doi.org/10.1007/BF01204133 doi: 10.1007/BF01204133
    [28] A. Akgul, A. Cordero, J. R. Torregrosa, A fractional Newton method with $2\alpha$–order of convergence and its stability, Appl. Math. Lett., 98 (2019), 344–351.
    [29] A. R. Seadawy, M. Iqbal, D. Lu, Propagation of kink and anti–kink wave solitons for the nonlinear damped modified KdV equation arising in ion–acoustic wave in an unmagnetized collisional dusty plasma, Physica A, 544 (2020), 123560.
    [30] J. H. He, Homotopy perturbation technique, Comput. Method. Appl. Mech. Eng., 178 (1999), 257–262. http://dx.doi.org/10.1016/S0045–7825(98)00390–9 doi: 10.1016/S0045–7825(98)00390–9
    [31] T. Yazgan, E. Ilhan, E. Çelik, H. Bulut, On the new hyperbolic wave solutions to Wu–Zhang system models, Opt. Quantum Electron., 54 (2022), 298.
    [32] F. H. Damag, A. Saif, On solving modified time Caputo fractional Kawahara equations in the framework of Hilbert algebras using the Laplace residual power series method, Mathematics, 9 (2025), 301.
    [33] I. Kadri, H. Gundogdu, Y. M. Modawy, A. Imam, K. A. A. Helal, I. Elshamy, et al., A comparative analysis of the non–linear time fractional Whitham–Broer–Kaup equations under Aboodh decomposition transform, Eur. J. Pure Appl. Math., 18 (2025), 6626–6636.
    [34] B. Boutarfa, A. Akgul, M. Inc, New approach for the Fornberg–Whitham type equations, J. Comput. Appl. Math., 312 (2017), 13–26.
    [35] B. R. Sontakke, A. S. Shelke, A. S. Shaikh, Solution of non–linear fractional differential equations by variational iteration method and applications, Far East J. Math. Sci., 1 (2019), 113–129.
    [36] M. Inc, A. Akgul, A. Kilicman, Explicit solution of telegraph equation-based on reproducing kernel method, J. Funct. Space. Appl., 2012.
    [37] D. B. Dhaigude, S. B. Kiwne, R. M. Dhaigude, Monotone iterative scheme for weakly coupled system of finite difference reaction–diffusion equations, Commun. Appl. Anal., 12 (2008), 161.
    [38] S. Kilic, E. Celik, Complex solutions to the higher–order nonlinear Boussinesq type wave equation transform, Ric. Mat., 2022.
    [39] M. U. Rahman, M. Arfan, Z. Shah, E. Alzahrani, Evolution of fractional mathematical model for drinking under Atangana–Baleanu Caputo derivatives, Phys. Scr., 96 (2021), 115203.
    [40] M. Nadeem, S. H. Alotaibi, F. M. Alotaibi, Y. Alsayaad, Numerical investigation of two–dimensional fuzzy fractional heat problem with an external source variable, PLoS One, 19 (2024), e0304871. http://dx.doi.org/10.1371/journal.pone.0304871 doi: 10.1371/journal.pone.0304871
    [41] A. Kumar, D. Kumar, D. Baleanu, Dynamical and computational analysis of fractional Whitham–Broer–Kaup equations arising in shallow–water waves, Results Eng., 2025, 105392.
    [42] A. Prakash, H. Kaur, Numerical simulation of coupled fractional–order Whitham–Broer–Kaup equations arising in shallow water with Atangana–Baleanu derivative, Math. Methods Appl. Sci., 46 (2023), 11583–11602.
    [43] M. Jeelani, A. S. Alnahdi, M. A. Almalahi, M. S. Abdo, H. A. Wahash, M. A. Abdelkawy, Study of the Atangana–Baleanu–Caputo type fractional system with a generalized Mittag–Leffler kernel, AIMS Math., 7 (2022), 2001–2018.
    [44] S. G. Samko, Fractional integrals and derivatives: Theory and applications, 1993.
    [45] M. Awadalla, Fractional Hermite functions associated with the Atangana–Baleanu Caputo derivative power series solutions, Rodrigues representation, and orthogonality analysis, AIMS Math., 10 (2025), 20586–20605.
    [46] Gulalai, S. Ahmad, F.A. Rihan, A. Ullah, Q. M. Al–Mdallal, A. Akgul, Nonlinear analysis of a nonlinear modified KdV equation under Atangana–Baleanu Caputo derivative, AIMS Math., 7 (2022), 7847–7865.
    [47] W. Alfwzan, S. W. Yao, F. M. Allehiany, S. Ahmad, S. Saifullah, M. Inc, Analysis of fractional non–linear tsunami shallow water mathematical model with singular and non singular kernels, Results Phys., 52 (2023), 106707.
    [48] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math., 26 (2010), 103–107.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(107) PDF downloads(11) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog