Research article

Color image denoising under mixed multiplicative and Gaussian noise via group-sparse representation and SVTV regularization

  • Published: 09 February 2026
  • MSC : 68U10, 65K10, 94A08, 65F22, 52A41, 90C26

  • Color image denoising under the simultaneous presence of multiplicative and Gaussian noise is challenging due to the differing statistical properties of the two noise types. We propose a variational framework that integrates an infimal-convolution-based data-fidelity term with saturation-value total variation (SVTV) and group-based sparse representation (GSR) regularization. By explicitly decoupling the multiplicative and Gaussian noise components, the data-fidelity term enables effective suppression of mixed noise. The two regularizers play complementary roles: SVTV promotes piecewise-smooth reconstructions while preserving edges, whereas GSR enhances fine details and textures and mitigates the staircase artifacts induced by SVTV. The resulting nonconvex optimization problem is addressed using a proximal alternating minimization strategy, with the alternating direction method of multipliers employed to efficiently solve the subproblems. A convergence analysis of the proposed algorithm is provided. Numerical experiments demonstrate that the proposed method consistently outperforms existing approaches for denoising color images corrupted by mixed multiplicative and Gaussian noise.

    Citation: Miyoun Jung. Color image denoising under mixed multiplicative and Gaussian noise via group-sparse representation and SVTV regularization[J]. AIMS Mathematics, 2026, 11(2): 3920-3956. doi: 10.3934/math.2026158

    Related Papers:

  • Color image denoising under the simultaneous presence of multiplicative and Gaussian noise is challenging due to the differing statistical properties of the two noise types. We propose a variational framework that integrates an infimal-convolution-based data-fidelity term with saturation-value total variation (SVTV) and group-based sparse representation (GSR) regularization. By explicitly decoupling the multiplicative and Gaussian noise components, the data-fidelity term enables effective suppression of mixed noise. The two regularizers play complementary roles: SVTV promotes piecewise-smooth reconstructions while preserving edges, whereas GSR enhances fine details and textures and mitigates the staircase artifacts induced by SVTV. The resulting nonconvex optimization problem is addressed using a proximal alternating minimization strategy, with the alternating direction method of multipliers employed to efficiently solve the subproblems. A convergence analysis of the proposed algorithm is provided. Numerical experiments demonstrate that the proposed method consistently outperforms existing approaches for denoising color images corrupted by mixed multiplicative and Gaussian noise.



    加载中


    [1] C. J. Oliver, S. Quegan, Understanding Synthetic Aperture Radar Images, Raleigh: SciTech Publishing, 2004.
    [2] R. F. Wagner, S. W. Smith, J. M. Sandrik, H. Lopez, Statistics of speckle in ultrasound B-scans, IEEE Trans. Sonics Ultrasonics, 30 (1983), 156–163. https://doi.org/10.1109/T-SU.1983.31404 doi: 10.1109/T-SU.1983.31404
    [3] J. M. Schmitt, S. Xiang, K. M. Yung, Speckle in optical coherence tomography, J. Biomed. Opt., 4 (1999), 95–105. https://doi.org/10.1117/1.429925 doi: 10.1117/1.429925
    [4] J. W. Goodman, Some fundamental properties of speckle, J. Opt. Soc. Amer., 66 (1976), 1145–1150. https://doi.org/10.1364/JOSA.66.001145 doi: 10.1364/JOSA.66.001145
    [5] V. S. Frost, J. A. Stiles, K. S. Shanmugan, J. C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-4 (1982), 157–166. https://doi.org/10.1109/TPAMI.1982.4767223 doi: 10.1109/TPAMI.1982.4767223
    [6] K. Krissian, C. F. Westin, R. Kikinis, K. G. Vosburgh, Oriented speckle reducing anisotropic diffusion, IEEE Trans. Image Process., 16 (2007), 1412–1424. https://doi.org/10.1109/TIP.2007.891803 doi: 10.1109/TIP.2007.891803
    [7] S. Parrilli, M. Poderico, C. V. Angelino, L. Verdoliva, A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Trans. Geosci. Remote Sens., 50 (2012), 606–616. https://doi.org/10.1109/TGRS.2011.2161586 doi: 10.1109/TGRS.2011.2161586
    [8] G. Aubert, J. F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925–946. https://doi.org/10.1137/060671814 doi: 10.1137/060671814
    [9] J. Shi, S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), 294–321. https://doi.org/10.1137/070689954 doi: 10.1137/070689954
    [10] Y. Dong, T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), 1598–1625. https://doi.org/10.1137/120870621 doi: 10.1137/120870621
    [11] L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D: Nonlinear Phenom., 60 (1992), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F doi: 10.1016/0167-2789(92)90242-F
    [12] J. Lu, L. Shen, C. Xu, Y. Xu, Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm, Appl. Comput. Harmon. Anal., 41 (2016), 518–539. https://doi.org/10.1016/j.acha.2015.10.003 doi: 10.1016/j.acha.2015.10.003
    [13] W. Wang, M. Yao, M. K. Ng, Color image multiplicative noise and blur removal by saturation-value total variation, Appl. Math. Model., 90 (2021), 240–264. https://doi.org/10.1016/j.apm.2020.08.052 doi: 10.1016/j.apm.2020.08.052
    [14] M. Jung, Saturation-value based higher-order regularization for color image restoration, Multidimens. Syst. Signal Process., 34 (2023), 365–394. https://doi.org/10.1007/s11045-023-00867-x doi: 10.1007/s11045-023-00867-x
    [15] M. Jung, Group sparse representation and saturation-value total variation based color image denoising under multiplicative noise, AIMS Math., 9 (2024), 6013–6040. https://doi.org/10.3934/math.2024294 doi: 10.3934/math.2024294
    [16] M. Hintermüller, A. Langer, Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed L1-L2 data-fidelity in image processing, SIAM J. Imaging Sci., 6 (2013), 2134–2173. https://doi.org/10.1137/120894130 doi: 10.1137/120894130
    [17] A. Langer, Automated parameter selection in the $L^1$-$L^2$-TV model for removing Gaussian plus impulse noise, Inverse Probl., 33 (2017), 074002. https://doi.org/10.1088/1361-6420/33/7/074002 doi: 10.1088/1361-6420/33/7/074002
    [18] J. C. De Los Reyes, C. B. Schönlieb, Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization, Inverse Probl. Imaging, 7 (2013), 1183–1214. https://doi.org/10.3934/ipi.2013.7.1183 doi: 10.3934/ipi.2013.7.1183
    [19] A. Jezierska, E. Chouzenoux, J. C. Pesquet, H. Talbot, A convex approach for image restoration with exact Poisson-Gaussian likelihood, SIAM J. Imaging Sci., 62 (2015), 17–30. https://doi.org/10.1137/15M1014395 doi: 10.1137/15M1014395
    [20] L. Calatroni, C. Chung, J. C. De Los Reyes, C. B. Schönlieb, T. Valkonen, Bilevel approaches for learning of variational imaging models, In: Variational Methods: In Imaging and Geometric Control, 18 (2017), 252–290. https://doi.org/10.1515/9783110430394-008
    [21] L. Calatroni, J. C. De Los Reyes, C. B. Schönlieb, Infimal convolution of data discrepancies for mixed noise removal, SIAM J. Imaging Sci., 10 (2017), 1196–1233. https://doi.org/10.1137/16M1101684 doi: 10.1137/16M1101684
    [22] L. Calatroni, K. Papafitsoros, Analysis and automatic parameter selection of a variational model for mixed Gaussian and salt-and-pepper noise removal, Inverse Probl., 35 (2019), 114001. https://doi.org/10.1088/1361-6420/ab291a doi: 10.1088/1361-6420/ab291a
    [23] M. Jung, Saturation-value total variation based color image denoising under mixed multiplicative and Gaussian noise, J. Korean Soc. Ind. Appl. Math., 26 (2022), 156–184. https://doi.org/10.12941/jksiam.2022.26.156 doi: 10.12941/jksiam.2022.26.156
    [24] P. Blomgren, T. F. Chan, Color TV: Total variation methods for restoration of vector-valued images, IEEE Trans. Image Process., 7 (1998), 304–309. https://doi.org/10.1109/83.661180 doi: 10.1109/83.661180
    [25] T. Chan, S. Kang, J. Shen, Total variation denoising and enhancement of color images based on the CB and HSV color models, J. Vis. Commun. Image Represent., 12 (2001), 422–435. https://doi.org/10.1006/jvci.2001.0491 doi: 10.1006/jvci.2001.0491
    [26] Z. Jia, M. K. Ng, W. Wang, Color image restoration by saturation-value total variation, SIAM J. Imaging Sci., 12 (2019), 972–1000. https://doi.org/10.1137/18M1230451 doi: 10.1137/18M1230451
    [27] A. Buades, B. Coll, J. M. Morel, A non-local algorithm for image denoising, In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005, 60–65. https://doi.org/10.1109/CVPR.2005.38
    [28] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-d transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080–2095. https://doi.org/10.1109/TIP.2007.901238 doi: 10.1109/TIP.2007.901238
    [29] S. Kindermann, S. Osher, P. W. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4 (2005), 1091–1115. https://doi.org/10.1137/050622249 doi: 10.1137/050622249
    [30] X. Zhang, M. Burger, X. Bresson, S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imaging Sci., 3 (2010), 253–276. https://doi.org/10.1137/090746379 doi: 10.1137/090746379
    [31] M. Jung, X. Bresson, T. F. Chan, L. A. Vese, Nonlocal Mumford-Shah regularizers for color image restoration, IEEE Trans. Image Process., 20 (2011), 1583–1598. https://doi.org/10.1109/TIP.2010.2092433 doi: 10.1109/TIP.2010.2092433
    [32] M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), 3736–3745. https://doi.org/10.1109/TIP.2008.2008065 doi: 10.1109/TIP.2008.2008065
    [33] J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Non-local sparse models for image restoration, In: 2009 IEEE International Conference on Computer Vision, Tokyo, Japan, 2009, 2272–2279. https://doi.org/10.1109/ICCV.2009.5459452
    [34] W. Dong, L. Zhang, G. Shi, X. Wu, Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization, IEEE Trans. Image Process., 20 (2011), 1838–1857. https://doi.org/10.1109/TIP.2011.2108306 doi: 10.1109/TIP.2011.2108306
    [35] W. Dong, L. Zhang, G. Shi, X. Li, Nonlocally centralized sparse representation for image restoration, IEEE Trans. Image Process., 22 (2013), 1620–1630. https://doi.org/10.1109/TIP.2012.2235847 doi: 10.1109/TIP.2012.2235847
    [36] W. Dong, G. Shi, X. Li, Nonlocal image restoration with bilateral variance estimation: A low-rank approach, IEEE Trans. Image Process., 22 (2013), 700–711. https://doi.org/10.1109/TIP.2012.2221729 doi: 10.1109/TIP.2012.2221729
    [37] T. Huang, W. Dong, X. Xie, G. Shi, X. Bai, Mixed noise removal via Laplacian scale mixture modeling and nonlocal low-rank approximation, IEEE Trans. Image Process., 26 (2017), 3171–3186. https://doi.org/10.1109/TIP.2017.2676466 doi: 10.1109/TIP.2017.2676466
    [38] X. Liu, J. Lu, L. Shen, C. Xu, Y. Xu, Multiplicative noise removal: Nonlocal low-rank model and its proximal alternating reweighted minimization algorithm, SIAM J. Imaging Sci., 13 (2020), 1595–1629. https://doi.org/10.1137/20M1313167 doi: 10.1137/20M1313167
    [39] J. Zhang, D. Zhao, W. Gao, Group-based sparse representation for image restoration, IEEE Trans. Image Process., 23 (2014), 3336–3351. https://doi.org/10.1109/TIP.2014.2323127 doi: 10.1109/TIP.2014.2323127
    [40] J. Zhang, S. Ma, Y. Zhang, W. Gao, Image deblocking using group-based sparse representation and quantization constraint prior, In: 2015 IEEE International Conference on Image Processing, Quebec City, Canada, 2015,306–310. https://doi.org/10.1109/ICIP.2015.7350809
    [41] W. Shi, C. Chen, F. Jiang, D. Zhao, W. Shen, Group-based sparse representation for low lighting image enhancement, In: 2016 IEEE International Conference on Image Processing, Phoenix, AZ, USA, 2016, 4082–4086. https://doi.org/10.1109/ICIP.2016.7533127
    [42] S. Lee, M. Kang, Group sparse representation for restoring blurred images with Cauchy noise, J. Sci. Comput., 83 (2020), 41. https://doi.org/10.1007/s10915-020-01227-8 doi: 10.1007/s10915-020-01227-8
    [43] Z. Zha, X. Yuan, B. Wen, J. Zhou, J. Zhang, C. Zhu, A Benchmark for sparse coding: When group sparsity meets rank minimization, IEEE Trans. Image Process., 29 (2020), 5094–5109. https://doi.org/10.1109/TIP.2020.2972109 doi: 10.1109/TIP.2020.2972109
    [44] Z. Zha, X. Yuan, B. Wen, J. Zhang, J. Zhou, C. Zhu, Image restoration using joint patch-group based sparse representation, IEEE Trans. Image Process., 29 (2020), 7735–7750. https://doi.org/10.1109/TIP.2020.3005515 doi: 10.1109/TIP.2020.3005515
    [45] Z. Zha, X. Yuan, B. Wen, J. Zhou, C. Zhu, Group sparsity residual constraint with non-local priors for image restoration, IEEE Trans. Image Process., 29 (2020), 8960–8975. https://doi.org/10.1109/TIP.2020.3021291 doi: 10.1109/TIP.2020.3021291
    [46] Y. Kong, C. Zhou, C. Zhang, L. Sun, C. Zhou, Multi-color channels based group sparse model for image restoration, Algorithms, 15 (2022), 176. https://doi.org/10.3390/a15060176 doi: 10.3390/a15060176
    [47] Y. Chen, X. Xiao, Y. Zhou, Low-rank quaternion approximation for color image processing, IEEE Trans. Image Process., 29 (2019), 1426–1439. https://doi.org/10.1109/TIP.2019.2941319 doi: 10.1109/TIP.2019.2941319
    [48] J. Miao, K. I. Kou, Color image recovery using low-rank quaternion matrix completion algorithm, IEEE Trans. Image Process., 31 (2021), 190–201. https://doi.org/10.1109/TIP.2021.3128321 doi: 10.1109/TIP.2021.3128321
    [49] Z. Jia, Q. Jin, M. K. Ng, X. L. Zhao, Non-local robust quaternion matrix completion for large-scale color image and video inpainting, IEEE Trans. Image Process., 31 (2022), 3868–3883. https://doi.org/10.1109/TIP.2022.3176133 doi: 10.1109/TIP.2022.3176133
    [50] Y. Yu, Y. Zhang, S. Yuan, Quaternion-based weighted nuclear norm minimization for color image denoising, Neurocomputing, 332 (2019), 283–297. https://doi.org/10.1016/j.neucom.2018.12.034 doi: 10.1016/j.neucom.2018.12.034
    [51] C. Huang, Z. Li, Y. Liu, T. Wu, T. Zeng, Quaternion-based weighted nuclear norm minimization for color image restoration, Pattern Recognit., 128 (2022), 108665. https://doi.org/10.1016/j.patcog.2022.108665 doi: 10.1016/j.patcog.2022.108665
    [52] Q. Zhang, L. He, Y. Wang, L. J. Deng, J. Liu, Quaternion weighted Schatten $p$-norm minimization for color image restoration with convergence guarantee, Signal Proc., 218 (2024), 109382. https://doi.org/10.1016/j.sigpro.2024.109382 doi: 10.1016/j.sigpro.2024.109382
    [53] I. Csiszár, G. Tusná, Information geometry and alternating minimization procedures, Stat. Decis., 1 (1984), 205–237.
    [54] H. Attouch, J. Bolte, P. Redont, A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality, Math. Oper. Res., 35 (2010), 438–457. https://doi.org/10.1287/moor.1100.0449 doi: 10.1287/moor.1100.0449
    [55] J. Bochnak, M. Coste, M. F. Roy, Real Algebraic Geometry, Berlin: Springer, 1998. https://doi.org/10.1007/978-3-662-03718-8
    [56] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Basel: Birkhöuser Basel, 1991. https://doi.org/10.1007/978-3-0348-7617-9
    [57] J. Bolte, A. Daniilidis, A. Lewis, M. Shiota, Clarke subgradients of stratifiable functions, SIAM J. Optim., 18 (2007), 556–572. https://doi.org/10.1137/060670080 doi: 10.1137/060670080
    [58] Y. Wang, W. Yin, J. Zeng, Global convergence of ADMM in nonconvex nonsmooth optimization, J. Sci. Comput., 78 (2019), 1–2. https://doi.org/10.1007/s10915-018-0757-z doi: 10.1007/s10915-018-0757-z
    [59] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1–122. https://doi.org/10.1561/2200000016 doi: 10.1561/2200000016
    [60] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861 doi: 10.1109/TIP.2003.819861
    [61] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space, In: 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 2007,313–316. https://doi.org/10.1109/ICIP.2007.4378954
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(89) PDF downloads(12) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog