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Abstract: Color image denoising under the simultaneous presence of multiplicative and Gaussian
noise is challenging due to the differing statistical properties of the two noise types. We propose a
variational framework that integrates an infimal-convolution-based data-fidelity term with saturation-
value total variation (SVTV) and group-based sparse representation (GSR) regularization. By
explicitly decoupling the multiplicative and Gaussian noise components, the data-fidelity term enables
effective suppression of mixed noise. The two regularizers play complementary roles: SVTV promotes
piecewise-smooth reconstructions while preserving edges, whereas GSR enhances fine details and
textures and mitigates the staircase artifacts induced by SVTV. The resulting nonconvex optimization
problem is addressed using a proximal alternating minimization strategy, with the alternating direction
method of multipliers employed to efficiently solve the subproblems. A convergence analysis
of the proposed algorithm is provided. Numerical experiments demonstrate that the proposed
method consistently outperforms existing approaches for denoising color images corrupted by mixed
multiplicative and Gaussian noise.
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1. Introduction

Images are often degraded by multiple noise types during acquisition or transmission. Image
denoising is thus a fundamental problem in image processing, aiming to reconstruct a clean image
from its noisy observation. In this work, we address the denoising of color images contaminated by
mixed multiplicative noise and additive Gaussian noise. Multiplicative noise commonly arises in
coherent imaging systems such as synthetic aperture radar (SAR) [1], ultrasound imaging [2], and
laser imaging [3]. Owing to the coherent nature of these modalities, multiplicative noise can severely
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distort the acquired signal, often masking crucial structural details. ~Consequently, removing
multiplicative noise is considerably more challenging than removing additive Gaussian noise.
Additive Gaussian noise, in contrast, typically stems from sensor thermal fluctuations or variations in
environmental illumination and affects all pixels uniformly. In many practical scenarios, both noise
types occur simultaneously, complicating the denoising task. Furthermore, denoising color images is
more challenging than grayscale restoration, as noise affects multiple channels and can disrupt
inter-channel correlations.  Effective methods must suppress noise while preserving spectral
consistency to avoid color distortions. These factors make mixed-noise removal in color images
particularly challenging.

Let Q c R? be an open, bounded domain with a Lipschitz boundary, and let # : Q — R denote
the underlying clean image. The degradation model for the observed image f, corrupted by mixed
multiplicative noise and additive Gaussian noise, is given by f = un + v, where v denotes additive
Gaussian noise distributed as N(0, 0?) with zero mean and standard deviation o, and 7 represents
multiplicative noise following a prescribed distribution, such as Gamma or Rayleigh, depending on
the imaging modality. In this work, we focus on Gamma-distributed multiplicative noise commonly
encountered in SAR imaging. Specifically, n7 is assumed to follow a Gamma distribution with density

given by [4]
M

M M-1_—-Mn
n) = ——nM e, n>0, 1.1

where M > 0 is an integer parameter controlling the noise level and I'(-) denotes the Gamma function.
The mean of n is 1, and its standard deviation is 1/ VM.

For the removal of multiplicative Gamma noise, numerous filtering-based approaches [5-7] and
variational models [8-10] have been proposed. @ Among filtering-based methods, the SAR
block-matching 3D (SAR-BM3D) [7] is particularly notable for leveraging nonlocal self-similarity
and wavelet-domain collaborative filtering. Despite its strengths, it is computationally demanding and
may produce ringing artifacts near edges or block artifacts due to patch-based processing. Within the
variational framework, Aubert and Aujol (AA) [8] proposed a model that couples a Gamma-based
data-fidelity term with total variation (TV) regularization [11]. However, the nonconvexity of the
data-fidelity term can lead to suboptimal solutions and high sensitivity to initialization. To address
these issues, several convex variants have been proposed [9, 10, 12], often relying on logarithmic
transformations or additional penalty terms. More recently, a few studies [13—15] have extended these
variational formulations to color images, using the data-fidelity terms from [8,9, 12]. Nevertheless, all
these models focus solely on multiplicative Gamma noise and do not account for mixed-noise
scenarios.

When mixed noise is present, a single data-fidelity term is often insufficient to achieve satisfactory
denoising, and combining multiple fidelity terms has proven more effective. For example, linear
combinations of L' and L? data-fidelity terms have been used to remove mixed impulsive and
Gaussian noise [16, 17], and similar approaches have been proposed for mixed Poisson and Gaussian
noise [18-20]. More recently, Calatroni et al. [21, 22] introduced TV-based models for denoising
images corrupted by mixed salt-and-pepper and Gaussian noise, or mixed Poisson and Gaussian
noise, using a data discrepancy defined via the infimal-convolution of the respective noise
distributions. These fidelity terms have shown superior performance compared with simple linear
combinations of individual noise-specific terms. Following this approach, [23] proposed an
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infimal-convolution-type data-fidelity term specifically designed for mixed multiplicative Gamma and
additive Gaussian noise. In this work, we extend that model by incorporating a patch-based
regularization to further enhance denoising performance.

TV regularization has been widely extended for color image restoration [24-26]. Jia et al. [26]
introduced saturation-value-based TV (SVTV) in the HSV color space, which improves edge
preservation and reduces color artifacts compared with RGB-based TV. This approach was
subsequently applied to remove multiplicative noise and blur in color images [13]. However, SVTV
suffers from staircase artifacts; to mitigate this, higher-order SV-based regularizers [14] were
proposed. Nevertheless, local derivative-based methods still struggle to preserve fine textures and
repeated patterns, often leading to detail smearing. To overcome these limitations, nonlocal methods
exploiting image self-similarity have been extensively explored. The nonlocal means filter [27]
aggregates similar patches based on global repetitiveness, and BM3D [28] extended this idea by using
block-matching and 3D collaborative filtering, forming the basis for SAR-BM3D [7]. Nonlocal
regularizations for inverse problems [29-31] generally outperform local methods, although inaccurate
similarity weights can limit fine-detail recovery. Patch-based sparse representation methods, such as
K-means singular value decomposition (K-SVD) [32], represent each patch using a learned
dictionary. Despite its effectiveness, K-SVD ignores inter-patch self-similarity and is computationally
intensive. Later studies integrated sparsity with nonlocal self-similarity [33-35] or employed
low-rank modeling [36-38], with patches serving as the fundamental representation unit.

Zhang et al. [39] proposed the group-based sparse representation (GSR) model, which processes
groups of similar patches to capture both local sparsity and nonlocal self-similarity using an adaptive
group dictionary. This framework has demonstrated strong performance in image deblurring,
inpainting, and compressive sensing, and has been extended to tasks such as image deblocking [40],
low-light enhancement [41], and Cauchy noise removal [42]. Subsequent works combined GSR with
low-rank and patch-based sparse methods [43—45]. Most existing GSR approaches for color images
convert RGB to YCbCr and process only the luminance (Y) channel, which may be insufficient when
noise affects all channels independently. To address this, [46] formed groups for each RGB channel
separately, while [15] proposed a full-color GSR formulation that computes patch similarities directly
on color patches across all channels, better preserving cross-channel correlations. Quaternion-based
methods provide an alternative framework for color image processing by representing images as
quaternion matrices, which inherently preserve inter-channel correlations. Representative approaches
include low-rank approximation and matrix completion [47-49], as well as weighted nuclear norm
and weighted Schatten p-norm minimization [50-52]. However, most quaternion-based methods do
not explicitly exploit nonlocal patch grouping as in GSR. In this work, we adopt the full-color GSR
framework [15] for mixed multiplicative and Gaussian noise removal, leveraging nonlocal
self-similarity and adaptive sparsity to effectively preserve textures and cross-channel correlations.

The main contribution of this work is the development of a novel variational model for color
images corrupted by mixed multiplicative Gamma and additive Gaussian noise. The model combines
an infimal-convolution-based data-fidelity term with SVTV and full-color GSR regularization. The
fidelity term decouples the multiplicative and Gaussian noise components, enabling their
simultaneous removal. The two regularizers complement each other: SVTV smooths homogeneous
regions while preserving edges, whereas GSR maintains fine textures and structural details across all
channels and mitigates staircase effects. An efficient iterative algorithm based on alternating
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minimization and the alternating direction method of multipliers is proposed to solve the resulting
nonconvex problem, with a theoretical convergence guarantee. The remainder of this paper is
organized as follows. Section 2 reviews variational models for removing multiplicative or a mixture
of multiplicative and Gaussian noise, along with SVTV regularization and the GSR framework.
Section 3 introduces the proposed model and its optimization algorithm, with a convergence analysis.
Section 4 presents experimental results and comparisons with existing methods, and Section 5
concludes the paper with a summary and discussion.

2. Preliminaries

2.1. Variational models for removing multiplicative or a mixture of multiplicative and Gaussian noise

We first recall a key property from [8]. Let U and N be independent random variables with

continuous density functions gy and gy, and let F = UN. Then, for u > 0, gN(g)% = gru(flu).
Assume the data follows the multiplicative noise model f = un, with f, u > 0, where 17 is Gamma-
distributed with unit mean, as defined in (1.1). Then the conditional density of F' given U is

M
uMl'(M)
A maximum a posteriori (MAP) estimator yields the following variational formulation [8]:

f(logu+£—M_llogf)dx+,u‘{’(u), 2.1)
le) u M

where u > 0 balances the negative log-likelihood term induced by the Gamma noise and the
regularizer W(u), which encodes prior information on u. By using TV regularization, AA [8] proposed
the following variational model for removing multiplicative Gamma noise:

min f (logu + f) dx + f \Vul dx, (2.2)
u>0 Q u Q

where |Vu| = \/((')x] u)? + (0,,u)> with x = (x1, x). The TV regularizer is well known for its convexity,
edge-preserving properties, and wide applicability in image processing. However, the nonconvexity of
the AA model’s data-fidelity term makes the overall objective (2.2) nonconvex, which may result in
convergence to local minima and sensitivity to initialization.

Shi and Osher (SO) [9] addressed the limitations of the model (2.2) by applying a logarithmic
transformation w = log u while retaining the original variable, resulting in a convex variational model.

min /lf (u +fe_”) dx + f |Vu| dx.
u Q Q

As shown in [9], this convex model outperforms the model (2.2) and eliminates dependence on
initialization. However, these models primarily target multiplicative noise and do not explicitly handle
the simultaneous presence of additive Gaussian noise.

Assume the observed data follows f = un + v, where n is multiplicative Gamma noise and v ~
N(0,?). To jointly address both noise types, the authors in [23] introduced an infimal-convolution-
based data-fidelity term derived from (2.1):

. v M-1 1
D(u, f) ::g{j;(loguﬂ%— v log(f—v))dx+§Lv2dx},
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where 4 > 0 is a regularization parameter that balances smoothing with fidelity to each noise
component. In addition, following the SO model, a logarithmic transformation w = log(u) was
applied while keeping the original variable, leading to the reformulated data-fidelity term:

O, f) = inf{f (u +(f—v)e " —vylog(f - v)) dx + A4 f Vv dx} , (2.3)
v<f Q 2 Q

where y = MT“ In [23], this fidelity term was combined with SVTV to restore color images corrupted
by mixed multiplicative and Gaussian noise, demonstrating its effectiveness over existing
single-fidelity methods.

2.2. Saturation-value total variation

For a color image u = (u,, u4, u;), the saturation (S) and value (V) components can be expressed in
terms of the RGB channels as

1 1
S(x) = §||Cu(X)T||z, V(x) = —=lu(x) + ug(x) + up(x)l,

V3
where x = (x1, xp) € Q, || - || is the Euclidean norm and
2 -1 -1 u,(x)
C=|-1 2 -1, ux"= ug (x)|.
-1 -1 2 u,(x)

Noting that structural features such as edges and textures are primarily captured in the saturation
and value components, Jia et al. [26] introduced the SVTV regularization for color images:

SV-TV(u) = B u(x)P B u(x)R dx, 24
= [Yosuera | o.ucds .4

j=12 j=12

where a > 0 controls the relative weight of the value component and for j = 1,2,

1 1
10, u(x)l; = gllcaxju(x)Tllz, |0, u(x)ly = $I3x,-ur(x) + Oltg(X) + Oy up (),

with 0, u(x)" = (0,,u,(x), 0,,us(x), dx,uy(x))". The corresponding dual formulation is

1
SV-TV(u) := sup {L$(ur(x)—ug(x))div(¢1(x)) (2.5)

(¢ ,¢2)67(2,¢3 ex!

+%(u,(x) 1) — 2u(x)) div(a(x))

+%<ur<x> 1y (x) + uy(x)) div(gs(x)] dx,

where K™ = C'(Q,B*") denotes the space of continuously differentiable functions with compact
support in Q that take values in the closed unit ball B>" ¢ R?". The convexity, lower semi-continuity,
and compactness properties of SVTV were established in [26] based on this dual formulation.
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From the dual formulation (2.5), the matrix P can be defined, which is related to C as follows:

1 1
v v 0 300
P=| = —%|- C=PAP with A=[0 3 0.
1 1 1

Thus, by defining #(x) = Pu(x)’ for x € Q, the saturation and value components can be expressed
compactly as S (x) = [|(#;(x), #2(x))ll> and V(x) = [@3(x)|.

2.3. Group-based sparse representation

This subsection provides a brief overview of the GSR model [39] for grayscale image restoration.

Let x € R¥>*M denote a grayscale image. The image is first partitioned into N overlapping patches
x; of size VP x VP using a stride of S pixels, where k = 1,2,...,N. For each reference patch x,
the ¢ most similar patches are identified within a local search window of size L X L, and these patches
are stacked column-wise to form the group matrix xg, = [Xg,.1,XG,25 ---» XG..c] € R*¢. The grouping
operation can be expressed via a linear operator Rg, such that xg, = Rg,(x). Its adjoint R(T;k places the
group back into the image domain at the corresponding patch location, padding zeros elsewhere.

The GSR model assumes that each group x¢, can be accurately represented using only a few atoms
from a self-adaptive dictionary D¢, = [dg,1,dg,2,---,dG,.m], which is learned during optimization.
Each dictionary atom dg,; € R"™ has the same dimensions as the group xg,, and the number of
atoms is set to m = min(P,c). The sparse coding process seeks a sparse coefficient vector @g, =
lag,.1, @G, 2, - - .,a/Gk,m]T such that xg, = Dg,@g, := X i, @g,. dg, ;- After estimating the sparse codes
for all groups, the image is reconstructed by aggregating all group contributions as

N N
x=Dgoag:= ) R{(Deag).] ) RE(Ipo), (2.6)
k=1 k=1

where D¢ and @ denote the concatenation of all group dictionaries and corresponding sparse codes,
respectively, The symbol ./ represents element-wise division, 1py. is an all-ones matrix used for
normalization, and o denotes the group-based synthesis operator.

For an observed degraded image y = Hx + v, where H is a known linear degradation operator and
v denotes additive noise, the GSR-based restoration problem is formulated as

. 1

g 1= argmin Z||HDg © @ = yl; + llclo, 2.7)
where u > 0 is a regularization parameter that balances data fidelity and sparsity, and ||@gl||y counts
the number of nonzero elements in ag. With an appropriately constructed self-adaptive dictionary Dy,
problem (2.7) can be efficiently solved via sparse approximation techniques. The restored image is
then obtained via (2.6) as X = Dg o ag.

3. Proposed model and algorithm

In this section, we present a variational model for denoising color images corrupted by mixed
multiplicative and Gaussian noise, along with an optimization algorithm for its solution.
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3.1. Proposed model
Consider a noisy color image f : Q — R?, degraded by a mixture of multiplicative Gamma noise
and additive Gaussian noise, where Q = {1,2, ..., N} X {1, 2, ..., N»}. The degradation model is

fr=u"-g"+v", seQ, ch=rg,b, (3.1

§

where u € RV>*N3 denotes the clean image, n<" represents multiplicative Gamma noise following the
distribution in (1.1), and vg” ~ N(0, 0®) represents additive Gaussian noise.

The degradation model in (3.1) gives rise to an ill-posed inverse problem; thus, we formulate a
variational minimization problem to recover u from the observed data f. To simultaneously address
multiplicative Gamma noise and additive Gaussian noise, we introduce the logarithmic variable w =
log(u), while keeping u as the primary variable, and employ the data-fidelity term in (2.3):

F,v) = (u+(f—v)e™ - ylog(f -v), 1)+ %nvng, (3.2)
wherev < f,y = MT_I, (-,-) denotes the inner product, 1 € R¥*">3 and A > 0 regulates the penalty
on the Gaussian noise component. The quadratic term %IIvII% models and extracts the additive Gaussian
noise from f, while the remaining terms correspond to the data-fidelity for the multiplicative Gamma
noise applied to f—v. This unified formulation decouples the two noise components, enabling effective
restoration of color images corrupted by mixed noise.

We first combine the data-fidelity term (3.2) with SVTV regularization, yielding the model in [23].
SVTYV effectively suppresses noise in homogeneous regions and preserves edges, while substantially
reducing color artifacts compared with conventional TV. However, its reliance on local derivatives
limits the preservation of fine textures and details, and its first-order formulation may produce staircase
artifacts. To overcome these limitations, we incorporate GSR as an additional regularization term. By
representing the image as u = Dg o @, we formulate the minimization problem as

ugliv11<f E(u,ag,v) = Fu,v) + ullagllo + BSV-TV(u), subjectto: u = Dg o ag, (3.3)

SXGs
where ¢ > 0 is a regularization parameter that promotes sparsity in the coefficients a¢, 8 > 0 controls
the smoothness of u, and SV-TV(u) is defined in (2.4). After solving the problem (3.3), the restored
image is obtained as e¢“. This model extends [23] by incorporating the GSR framework and builds
upon [15], which combined SVTV and GSR for heavy multiplicative noise removal. However, the
model in [15] was designed specifically for multiplicative noise and cannot effectively handle additive
Gaussian noise. In that work, SVTV played only a minor role, primarily reducing slight ringing or
block artifacts from patch-based processing. From a regularization perspective, GSR imposes a
sparsity-based nonlocal prior that promotes low-dimensional structure within groups of similar
patches, encouraging strong correlations among them. This property makes GSR particularly effective
at preserving repeated or correlated patterns, including fine textures (e.g., grass, fabric weaves),
periodic or geometric structures (e.g., tiles, fences, lattice patterns), and directional features. Unlike
first-order local regularizers, which often oversmooth high-frequency details, GSR retains consistent
variations across similar patches. The performance of GSR, however, depends on accurate patch
grouping. In smooth regions or under heavy mixed noise, distortions may impair patch similarity
estimation, leading to inaccurate grouping and residual artifacts. Moreover, without complementary
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local regularization, GSR may be less effective near sharp edges, where patch matching across
intensity discontinuities becomes unreliable.  SVTV complements GSR by providing local
edge-preserving regularization in the saturation-value domain. It promotes piecewise smoothness,
suppresses color artifacts in homogeneous regions, and stabilizes reconstruction around edges. While
SVTV effectively handles smooth areas, GSR preserves nonlocal textures and repeated patterns that
SVTYV alone may oversmooth. By combining SVTV and GSR, the proposed model integrates a local
edge-preserving prior with a nonlocal sparsity-based structural prior, forming a principled framework
that balances texture preservation and mixed-noise suppression. This complementary interaction
demonstrates that the model is not merely an empirical combination of priors but a coherent fusion of
local and nonlocal regularization mechanisms tailored for mixed-noise removal in color images.

For GSR, we adopt the approach in [15], which evaluates patch similarity using full-color patches
across all channels, thereby capturing inter-channel relationships more effectively. Unlike methods
that process each color channel independently, the full-color GSR framework models all RGB
channels simultaneously, exploiting their inherent correlations. This integrated representation
preserves structures such as edges, textures, and fine details consistently across channels, reducing
color mismatches and artifacts that commonly arise from channel-wise processing. Specifically, for a
color patch u; = [uf,uf,ul]" € R, where u{" denotes a VP x VP patch in the ch-channel
(ch = r,g,b), the group ug, of the ¢ most similar patches is reconstructed as

r r e r
qu,l qu,z qu,zr 5
N g 8 Pxc
Ug, = ugk,l ugk,z ulcjk,r €R :
qu,l qu,z o qu,zr

To identify similar patches in u, we consider the following model, obtained by applying a
logarithmic transformation to (3.1): f = u + #, where f = log(f — v), u denotes the logarithmically
transformed clean image, and 77 = log(n). This formulation assumes that v effectively removes the
additive Gaussian noise component, leaving primarily multiplicative noise. Under this assumption,
the logarithmic transformation converts multiplicative noise into an approximately additive form,
which is easier to handle statistically. As illustrated in Figure 1, the histograms of 7 in the RGB color
space closely resemble Gaussian distributions across all noise levels. Motivated by this observation,
we extract color patches in the RGB space and measure the similarity between two patches, u;, and
uy,, using the Euclidean distance. Although v is estimated iteratively and may be imprecise in early
iterations, the log-domain noise approaches a Gaussian distribution as the estimation converges.
Consequently, Euclidean distance provides a reasonable and practical metric for patch similarity
throughout the iterative process.

(by M =10
Figure 1. Histogram of 7 = log(n) with fitted normal density curves (red) at noise levels
M =20, 10, 5.
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Parameter roles and selection. The parameters A, u, and S play complementary roles in
balancing data fidelity, texture modeling, and spatial regularity. From a MAP perspective, the balance
parameter A in the infimal convolution data-fidelity term corresponds to the precision of the Gaussian
noise component v. Since v models Gaussian noise with variance o2, its negative log-likelihood yields
a quadratic term weighted by 1/02. Thus, A should scale inversely with o: higher Gaussian noise
favors smaller A, relaxing the penalty on v, while lower noise favors larger A, enforcing stricter
fidelity. The sparsity weight u, which controls the group-sparse representation, can be made
adaptive [46]. For each patch group ug,, ¢ is inversely related to the local patch variance O'ék, so that
smoother regions receive stronger sparsity while textured regions preserve details. In the mixed-noise
setting, u also depends on both the multiplicative noise level M and the Gaussian variance o>.
Stronger noise in either component increases patch distortions, requiring larger u to suppress
noise-induced coefficients. Conceptually, this can be expressed as ug, o ﬁfk[fﬁ, where g(M, o) grows
with overall noise strength and € prevents division by zero. This formulation allows u to adapt both to
local patch smoothness and to the global noise level, effectively targeting nonlocal correlations in
similar patches. For simplicity and reproducibility, fixed u values were manually selected for each
image and noise setting, as detailed in the experimental section. The SVTV weight g8 governs local
smoothness in the saturation-value domain. Larger B suppresses noise more effectively in
homogeneous regions but may oversmooth fine textures and edges. In practice, § typically increases
with the overall noise level: smaller M corresponds to stronger multiplicative fluctuations, while
larger o introduces larger Gaussian perturbations. By adjusting B according to the noise
characteristics, the model balances noise suppression with detail preservation.  While the
multiplicative Gamma noise level M does not yield a direct analytical formula for the regularization
terms, its effect is implicitly handled through the joint adjustment of A, y, and 5. In combination, u
and S complement each other: u preserves nonlocal textures via the GSR prior, whereas (5 stabilizes
local smoothness via SVTV. These considerations offer qualitative, model-consistent guidance for

parameter selection and justify the empirical choices reported in the experimental section.

3.2. Optimization algorithm

First, the proposed model (3.3) can be equivalently rewritten as

min &, ag,v) = E(u, ag,v) + tc,(u, ag) + tc,(v), (3.4)
u,ag,v
where C; = {(u,ag) : u = Dgoag}, C, = {v : v < f}, and ¢c(z) is the indicator function of a
set C, defined by (¢(z) = 0 if z € C and oo otherwise. Here, D¢ is not an optimization variable; it is
deterministically computed (via SVD) from the current iterate and does not depend on a. Therefore,
it does not need to be included explicitly in the optimization, and the problem can be solved over
(u, ag,v) only.

The optimization problem in (3.4) is nonconvex and nonsmooth due to the presence of both ¢, and
¢, regularization terms, and the variables u and v are coupled through the data-fidelity term, which
complicates direct joint optimization. To handle this coupling, we adopt a block-coordinate approach.
Specifically, the classical alternating minimization algorithm (AMA) [53] iteratively updates one
block of variables while keeping the others fixed, decomposing the original problem into two tractable
subproblems. Although the AMA is attractive for its simplicity, it generally lacks strong convergence
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guarantees in nonconvex and nonsmooth settings. To address these limitations, we employ the
proximal AMA (PAMA) [54], which augments each subproblem with proximal regularization terms.
Accordingly, at iteration n, we alternate between solving the following two subproblems:

14

o)
"1 .= argmin {E(u",af’é,v) +10,(v) + Ellv - v”ll%}, (3.5)

n+l1

) )
1 1 . 2 2
@ ag") = argmin {Ew,a6,y™") + ic,w, @) + Sl — 'l + Sl - a4IR).
where 6 > 0 is a proximal parameter. The proximal terms stabilize the iterations and ensure sufficient
descent of the objective, which is critical for convergence in nonconvex and nonsmooth settings.
To establish the convergence of the proposed PAMA in (3.5), we first show that the iterates remain

bounded under a mild assumption, as stated in the following lemma.

Lemma 3.1. Assume that inf,cc,(f —v) > 0. Then the sequence {(u", ay,,v")} generated by the PAMA
in (3.5) is bounded.

Proof. First, note that the energy & is proper: it is finite at least at the initial iterate (u°, a(();, %) and
never takes the value —co. Hence, the PAMA iterates are well-defined, and the descent inequalities
below are meaningful.

By construction of the PAMA, the iterates satisfy

§
S(u”,cv’&,V”“)+§IIV”“—V”II§ < W', al,v"),

0 0
S(un+l’argl,vn+l) + Ellum—l _ unllg + 5”0’751 _ a,rzG”% < S(un,aré’vrwl).

Adding these inequalities gives the monotone decrease of the augmented energy.

0 0 0
a(un+1,a,n6+1’vn+l) + 5”un+1 _ unllg + E”algﬂ _ a,nG”% + §||vn+1 _ vn”% < a(un,ag’vn)‘ (36)

Next, let (u,v) belong to the domain {(u,v) : v < f}. By the assumption inf,cc,(f —v) > 0, there
exists a constant € > 0 such that (f, — v,) > € for all s € Q. For each pixel s € Q, define

¢(lls, Vs) =u,+ (fs - vs)e_m - ’}’log(fs - vs)- (37)

Since f,—v; > €, the logarithmic term is bounded from below. Moreover, ¢p(u;,v;) — +o0asu; — 400
due to the linear term, and ¢(u,,v;) — +o0 as u; — —oo due to the exponential term. Hence, ¢(u, v;)
is bounded below on R for each s € Q. Summing over all pixels yields the existence of a constant
C > —oo such that ). ¢(u,,vs) > C. In addition, the quadratic term %HV”% is nonnegative. Therefore,
the fidelity term F(u,v) admits a finite lower bound on the feasible set. The constraint u = Dg o ag
restricts u to lie in the image of the linear operator D¢, which is a subset of RV>¥>3_ Since F(u,v)
is already bounded below for all # and v < f, this restriction cannot introduce new directions along
which the fidelity term decreases without bound. Furthermore, the ¢, regularization term ||ag|lo is
nonnegative and therefore does not contribute any negative unbounded directions in the coefficient
space. Moreover, the regularization term SV-TV(u) is nonnegative, and the indicator functions ¢¢, and
Lc, vanish on feasible iterates. Consequently, the total energy &E(u, ag, v) is bounded below by a finite
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constant. Since the PAMA scheme generates a monotone decreasing sequence of energy values, it
follows that the sequence {E(u", @, v")} converges.

Suppose, for contradiction, that the sequence is unbounded, so that at least one of |{u"||,, |lag|l, or
|[v"||, diverges. The proximal terms

n n 6 n n 6
> llu w3, illaf(;+1 - agll, Slv
grow quadratically with the iterate differences and will thus make the left-hand side of (3.6)
arbitrarily large, contradicting the convergence of the sequence {E(u", @, v")}. Hence, no component

of {(u", a;,v")} can diverge, and the sequence is bounded. O

n+l vnllg

Next, we prove the convergence of the PAMA iterates generated by (3.5), adopting the analysis
framework developed in [54]. We first recall the definitions of semi-algebraic and subanalytic sets and
functions from [55] and [56].

Definition 3.1. (Semi-algebraic and subanalytic functions)

(i) A subset A C R is called a semi-algebraic set if there exists a finite number of real polynomial
functions Py, Qij : R? — R such that A = ;’:1 T {xeR": Pjy(x) =0, Qy(x) <0} A
function g : R? — (—c0, +00] is called semi-algebraic if its graph {(x,t) € R : g(x) =t} isa
semi-algebraic subset in R4,

(ii) A function g : R — (—oc0, +00] is called subanalytic if its graph is a subanalytic subset of R**';
equivalently, locally it is the projection of a bounded semianalytic set.

All semi-algebraic and real-analytic functions are subanalytic. Moreover, finite sums,
compositions, and products of subanalytic functions remain subanalytic. Every proper, lower
semicontinuous, subanalytic function satisfies the Kurdyka—t.ojasiewicz (KL) property [57], which is
crucial for establishing convergence of the PAMA iterates.

Theorem 3.1. Assume that inf,cc,(f —v) > 0. Then the sequence {(u", ay, v")} generated by the PAMA
in (3.5) converges to a critical point of E(u, ag,v) defined in (3.4).

Proof. Based on Theorem 9 in [54], it is sufficient to show that the following conditions hold:
(1) The objective function E(u, ag,v) in (3.4) is a KL function.
(2) VF(u,v) is Lipschitz continuous on any bounded subset of its domain.
First, we prove the first condition as follows:

e Each pixelwise component defined in (3.7) is real-analytic on the domain {v; < f}, since it is
composed of linear, exponential, and logarithmic functions, all of which are real-analytic. The
sum of real-analytic functions is real-analytic, and every real-analytic function is subanalytic. The
full fidelity term F(u,v) = 3, cq (U, vy) + %||v||§ is a finite sum of subanalytic functions (note that
the quadratic term %llvll% is also real-analytic and hence subanalytic). Therefore, F is subanalytic.
Since F is proper and lower semicontinuous, it satisfies the KL property.

e The synthesis constraint u = Dg o @ defines the set Cy. Since Dg is linear, C; is an affine
subspace. Affine subspaces are defined by linear equalities, which are polynomial equations, so
C, is a semi-algebraic set. Its indicator function ¢¢, is thus semi-algebraic. Moreover, since affine
subspaces are closed sets, t¢, is lower semicontinuous. Combining these properties, (¢, satisfies
the KL property.
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e The set C; = {v : vy < f,, Vs € Q} is defined by linear inequalities. Hence, C, is semi-
algebraic and its indictor function ¢¢, is semi-algebraic. Although C; is open and ¢, is not lower
semicontinuous at the boundary, the KL property holds at all points in its domain. Under the
assumption inf,cc,(f —v) > 0, all iterates v" remain strictly inside C,, so the KL property applies
along the sequence of iterates.

e Let G(z) = ||zllp for z € R, where d = m x N. The graph of G can be expressed as graph(G) =
{(z,r) eR" 2 izllo = 1} = Uscn,..ay S 7> Where

S;={z,r):r=\J), zz#z0if ielJ, z;=0if i¢ J}.

Equivalently, the condition z; # 0 can be written as zl.2 > 0, which is a polynomial inequality.
Since each S, is defined by finitely many polynomial equalities and inequalities, it is
semi-algebraic. Therefore, graph(G) is a finite union of semi-algebraic sets, and hence G is
semi-algebraic. Furthermore, all sublevel sets

lzeR: lzllo < 7} = Uscpiaynierdzi = 0 if i ¢ J)

are finite unions of closed linear subspaces and hence closed. Therefore, G is lower
semicontinuous, thus it satisfies the KL property.

e The SVTV integrand is constructed using linear operations, including spatial derivatives and
linear combinations of the color channels, together with Euclidean norms, absolute values, finite
summations, and square roots of nonnegative expressions.  All these operations are
semi-algebraic, and therefore the SVTV pointwise integrand is a semi-algebraic function. In the
discrete image setting, spatial derivatives are replaced by finite differences, and the integral over
Q reduces to a finite sum, which preserves semi-algebraicity. Moreover, the resulting SVTV
functional is proper and lower semicontinuous, since it is a finite sum of continuous nonnegative
terms. Consequently, the discrete SVTV functional satisfies the KL property.

Therefore, the total energy E(u, ag,v) is a finite sum of KL functions and hence satisfies the KL
property.

Next, let T be a bounded subset of the domain {(&,v) : v < f} C RYxR9, where d = N; XN, x3. By
the assumption, there exist constants U > 0 and € > O such that [u,| < U, f, —v, > eforall (u,v) € T,
s € Q. The gradient of F is given pixelwise, and its Hessian is block-diagonal with 2 x 2 blocks:

(VE), = [(VuF)e (WF)] = [1= (= ve e+ (f, = v + ]

H. = (?;TI;)S (gjaFv)S _ [(f‘ —vy)e ™ —eUs
S (aa:ff) (?;Tf) —e™ y(fy-v) T+ A

Since T is bounded, the spectral norm of H, is bounded by

|H,|l, < |b] + max{a, c} = Y + max{(fmax —vmin)el, v/ + /l} =1,

where a = (f, —vy)e™,b=—e",and c = y(f, — v,)~2 + A. Since V*F is block-diagonal, its spectral
norm is the maximum over pixels:

IV2F(u,v)ll, = max ||H,l, < L.
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By standard results for twice continuously differentiable functions, this implies that the gradient of F
is Lipschitz continuous on 7" with constant L; that is, for any (uy,vy), (uy,vy) €T,

IVF(uy,vy) — VEuy, vl < Ly, vi) = (@2, v2)lla.

Therefore, the assumptions required in Theorem 9 of [54] are fulfilled, which yields the conclusion of
the theorem. O

Remark 1. The assumption in Lemma 3.1 and Theorem 3.1, inf,cc,(f —v) > 0, requires that f —v
remains strictly positive. This condition is typically satisfied in practical applications because the
feasible set C, = {v : v < f} explicitly enforces an upper bound on the Gaussian noise component v
relative to the signal f. In real imaging scenarios, the noise v is typically smaller in magnitude than
the underlying signal f, and the strict positivity is further maintained by the closed-form
update (3.10), which preserves the inequality at each iteration. Thus, the assumption is mild,
physically meaningful, and naturally satisfied in practical imaging scenarios, thereby supporting the
validity of the convergence analysis.

In the following subsections, we solve the subproblems of (3.5).

3.2.1. Solving for v-subproblem in (3.5)

First, we consider the v-subproblem in (3.5), which can be expressed as
. —u A ) ;
min ((f = v)e™ ~ ylog(f = »). 1)+ SIPIE+ v = vl (3.8)

Following the arguments in [23], we can show that the subproblem in (3.8) is strictly convex, and
therefore admits a unique minimizer. The explicit form of the solution is summarized in the following
proposition.

Proposition 3.1. For any f, it, vy € R and positive parameters y, A, and 6, define the function g : X —
R, where X = {v€R : v < f}, by
7 - 3 A, 0 2
gv) = (f —wve " —ylog(f —v) + EV + E(V —vo)"
Then the minimization problem min,cx g(v) admits a unique solution, which can be expressed in closed

form.

Proof. The first- and second-order derivatives of g are

gv)=—e"+ _7 +Av+6(v—vy), g'(s)= _L +A+06.

f-v (f=v?

Since all parameters are positive and v < f, g”’(v) > 0 for all v € X, which implies that g is strictly
convex on X. Thus, if the equation g’(v) = 0 has a solution, then that solution is unique. The equation
g'(v) = 0 yields the following quadratic equation for v: av* — (af + b)v+ (bf —y) = 0, wherea = 1+ 6
and b = e~ + 6v,. The determinant D = (af + b)> — 4a(bf —y) = (af — b)* + 4ay > 0, so the quadratic
equation admits two distinct real roots. The smaller root is given by

(af +b) — (af — b)? + 4ay
2a ’

(3.9)

v =
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which satisfies the condition ¥ < f;if af — b < 0, then

(af +b) = N(af —b) +4ay _(af +b)—l|af — bl

v 2a 2a =/
while if af — b > 0, then
_ ~ — F o F )
o @f+b) - N@af-by+4ay af+b @f=b _b_:
2a 2a a
Therefore, v is the unique global minimizer of the problem min,cx g(v). O

Based on the closed-form expression in (3.9), the solution ¥"*! of problem (3.8) is given by

B (A+0)f +exp(—u") + Ov" — \/((/l +0)f — (exp(—u") + 6v"))? + 41 + )y

n+1
3.10
Y 2(1+9) (3-10)
3.2.2. Solving for (u, @¢)-subproblem in (3.5)
Now, we solve the (u, @g)-subproblem in (3.5), which can be rewritten as
. n+1 0 ny2 0 ni2 :
min {E(u,ag,v )+ Ellu -u"|l; + EllaG - a/G||2} , subjectto: u = Dg o ag. 3.11)
u,ag

To handle the linear constraint and nonconvexity, we adopt the nonconvex alternating direction
method of multipliers (ADMM) [58]. The iterative ADMM procedure decouples the original
subproblem into two simpler updates, allowing efficient numerical solution while handling the linear
constraint and nonconvexity of the problem. The augmented Lagrangian function (ALF) of
problem (3.11) is

n+1

6 n 5 n T
L, a6 p) = E@,a6,v"") + Sl —u 5 + Sl — al3 - (p,u — Dg o ag) + Sl =D agll3

where p € RM*M>3 gre the Lagrangian multipliers and 7 > 0 is a penalty parameter.
The ADMM algorithm consists of sequential updates of the variables as follows:

af! = argming, L(u’, ag; pP),
u™! = argmin, L-(u, a5 p"), (3.12)

P£+1 — pf _ T(u£+l _ (DG o aG)€+l),

where ¢ denotes the inner ADMM iteration index.

Solving the ag-subproblem in (3.12). The ag-subproblem in (3.12) can be expressed as
T L2 0 n2
min E”DG cag—u +p /7l + nllegllo + EHQ'G - agll>-
aG
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By introducing the variables x = Dg o ag and r = u’ — p’/z, this problem can be equivalently
reformulated as

1 2, H o 2
M — + = + — ;. 3.13
min. Sk = 7l + “llegll + >l — gl ©.13)

The following proposition shows that, under suitable statistical assumptions, the total error ||x — r||§
can be well approximated by the sum of groupwise error terms: ||lx — r||§ ~ Z/ivﬂ llxg, — erlli, where
xg, and rg, denote the components of x and r corresponding to the k-th group.

Proposition 3.2. Let x, r € RNM3 gnd Xg,, g, € R3P%¢ for k = 1,2, ..., N. Assume that the elements
of the error vector e = x — r are independent random variables with zero mean and variance o. Then,
for any € > 0, the following holds:

| 1 <
lim Pr ’—x—rz—— X, — T 2’< =1,
Jim { B1” II5 B, k§=1 llxg, —rells| < &

Bz—>oo

where Pr(-) denotes the probability, By = 3N\N,, and B, = 3P -c - N.
Proof. The claim follows directly from the law of large numbers; see [39] for further details. O

Based on Proposition 1 and the identities

N N

2 2

legllo = ) llagylly - and el = ) llerg, I3,
k=1 k=1

problem (3.13) can be equivalently expressed as

N

. 1 2, ~ ) 2
min " |>lixg, = 16,1 + Fillag o + = llae, — aglB |,
aG 2 2
k=1
where 7, = ’;—g? and 7, = %. This decomposition shows that the original problem (3.13) can be

efficiently solved by minimizing N independent subproblems, each corresponding to a group ag,:

. 1 2, ~ 7 2
min {E”DGka’Gk = rgllh + Tillag,llo + ?”aGk —aglhp, (3.14)
Gr

where Dg, is the self-adaptive learned dictionary constructed from rg, as follows.
We first perform the SVD of rg,:

er = UGkZGk ng = Z Yer,i(qu,ivgk’[)a (3'15)
i=1

where Xg, = diag(y,. Gk) is a diagonal matrix with the singular values y, 6 = [y, 61 Vi Vr Gk’m]T on
its main diagonal and m = min(3P, ¢). The vectors ug, ; and vg,; are the i-th columns of Ug, and Vg,
respectively. The atoms of the dictionary are defined as dg,; = qu,iv(T;k ;» and the learned dictionary
DGk is formed as DGk = [de’l, de’z, ey de,m]-
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Since rg, = Dg, 7, o from (3.15) and Dy, is unitary, the subproblem (3.14) reduces to

. 1 2~ Ly no2
min Slae, = v, Il + Tilleg,llo + —lleg, — ag, .

which can be rewritten as

2

1+ 7~'2 ~
5 + T1llag,llo-

-~ n
’)/er + Tza'Gk

1+7~'2

min ”aGk -

oG, 2
This problem has the following closed-form hard-thresholding solution:

@, = hard (g6, p) = g6, © 1(lge| > ), (3.16)

where
86, = (Vrg, + T20g)/(1+72). p = N@T)/(1+ 7).

hard(:, -) denotes the hard thresholding operator, © is the elementwise multiplication, and 1(-) is the
indicator function, which equals 1 when the condition is satisfied and O otherwise.

Consequently, the reconstructed group xg, is obtained as xg, = Dg ag,, using the coefficients
from (3.16). Aggregating all reconstructed groups yields the image estimate x = D¢ o ag, as in (2.6).

Solving the u-subproblem in (3.12). The u-subproblem in (3.12) can be formulated as
. n+l 0 ny2 7 2
min {F(u,v )+ BSV-TV@) + Sl — 'l + 2l - h||2},

where h = (Dg o ag)"! + p’/r. To facilitate the optimization, we introduce an auxiliary variable w = u
and equivalently rewrite

5
min {F(u,v"“) +BSV-TVOR) + Sl -l + §||u - h||§}, subjectto: w=u.  (3.17)
The ALF corresponding to (3.17) is given by
.£ . _ n+1 o ny2 T 2 é‘: 2
cu,w;q) = Fu,v""") + BSV-TV(w) + 5”“ —u"ll; + §||u —hl; —<{q,w —u) + §||W —ull5,

where g € RM>*">3 jg the Lagrangian multiplier and & > 0 is a penalty parameter. Applying the convex
ADMM [59] to (3.17) results in the following iterative updates:

u'*! = argmin, {F(u,v"") + 8w — | + Sl — b3 + Sl —w' + g'/£13).
w'l = argmin,, {BSV-TV(wW) + llw — u™! — g'/£I13}. (3.18)
qt+1 — qz _ f(WH] _ qu).

We first consider the u-subproblem in (3.18). Since F(u,v"™!) is strictly convex in u and the
additional terms are quadratic, the objective function admits a unique minimizer. However, due to the
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complexity of the data-fidelity term, a closed-form solution is not available. This subproblem can be
efficiently solved using Newton’s method, with the following update formula:

1—(f —v""YHexp(—u!) + (W’ —u") + T(w/ —h) + £/ —w' + q'/€)
(f —vDexp(—u)+ 5+ 1+ & ’

uj+1

(3.19)

:u]—

where j denotes the iteration index of Newton’s method.
Next, we consider the w-subproblem in (3.18). Using the orthogonal matrix

1 1
vt O
P= TEI \1/61 _1761’
N B

where I € RV g the identity matrix, we define z = Pw and s = P! + ¢'/¢). Under this
transformation, the w-subproblem in (3.18) can be equivalently rewritten as

min gllz = sli; +BUIVEIl: + aIVzslly), (3.20)

where Z = (21, 22) and VZ = (Vz;, Vz;). To handle the nondifferentiable terms, we introduce auxiliary
variables d; and d,, thereby transforming problem (3.20) into the following constrained form:

rlrlng §||z - s||2 + B (ldilly + alld>|ly), subjectto: dy=VzZ, d,=Vz;. (3.21)

z2,d1,a2

The ALF corresponding to problem (3.21) is given by
o9 .
Ly(z,dy,dr; b1, by) = gllz —sli; +Bdill1 + alldally) - by, dy - V2) + E”dl - Vzli;
0
—(ba,dy — Vz3) + §||d2 - Va3,

where b, € (RV>M>*¥)2 and b, € RM*N23 are the Lagrangian multipliers and 6 > 0 is a penalty
parameter. Applying the ADMM to problem (3.21) yields the following iterative updates:

2= argminzjj@(z,df dl; bl b)),
d",d}'") := argming, 4, L@ dy. d: b, b)),

b{H — b] Q(dJH AJH) (322)
b = b’ e(d’“ vzih.
The z-subproblem in (3.22) can be equivalently expressed as
& 2, 9 0vs J J 102 o J J
min =||z = s|l; + $IIVZ —d + b}/0l; + |IVz3 —d;, + b /¢9||2
z 2 2 2
Applying the first-order optimality condition, z satisfies the following normal equations:

E+0VIV)z, = é&si+ avT(dJ - bf 10, i=12, (3.23)
E+6V'V)zy = &s3+6V7(d) - b)/6),
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where V! = —div and the discrete divergence operator is defined by
diV(Sl, Sz) = 5xls1 + 6st2.

Assuming periodic boundary conditions, the linear system in (3.23) can be efficiently solved in closed
form using the two-dimensional discrete Fourier transform (DFT).

The (d,, d>)-subproblem in (3.22) can be decomposed into two independent subproblems, one for
each variable. Specifically, the subproblems for d; and d, are given by

j+1
dl

. 9 AT j
arg min Blldi |l + EHdl — (V&I 4 b{/9)||§,

j+1
dz

. 0 : '
arg min aflld,|; + E”dg - (Vz'" + B /0)I13.
2

These are standard ¢;-regularized quadratic problems, whose solutions are given by the
soft-thresholding (shrinkage) operator. Thus, we have

. b . . b
d" = shrink(V2/" + jg) &y = shrink(Vz," + ﬁ, %) (3.24)
where shrink(-) is defined elementwise as
shrink(a, b), = ﬁ -max(lla,lh - b,0), s € Q.
s112

The overall algorithm for solving the proposed model (3.3) is summarized in Algorithm 1.

Algorithm 1 Solving the proposed model (3.3).

1: Input: choose the parameters A, u, @, 8, 9, 7, €, 8 > 0, patch size P, similar patch number ¢, window
size L, stride S, maximum iteration numbers N, Ny ours Nuins NuNewron» Nz, tolerance values tol,,,,
tOIu,out’ tOlu,im tOlu,Newton, tOZZ‘

2: Initialization: set u° = log(max(f,e€)) with e >0, al =0,v" =0, p® = ¢" =0, B)=0(=1,2).
3: repeat

4:  Compute v""! as in (3.10).

5. Compute u"! by iterating £ = 1,2, ...,Nu,omz

6: Compute x“*' = (Dg o ag)™! with D¢, and a¢, obtained from (3.15) and (3.16).
7 Compute u*! by iterating r = 1,2, ..., N, j,:

8: Compute u"*! using Newton’s method as in (3.19),

9: Lets = P! + ¢'/&),

10: Compute z'*! by iterating j = 1,2, ..., N,:

11: compute z/*! by solving (3.23) using DFT,

12: compute d/"' and d"' as in (3.24),

13: compute b; and b, as in (3.22),

14; Let w'*! = PTzi*1,

15: Update qt+1 — qt _ é;(wt+1 _ ut+1)’

16: Update p™*!' = p* — r(u™! — x™).

17: until a stopping criterion is satisfied.
18: Output: restored image e“.

AIMS Mathematics Volume 11, Issue 2, 3920-3956.



3938

4. Experimental results

This section presents the experimental results of the proposed model and compares its performance
with several existing approaches, including L2-SVTV [26], AA-SVTV [13], and SO-L2-SVTV [23].
These methods incorporate SVTV with the L? data-fidelity term, the term in (2.2), and the term in (2.3),
respectively. For a fair comparison, L2-SVTV and AA-SVTV were implemented using a variable
splitting strategy and solved via the ADMM framework. All numerical experiments were performed
in MATLAB R2025a on a 64-bit Windows 11 workstation equipped with a 3.6 GHz Intel CPU and 64
GB of RAM.

4.1. Implementation settings

We evaluate each model on 11 natural images and 7 SAR images, as shown in Figure 2. The
intensity range of all original images is assumed to be [0, 255]. In our experiments, we consider six
mixed noise configurations (M, o), where the multiplicative Gamma noise takes values M = 20, 10,
5, and the additive Gaussian noise levels are oo = 20 and 30. Because the Gaussian component can
introduce nonpositive pixel values in the observed data f and the AA-SVTV model requires strictly
positive inputs, we define f = max(f,107) and use f only for AA-SVTV. For all other models,
including the proposed one, we use the original observed data f without modification. All numerical
results are provided in the supplementary material available at https://buly.kr/8Ix7tHO. Source
code is available at https://github.com/mjungHUFS/SO-L2-SVTV-GSR.

Eo o NSNS

(a) Airplane

(m SAR2 (n) SAR3 0) SAR4 . p) ARS - (q) SAR6

Figure 2. Original test images. (a)—(d), (i): 256 x 256, (e): 321 x 481, (f), (g), (j), (k):
481 x 321, (h): 201 x 266, (k): 278 x 350, (I)—(r): 512 x 512.

To assess the performance of the models, we compute the peak signal-to-noise ratio (PSNR):

3NN, x 2557
PSNR(u, u,) = 101og10(L),

lloe — 2.3
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where u and u, denote the restored and original images, respectively, and NN, is the total number of
pixels. We also evaluate the structural similarity (SSIM) index [60], a perceptually motivated metric
that accounts for structural information in the visual scene. For color images, we report the SSIM value
obtained by averaging the SSIM scores computed over the three RGB channels. For each model, all
parameters are tuned to achieve the best restoration results with respect to both visual fidelity and the
quantitative PSNR and SSIM metrics.

All models are terminated once the following stopping condition is satisfied:

iter iter—1
_ ) 5
% < tol or n>N,
g1k

where g € {u, z}, tol > 0 denotes the prescribed tolerance and N > 0 is the maximum number of
iterations. For the proposed model, we set tol = 5 x 107 and N = 15 for the outer loop. To mitigate
the additional computational cost introduced by the GSR module, the number of outer iterations for
u is restricted to Nu’om = 1, which is sufficient to maintain reconstruction quality. For the inner loops
associated with u, we set Ny, i, = Ny newion = 5, While the inner loop for z is limited to N, = 10. All inner
loops use a tolerance of 1073, For the SO-L2-SVTV model, we adopt the stopping criteria reported
in [23], using tol = 1073 and a maximum of N = 100 outer iterations; details of the inner loop settings
can be found in the cited reference. For the L2-SVTV and AA-SVTV models, we set tol = 10™* and
N = 200 for the outer loop. The inner loop of the AA-SVTV model employs the same tolerance and
iteration limits as those used in [23]. For the SO-L2-SVTV and the proposed models, we initialize
u as u® = log(max(f, 1)), whereas for the L2-SVTV and AA-SVTV models, we set u’ = f and f,
respectively.

The parameter settings for the proposed model are summarized as follows. For the GSR
representation, the image patch size is set to 6 X 6 for natural images except Statues and to 5 X 5 for
SAR images and Statues. The number of similar patches c is fixed at 80, resulting in a group matrix of
size 108 x 80 or 75 x 80. The search window is set to 20 x 20 pixels, and the overlap between
adjacent patches is S = 4 pixels. The GSR regularization parameters u and 7 control sparsity strength.
In general, larger values of u or 7 produce smoother reconstructions, although increasing 7 also
increases the computational cost. To balance reconstruction quality and efficiency, we fix 7 = 1. The
SVTV parameter « is set to 0.6 for all experiments. The parameter A, which penalizes the Gaussian
noise component, also affects smoothness: smaller values of A yield smoother restored images. In our
experiments, we use 4 = 0.001 by default, except for (M,o) = (20,30) and (10,30), where
A = 0.0005, and (M, o) = (5,20), where 4 = 0.002. The regularization parameters u and 8 have a
primary impact on restoration quality. The parameter 8, governing the SVTV strength, is selected
from {0.1,0.2,0.3} based on noise level and image characteristics. For instance, we use 8 € {0.1, 0.2}
for (M, o) = (20, 20) and (20, 30); 8 = 0.2 for (M, o) = (10,20); 8 € {0.2,0.3} for (M, o) = (10, 30);
B = 0.3 for (M,o0) = (5,20) and (5, 30). The optimal value of u is influenced by the noise level, the
characteristics of the underlying image, and the selected value of 8. In general, u is chosen from the
range {0.01,0.02,...,0.12}. The specific (u,) values used in each experiment are provided in the
corresponding figure. Finally, we set the proximal parameter ¢ to a small value, 1075, since a small ¢
allows the iterates to move more freely along descent directions, reducing the damping effect of the
proximal term and often leading to faster practical convergence. The ADMM parameters & and 6,
used for updating u and z, respectively, are fixed at 1.
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4.2. Denoising results on natural color images

Figure 3 presents the denoising results of all models for noise levels M = 20, 10, 5 with o = 20.
AA-SVTYV reduces the mixed noise to some extent but introduces artifacts, such as white or black dots
in the sky regions. It also tends to oversmooth dark areas, such as the lower part of the boat, particularly
at higher noise levels, which degrades the overall tone quality of the restored images. L2-SVTV
suppresses both noise types more effectively than AA-SVTV; however, it does not completely remove
noise in bright regions, such as the sky, and may produce erroneous color values as M increases. Dark
regions are also oversmoothed, similar to AA-SVTV. These effects are more evident in the zoomed-
in images shown in Figure 4. In contrast, SO-L2-SVTYV effectively reduces noise in both dark and
bright regions while preserving structural details, such as the lines and lower parts of the boat. The
restored images exhibit improved visual quality compared to AA-SVTV and L2-SVTYV, with better
overall tone preservation, highlighting the benefits of the data-fidelity term used in SO-L2-SVTYV,
which is also incorporated in the proposed model. Nevertheless, SO-L2-SVTV exhibits staircasing
artifacts in smooth regions, particularly in the sky, a known limitation of TV-based regularization. The
proposed model, which incorporates GSR regularization, alleviates these artifacts while preserving
more image details and producing cleaner results than SO-L2-SVTV. This improvement also yields
the highest PSNR and SSIM values among all models. These results demonstrate the effectiveness of
combining the data-fidelity term with SVTV and GSR regularization for removing both multiplicative
and Gaussian noise.

(a) 16.68/0.3417

(a) 14.33/0.2840

(a) 11.73/0.2258 (b) 23.24/0.6582 (c) 22.03/0.5742 (d) 24.42/0.7088 (e) 25.09/0.7411

Figure 3. Denoising results at noise levels M = 20, 10, 5 (from top to bottom) and o = 20.
(a) Data f; (b) L2-SVTYV; (c) AA-SVTYV; (d) SO-L2-SVTYV; (e) Proposed. Parameters (u, 3)
for (e) (from top to bottom): (0.02,0.2), (0.04,0.2), (0.06, 0.3).
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L2-SVTV AA-SVTV SO-L2-SVTV Propposed

Figure 4. Zoomed-in regions from Figure 3 for the noise level (M, o) = (5, 20).

Figures 5 and 6 present the denoising results at high noise levels, specifically (M, o) = (10, 30),
(5,20), and (5,30). Similar to the previous results, AA-SVTV exhibits artifacts, such as white dots
and color distortions in bright regions, which are visible in the wing area of Butterfly, the headscarf in
Barbara, and the sky and tower regions in Policemen. These issues are clearly visible in the
zoomed-in patches shown in Figure 7. L2-SVTV eliminates the white-dot artifacts but still fails to
adequately denoise bright regions, resulting in misleading color values. Both AA-SVTV and
L2-SVTYV also oversmooth dark regions, including the textured background in Barbara and the tree
and grass areas in Policemen. In contrast, SO-L2-SVTYV achieves more effective denoising across the
entire image, preserving details and textures while avoiding color artifacts, demonstrating the
advantage of the SO-L2 data-fidelity term. Nevertheless, it produces noticeable staircasing artifacts in
smooth regions, such as the background of Butterfly, the face area of Barbara, and the sky of
Policemen, caused by the SVTV regularization. The proposed model substantially reduces these
artifacts while further preserving textures, such as the headscarf in Barbara and the tree and tower
regions in Policemen, resulting in more natural-looking restored images. It also achieves significantly
higher PSNR and SSIM values compared to the other models. These results highlight the
effectiveness of incorporating GSR and collectively validate the superiority of the proposed model for
removing mixed multiplicative and Gaussian noise.

(a) 12.44/0.1863 (b) 23.96/0.6172 (c) 22.93/0.5444 (d) 24.48/0.6625 (e) 25.51/0.7154

Figure 5. Denoising results at noise levels (M, o) = (10, 30) (top) and (5, 20) (bottom). (a)
Data f; (b) L2-SVTV; (c) AA-SVTYV; (d) SO-L2-SVTYV; (e) Proposed. Parameters (u, 8) for
(e): top-(0.07,0.2); bottom-(0.07, 0.3).
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(a) 12.50/0.2276  (b) 21.70/0.6548 (c) 20.99/0.5973 (d) 22.49/0.6998 (e) 23.69/0.7447

Figure 6. Denoising results at noise level (M, o) = (5,30). (a) Data f; (b) L2-SVTV; (¢)
AA-SVTV; (d) SO-L2-SVTYV; (e) Proposed. Parameters (u, 8) for (e): (0.08,0.3).

L2-SVTV AA-SVTV SO-L2-SVTV Proposed

Figure 7. Zoom-in regions from Figures 5 and 6.

In Figure 8, we illustrate the effect of the v term in the proposed model by comparing the
reconstruction results obtained with and without this term at noise levels (M,o) = (20,30) and
(10,30). When v = 0, the data-fidelity term requires f > 0; thus, we use the cropped data
f = max(f, 107) in place of f. Even with this adjustment, the model without the v term fails to
adequately remove the mixed noise in dark regions. This deficiency is clearly visible in the upper sky,
clothing, and shadow regions in Policemen, the body areas in Statues, the lower part of the ship in
Boat, and the right-hand tree regions in Hill, as shown in the zoomed-in images in Figure 9. Although
increasing p and S can reduce noise in these areas, doing so leads to excessive smoothing elsewhere,
thereby degrading the overall reconstruction quality. By contrast, the full proposed model, which
includes the v term, effectively suppresses mixed noise across both dark and bright regions. Even with
relatively small values of y and g, the model adequately eliminates noise in dark areas, better
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preserving fine details and textures and achieving significantly higher PSNR and SSIM values. This
improvement is evident in the tower region in Policemen, the pebble areas in Statues, and the roof
regions in Hill. These enhancements arise because the v term explicitly extracts the Gaussian noise
component, facilitating more accurate removal of both noise types. Overall, the results highlight the
importance of the v term and validate the effectiveness of the proposed data-fidelity formulation in
properly separating multiplicative Gamma noise from additive Gaussian noise.

(a) 24.59/0.7043 (b) 25.69/0.7561 (a) 24.69/0.5824 (b) 26.01/0.6640

Figure 8. Effect of the v term in the data-fidelity term (3.2) of the proposed model. Top:
(M,o) = (20,30); bottom: (10,30). (a) Without the v term (i.e., v = 0); (b) With the
v term. Parameters (u,B) for (a): top-(0.1,0.3), (0.04,0.3); bottom-(0.08,0.3), (0.14,0.3).
Parameters (u, 8) for (b): top-(0.05,0.2), (0.03, 0.2); bottom-(0.06, 0.2), (0.03, 0.3).

Figure 9. Zoomed-in regions from Figure 8. Top: without the v term; bottom: with the v
term.

Figure 10 illustrates the effect of the SVTV term in the proposed model and its complementary
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interaction with GSR at noise level (M, o) = (10,20). Specifically, we compare the proposed model
with and without the SVTV term, as well as the SO-L2-SVTV model. When the SVTV term is
removed, the proposed model reduces to a GSR-only regularization. This variant effectively preserves
textures and fine details but performs poorly in homogeneous regions, where unreliable patch
grouping leads to residual noise or oversmoothing. Typical artifacts include residual noise in the eye
regions and the left-hand black fur of Baboon, as well as oversmoothing in the face of Barbara and the
lips of Lena. In contrast, the SO-L2-SVTV model, which relies solely on local SVTV regularization,
effectively denoises homogeneous regions and preserves major edges. However, it tends to
oversmooth textured areas and introduces noticeable staircasing artifacts in smooth regions. By
jointly incorporating GSR and SVTYV, the proposed model benefits from nonlocal texture preservation
and local piecewise-smooth regularization while mitigating their respective limitations. As a result, it
achieves improved visual quality across both textured and homogeneous regions, along with higher
PSNR and SSIM values. These results demonstrate the complementary roles of GSR and SVTV in
the proposed model.

z ‘
(a) 26.27/0.7888 (b) 25.99/0.7621 (c) 27.43/0.8066

Figure 10. Effect of the SVTV term in the proposed model at noise level (M,o0) =
(10,20). (a) Proposed model without the SVTV term; (b) SO-L2-SVTYV; (¢) Proposed model.
Parameters (u, 8) for (¢) (from top to bottom): (0.05,0.2), (0.03,0.2), (0.06,0.2).

In Figure 11, we illustrate the effects of the parameters A, u, and S at a noise level (M, o) = (10, 30).
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The top row shows denoising results for 8 = 0.1 and u € {0.06,0.07,0.08, 0.09, 0.10}, while the middle
row shows results for 8 = 0.2 and u € {0.03, 0.04, 0.05, 0.06, 0.07}, with A fixed at 0.0005 in both cases.
The bottom row illustrates the effect of varying 4 € {0.0001,0.0002, 0.0005, 0.001, 0.002}, with (u, )
fixed at (0.05,0.2). From the first two rows, it can be observed that increasing u reduces noise but also
smooths fine details. Based on PSNR and SSIM values, the optimal u is 0.08 for § = 0.1 and 0.05 for
B = 0.2. Increasing S leads to stronger smoothing, which slightly decreases PSNR values but enhances
noise suppression near edges, resulting in clearer edges and higher SSIM values. Considering both
visual quality and quantitative metrics, (u,8) = (0.05,0.2) is selected as the overall optimal setting.
From the bottom row, increasing A preserves more image details, yielding higher PSNR values, but also
introduces additional noise, lowering SSIM values. The restored images for 4 € {0.0005, 0.001, 0.002}
appear visually similar, with correspondingly similar PSNR and SSIM values. Taking both quantitative
metrics into account, we select 4 = 0.0005 as the optimal value. In practice, the choice of A is less
critical than that of u and B; for example, 4 = 0.001 generally provides satisfactory denoising, though
minor adjustments may be needed depending on the noise level. By contrast, u and § primarily govern
the overall smoothness of the restored image and are more sensitive, requiring careful tuning according
to the noise characteristics and image content.

x| TEeY 4 4

24.77/0.7401 24.99/0.7463 25.05/0.7475 25.05/0.7473 25.00/0.7454

(0.06,0.1) (0.07,0.1) (0.08,0.1) (0.09,0.1) (0.1,0.1)

B ] ' 4 - w4 i |

24.71/0.7426 24.92/0.7506 24.93/0.7508 24.89/0.7503 24.83/0.7488

(0.03,0.2) (0.04,0.2) (0.05,0.2) (0.06,0.2) (0.07,0.2)
BTN g TTTT™Ma fEpl TTUTT™Rm Egl UTTTT™Em FEg Ty

o

“
4 < < <4

24.31/0.7604 24.76/0.7560 24.93/0.7508 24.95/0.7486 24.90/0.7463
(1 =10.0001) (1 =10.0002) (1 =10.0005) (1 =10.001) (1 =10.002)

Figure 11. Effect of the parameters A, u, and S at noise level (M, o) = (10,30). Top and
middle rows: 4 = 0.0005 with varying (u, 8); bottom row: (u,8) = (0.05,0.2) with varying
A. The best denoising result is obtained using (u, 5) = (0.05,0.2) and 4 = 0.0005.
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4.3. Denoising results on real SAR images

Figure 12 presents the denoising results on real SAR images at (M,o) = (5,20). These SAR
images contain numerous dark regions, such as trees and shadows, as well as bright regions, including
buildings, cars, and ships. Similar to the results observed for natural color images, AA-SVTV
introduces white artifacts in bright regions and tends to oversmooth dark regions. L2-SVTYV reduces
the mixed noise more effectively; however, it still oversmooths dark areas and fails to fully denoise
bright regions, resulting in inaccurate color values. In contrast, SO-L2-SVTV successfully suppresses
mixed noise in both dark and bright regions while better preserving structural details, leading to
higher PSNR and SSIM values compared to AA-SVTV and L2-SVTV. The proposed model further
enhances the denoising performance by mitigating staircasing artifacts, effectively removing mixed
noise, and preserving fine details. As a result, it produces cleaner images than SO-L2-SVTV and
achieves the highest PSNR and SSIM values. These results demonstrate the superior denoising
capability of the proposed model, even when applied to real SAR images.

(a) 15.86/0.3064

(a) 15.73/0.3792  (b) 24.19/0.6776

7 - “?“.@
o 3

(a) 15.56/0.3366  (b)24.47/0.6740

(a) 14.64/0.2431 (b) 24.91/0.6458 (c) 24.36/0.6270  (d) 25.76/0.7117  (e) 26.29/0.7397

Figure 12. Zoomed-in regions of the restored images at noise level (M, o) = (5, 20). (a) Data
f with zoomed-in regions; (b) L2-SVTV; (c) AA-SVTV; (d) SO-L2-SVTYV; (e) Proposed.
Parameters (u, 8) for (e) (from top to bottom): (0.07,0.3), (0.09,0.3), (0.08,0.3), (0.07,0.3).
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In Figure 13, we compare the proposed model with a BM3D-based method at (M, o) = (5, 30).
Since SAR-BM3D [7] cannot be directly applied to images with additive Gaussian noise, we first use
color BM3D (CBM3D) [61] to suppress the Gaussian noise and then apply SAR-BM3D to each RGB
channel to remove multiplicative Gamma noise. @ We refer to this as CBM3D+SAR-BM3D.
CBM3D+SAR-BM3D effectively reduces the mixed noise while preserving edges and structural
details; however, it introduces color artifacts near edges, as shown in the zoomed-in regions in
Figure 14. This results in lower PSNR and SSIM values compared to the proposed model. In contrast,
the proposed model produces well-denoised images with preserved details and without the color
artifacts observed in CBM3D+SAR-BM3D. Moreover, CBM3D+SAR-BM3D requires precise
knowledge of the noise levels o and M, whereas the proposed model achieves effective denoising
without this information by setting v = 1. Overall, these results highlight the superior denoising
performance and robustness of the proposed model compared to the BM3D-based approach.

22.88/0.6912

(a) 26.40/0.7475  (b) 26.95/0.7622  (a) 24.69/0.6493  (b) 25.91/0.7080
Figure 13. Comparison of the proposed model with CBM3D+SAR-BM3D at noise level
(M, o) = (5,30). (a) CBM3D+SAR-BM3D; (b) Proposed with v = 1. Parameters (u, 5) for
(b): top-(0.12,0.3), (0.1, 0.3); bottom-(0.11, 0.3), (0.08,0.3).

Figure 14. Zoomed-in regions from Figure 13. Top: CBM3D+SAR-BM3D; bottom:
Proposed.
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Figure 15 illustrates the evolution of the PSNR values, together with the relative errors of u and v
generated by the proposed model, as functions of the outer iteration index n, under noise levels
(M, o) = (10,20) and (5,20). As the iteration proceeds, the relative errors of both u and v decrease
monotonically, indicating stable and consistent updates of the estimated variables. Meanwhile, the
PSNR values increase rapidly in the early iterations and gradually converge to steady plateaus,
reflecting the progressive improvement and stabilization of the reconstructed images.  This
convergence behavior demonstrates the numerical stability of the proposed algorithm and the
consistent enhancement of reconstruction quality across iterations. Moreover, the observed monotonic
error decay and PSNR stabilization provide empirical evidence supporting the theoretical
convergence guarantees established in the analysis.
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Figure 15. Plots of PSNR and relative errors versus the outer iteration n at noise levels
(M, o) = (10, 20) (top) and (5, 20) (bottom). (a) PSNR values of the restored images exp(u”");

(b) Tog (Jlu” — w"[lo/llw"ll2); (c) Tog (" = "~ [lo/Iv"Il).

In Tables 1 and 2, we report the PSNR and SSIM values of all models at noise levels M = 20, 10,5
and o = 20, 30. The proposed model produces similar PSNR and SSIM values whether y = (M —1)/M
or v = 1 in the data-fidelity term, indicating that high-quality results can be achieved without prior
knowledge of the multiplicative noise level. The parameter vy regulates the relative contribution of the
multiplicative noise component. Larger y values enforce the multiplicative likelihood more strongly,
yielding smoother reconstructions and higher PSNR but slightly lower SSIM due to suppression of
fine textures and weak edges; smaller y values preserve more structural detail while retaining some
residual noise. In all experiments, we adopt y = (M — 1)/M according to the assumed number of looks
in the Gamma noise model, although comparable results can be obtained with y = 1. Despite these
variations, the proposed method consistently achieves the highest PSNR and SSIM values across all
noise levels, confirming its robustness and superiority over existing approaches.
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Table 1. PSNR and SSIM values for all models at noise levels M = 20, 10,5 and o = 20.

Image Data f L2-SVTV AA-SVTV  SO-L2-SVTV Proposed Proposed
=) y=1

M =20, 0 =20
Airplane  14.78/0.2323  25.18/0.7670  24.78/0.7360 _ 25.68/0.8065  26.85/0.7942 _ 26.90/0.7943
Baboon  16.81/0.4765  22.37/0.5986  22.28/0.6411  22.89/0.6465  23.94/0.7127  23.97/0.7106
Barbara  17.27/03215  25.92/0.7272  25.09/0.6860  26.46/0.7578  28.05/0.8111  28.06/0.8127
Boat 16.68/0.3417  25.77/0.7692  25.41/0.7415  26.64/0.7846  27.18/0.8028  27.20/0.7986
Butterfly ~ 17.67/0.4365  24.66/0.8526  23.28/0.7831  25.43/0.8533  26.58/0.8940  26.61/0.8938
Castle 17.10/0.2453  27.29/0.7921  26.01/0.7527  27.85/0.8170  28.47/0.8409  28.46/0.8425
Cathedral ~ 16.85/0.3125  25.35/0.7557  24.95/0.7451  25.93/0.7923  26.56/0.7833  26.53/0.7825
Hill 17.96/0.3464  26.46/0.6709  25.15/0.6290  27.20/0.7286  27.52/0.7280  27.58/0.7292
Lena 16.66/0.2803  26.55/0.7670  25.61/0.7623  26.92/0.7840  28.64/0.8322  28.74/0.8358
Policemen  17.76/0.3812  24.81/0.7848  24.03/0.7334  2528/0.8015  26.62/0.8397  26.63/0.8442
Statues 18.15/0.4718  24.55/0.6498  24.78/0.7159  25.40/0.7516  25.86/0.7775  25.94/0.7788
SARI 19.56/0.4575  26.63/0.7538  26.73/0.7721  27.35/0.8116  27.87/0.8222  27.90/0.8246
SAR2 19.28/0.5802  25.33/0.7779  25.33/0.7960  26.20/0.8394  26.72/0.8516  26.74/0.8502
SAR3 19.55/0.4435  26.51/0.7532  26.66/0.7714  27.19/0.8028  27.84/0.8186  27.86/0.8198
SAR4 20.07/0.3557  28.46/0.7885  28.05/0.7815  29.07/0.8274  29.72/0.8405  29.80/0.8437
SARS 19.48/0.5255  26.38/0.7771  26.11/0.7863  27.10/0.8288  27.68/0.8451  27.72/0.8444
SAR6 19.36/0.4766  26.82/0.7767  26.52/0.7831  27.53/0.8241  28.23/0.8400  28.31/0.8405
SAR7 18.78/0.3875  27.13/0.7506  27.05/0.7578  27.89/0.7938  28.34/0.8074  28.42/0.8083
Average _ 17.99/0.3920  25.00/0.7506 _ 25.43/0.7430 __ 26.56/0.7917 __ 27.37/0.8134 _ 27.41/0.8140

M =10,0 =20
Airplane  12.19/0.1786  23.96/0.7178  22.99/0.6035  24.56/0.7583  25.36/0.7484  25.43/0.7477
Baboon  14.48/0.3836  21.45/0.5212  21.16/0.5527  21.99/0.5867  22.67/0.6499  22.75/0.6432
Barbara  15.03/0.2545  25.00/0.6732  24.050.6210  25.46/0.7164  26.69/0.7673  26.78/0.7700
Boat 14.33/0.2840  24.33/0.7145  23.99/0.6826  25.52/0.7477  26.27/0.7766  26.35/0.7690
Butterfly ~ 15.53/0.3781  2321/0.8136  22.12/0.7389  24.19/0.8288  25.17/0.8722  25.22/0.8709
Castle 14.81/0.1936  25.81/0.7595  24.73/0.6957  26.70/0.7992  27.59/0.8201  27.69/0.8239
Cathedral ~ 14.55/0.2492  23.88/0.7051  23.62/0.6813  24.56/0.7485  25.59/0.7585  25.61/0.7572
Hill 15.83/0.2819  2520/0.6045  24.11/0.5585  26.40/0.6971  26.77/0.7003  26.91/0.7047
Lena 14.36/0.2248  25.46/0.7277  24.54/0.7003  25.99/0.7621  27.43/0.8066  27.50/0.8053
Policemen  15.63/0.3298  23.00/0.7176  22.73/0.6760  24.22/0.7754  25.63/0.8230  25.73/0.8291
Statues 16.11/0.3997  23.30/0.5692  23.48/0.6486  24.53/0.7112  24.97/0.7449  25.15/0.7443
SARI 17.97/0.4012  25.55/0.7081  25.52/0.7248  26.60/0.7932  27.06/0.8064  27.15/0.8075
SAR2 17.56/0.5143  24.22/0.7276  24.09/0.7406  2531/0.8145  25.87/0.8338  25.99/0.8311
SAR3 17.94/0.3825  25.75/0.7247  2552/0.7225  26.44/0.7806  27.03/0.8017  27.10/0.8013
SAR4 18.69/0.3095  27.53/0.7593  27.03/0.7462  28.42/0.8123  28.90/0.8273  29.03/0.8294
SARS 17.85/0.4620  25.31/0.7307  24.97/0.7338  26.19/0.8018  26.85/0.8248  26.90/0.8188
SAR6 17.70/0.4143  25.64/0.7271  2536/0.7320  26.66/0.7982  27.41/0.8199  27.48/0.8164
SAR7 16.93/0.3187  26.03/0.6993  25.86/0.7056  26.92/0.7591  27.45/0.7785  27.55/0.7763
Average  15.97/03311 2470007000 _ 24.22/0.6814  25.59/0.7606 _ 26.37/0.7867 _ 26.46/0.7359

M=5,0=20
Airplane  9.44/0.1202  22.72/0.6373  20.93/04727  23.19/0.7187  23.60/0.6686  23.69/0.6683
Baboon  11.87/0.2870  20.51/0.4307  19.86/0.3828  21.15/0.5334  21.54/0.5594  21.61/0.5502
Barbara  12.44/0.1863  23.96/0.6172  22.93/0.5444  24.48/0.6625  25.51/0.7154  25.58/0.7147
Boat 11.73/0.2258  23.24/0.6582  22.03/0.5742  24.42/0.7088  25.09/0.7411  25.16/0.7262
Butterfly  13.01/0.3061  21.45/0.7582  20.67/0.7209  22.76/0.7923  23.55/0.8333  23.61/0.8310
Castle 12.25/0.1405  24.51/0.7193  23.01/0.6301  25.42/0.7589  26.14/0.7789  26.18/0.7759
Cathedral ~ 11.92/0.1831  22.67/0.6577  22.01/0.5928  23.41/0.7008  24.17/0.7084  24.24/0.7083
Hill 13.40/02136  24.31/0.5578  22.97/0.4829  25.45/0.6539  25.87/0.6631  25.99/0.6660
Lena 11.69/0.1686  24.04/0.6861  22.82/0.6063  24.75/0.7251  25.99/0.7579  26.07/0.7555
Policemen  13.14/0.2699  22.00/0.6664  21.28/0.6102  22.94/0.7346  24.17/0.7778  24.21/0.7777
Statues 137103143 22.24/04973  21.81/0.5489  23.54/0.6657  23.66/0.6869  23.91/0.6867
SARI 15.89/0.3277  24.39/0.6576  23.88/0.6440  25.28/0.7483  25.84/0.7714  25.86/0.7650
SAR2 1541/0.4256  23.02/0.6664  22.16/0.6116  24.00/0.7666  24.58/0.7958  24.70/0.7883
SAR3 15.86/0.3064  24.53/0.6636  23.91/0.6324  25.31/0.7391  25.85/0.7657  25.92/0.7610
SAR4 16.78/0.2516  26.46/0.7220  25.63/0.6890  27.33/0.7827  27.90/0.8002  27.95/0.7997
SARS 15.73/0.3792  24.19/0.6776  23.33/0.6361  25.1500.7657  25.72/0.7898  25.73/0.7771
SAR6 15.56/0.3366  24.47/0.6740  23.78/0.6468  25.56/0.7612  26.21/0.7874  26.31/0.7813
SAR7 14.64/0.2431  24.91/0.6458  24.36/0.6270  2576/0.7117  26.29/0.7397  26.40/0.7366
Average _ 13.58/0.2608  23.53/0.6441 _ 22.63/0.5018  24.44/0.7183 _ 25.00/0.7412 _ 25.17/0.7372

* The bolded values denote the best denoising performance.
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Table 2. PSNR and SSIM values for all models at noise levels M = 20, 10,5 and o = 30.

Image Data f L2-SVTV AA-SVTV  SO-L2-SVTV Proposed Proposed
=) y=1

M =20, 0 =30
Airplane  13.88/0.2034  24.76/0.7609  23.59/0.6518  25.23/0.7865  26.13/0.7963 __ 26.20/0.7964
Baboon  1545/0.4003  22.12/0.5847  21.26/0.5330  2237/0.6225  23.00/0.6600  23.07/0.6556
Barbara  15.79/0.2542  25.28/0.6975  25.49/0.7043  24.33/0.6573  26.80/0.7602  26.73/0.7586
Boat 15.37/0.2870  25.04/0.7431  23.90/0.6895  25.63/0.7420  26.13/0.7641  26.08/0.7577
Butterfly ~ 16.06/0.3756  23.83/0.8290  22.09/0.7885  24.30/0.8053  25.32/0.8675  25.19/0.8664
Castle 15.68/0.1921  26.55/0.7917  25.60/0.7481  26.63/0.7859  27.11/0.8123  27.02/0.8110
Cathedral ~ 15.48/0.2589  24.70/0.7341  24.26/0.6992  24.82/0.7559  25.56/0.7539  25.50/0.7521
Hill 16.24/02590  25.64/0.6325  24.75/0.5905  26.150.6701  26.44/0.6713  26.47/0.6747
Lena 15.33/02281  26.11/0.7495  24.42/0.7025  26.12/0.7584  27.61/0.8062  27.55/0.8053
Policemen  16.12/0.3086  23.65/0.7474  23.34/0.7067  23.83/0.7394  25.32/0.8035  25.24/0.8024
Statues 16.39/0.3651  23.81/0.6046  24.03/0.6685  24.32/0.6843  24.73/0.7031  24.75/0.7000
SARI 17.27/0.3461  25.22/0.6879  2539/0.7140  25.67/0.7416  2635/0.7530  26.45/0.7614
SAR2 17.10/0.4663  24.12/0.7196  24.22/0.7398  24.80/0.7809  25.45/0.8044  25.50/0.8045
SAR3 17.26/0.3386  25.25/0.6949  2548/0.7174  25.66/0.7344  26.48/0.7598  26.46/0.7646
SAR4 17.56/02516  27.27/0.7445  26.76/0.7291  27.61/0.7736  28.20/0.7903  28.21/0.7949
SARS 17.22/0.4088  25.21/0.7237  24.99/0.7387  2551/0.7641  26.36/0.7956  26.37/0.7946
SAR6 17.16/0.3677  25.26/0.7069  25.39/0.7362  25.96/0.7626  26.93/0.7940  26.93/0.7937
SAR7 16.79/0.2978  25.90/0.6902  26.15/0.7138  26.53/0.7349  27.16/0.7558  27.18/0.7566
Average  1623/03116  24.08/0.7135 _ 24.51/0.6984 _ 25.30/0.7389 _ 26.17/0.7695 _ 26.16/0.7695

M= 10,0 =30
Airplane _ 11.66/0.1619  23.67/0.7185  22.58/0.5773  24.15/0.7629  24.93/0.7508 _ 25.06/0.7508
Baboon  13.65/0.3345  21.29/0.5082  20.46/0.4369  21.59/0.5499  22.24/0.6064  22.29/0.5925
Barbara  14.06/0.2083  24.75/0.6601  23.80/0.6081  24.91/0.6789  25.55/0.7100  25.47/0.7058
Boat 13.51/0.2439  24.01/0.7032  23.00/0.6415  24.99/0.7205  25.69/0.7561  25.70/0.7441
Butterfly ~ 14.48/0.3332  22.92/0.7998  21.52/0.7624  23.41/0.8030  24.52/0.8518  24.44/0.8485
Castle 13.94/0.1582  25.54/0.7546  24.51/0.7018  26.00/0.7684  26.58/0.7984  26.56/0.7985
Cathedral ~ 13.66/0.2141  23.59/0.6936  23.12/0.6513  24.09/0.7275  24.71/0.7346  24.69/0.7322
Hill 14.73/02200  25.10/0.6006  23.95/0.5330  25.73/0.6548  26.01/0.6640  26.07/0.6633
Lena 13.47/0.1888  24.99/0.7200  23.73/0.6653  25.38/0.7456  26.73/0.7860  26.80/0.7865
Policemen  14.57/02739  22.74/0.7070  22.30/0.6608  23.14/0.7258  24.68/0.7837  24.65/0.7857
Statues 14.92/0.3164  23.05/0.5546  23.06/0.6093  23.76/0.6560  24.01/0.6818  24.27/0.6828
SARI 1625/0.3099  24.88/0.6754  24.68/0.6834 2525007282  25.62/0.7389  25.82/0.7457
SAR2 15.99/0.4212  23.72/0.7039  2330/0.6987  2427/0.7640  24.77/0.7891  24.93/0.7848
SAR3 16.24/03001  24.71/0.6663  24.72/0.6775  2525/0.7188  25.83/0.7428  25.83/0.7435
SAR4 16.72/0.2262  26.69/0.7243  26.14/0.7076  27.08/0.7635  27.54/0.7803  27.65/0.7839
SARS 16.19/0.3678  24.42/0.6820  24.19/0.6942  25.08/0.7472  25.70/0.7791  25.82/0.7738
SAR6 16.09/0.3289  24.64/0.6764  24.63/0.6963  2536/0.7393  26.28/0.7793  26.41/0.7764
SAR7 15.54/0.2561  25.32/0.6641  2535/0.6763  26.08/0.7191  26.56/0.7383  26.57/0.7346
Average  14.76/02702  2422/0.6785  23.61/0.6490  24.75/0.7207 2544707484  25.50/0.7463

M=5,0=30
Airplane  9.13/0.1199  22.57/0.6652  20.81/0.4568  23.12/0.7106 __ 23.58/0.6807  23.74/0.6795
Baboon  11.38/0.2569  20.34/0.4152  19.70/0.3611  20.90/0.5215  21.23/0.5324  21.31/0.5124
Barbara  11.92/0.1575  23.91/0.6158  22.88/0.5491  24.24/0.6489  25.06/0.6854  25.13/0.6903
Boat 11.24/0.1964  22.62/0.6449  21.81/0.5694  24.00/0.6830  24.61/0.7207  24.74/0.7048
Butterfly ~ 12.40/02774  21.15/0.7421  20.43/0.7070  22.47/0.7634  23.30/0.8173  23.24/0.8128
Castle 11.73/0.1202  24.26/0.7219  22.95/0.6346  25.01/0.7484  25.72/0.7565  25.76/0.7650
Cathedral ~ 11.43/0.1631  22.61/0.6501  21.94/0.5847  23.12/0.6865  23.89/0.6942  23.98/0.6928
Hill 1271/0.1734  24.15/0.5495  22.92/0.4744  25.07/0.6253  25.26/0.6224  25.41/0.6303
Lena 11.23/0.1464  24.05/0.6792  22.76/0.6093  24.54/0.7166  25.72/0.7499  25.72/0.7447
Policemen  12.50/0.2276  21.70/0.6548  20.99/0.5973  22.49/0.6998  23.69/0.7447  23.66/0.7484
Statues 12.99/0.2567  22.45/0.5325  21.73/0.5198  23.11/0.6242  2323/0.6362  23.42/0.6294
SARI 1475002609 24.18/0.6440  23.57/0.6220  24.68/0.7070  25.02/0.7154  24.88/0.7073
SAR2 14.40/0.3583  22.78/0.6525  21.85/0.5926  23.14/0.7087  23.94/0.7553  23.88/0.7372
SAR3 14.73/02504  24.28/0.6528  2347/0.6060  24.54/0.6921  25.10/0.7190  25.03/0.7140
SAR4 1541/0.1912  26.00/0.6999  2520/0.6657  26.60/0.7484  26.94/0.7557  26.95/0.7622
SARS 14.64/03118  23.71/0.6484  22.92/0.6091  2437/0.7203  24.98/0.7506  24.82/0.7293
SAR6 14.51/02746  24.17/0.6565  2339/0.6179  24.75/0.7149  25.47/0.7488  25.41/0.7375
SAR7 13.78/0.2038  24.67/0.6310  24.18/0.6078  2527/0.6803  25.77/0.7097  25.91/0.7080
Average  12.83/0.2193  23.31/0.6365  22.42/0.5769 _ 23.97/0.6880  24.58/0.7108 _ 24.61/0.7050

* The bolded values denote the best denoising performance.
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4.4. Algorithm complexity and computational cost

The computational complexity of the proposed model is dominated by the GSR operations
performed on overlapping patches of size P, together with pixel-wise data-fidelity and SVTV
computations. Let N = N;N, denote the total number of image pixels and S the patch stride. The total
number of patches is approximately N ~ N/S2. For each patch, the average cost of searching for
similar patches is denoted by 7T,. The SVD of the grouped patch matrix of size 3P X ¢ has a
computational cost of O(3P - ¢ - m) per patch, where m = min(3P, ¢). Sparse coding and reconstruction
reduce to multiplying the unitary dictionary Dg, € R¥*™ by the coeflicient vector ag, € R™, which
also requires O(3P - ¢ - m) operations per patch. Including pixel-wise operations such as data-fidelity
and SVTV computation, the overall complexity per iteration can be expressed as

A

N .
O(E(TS+3P-c-m)+N).

Since § is a small fixed constant, the complexity simplifies to
O(N(T, +3P-c-m)),

indicating that the GSR operations dominate the total computation.

The computational costs of all methods are reported in Table 3, particularly for the noise level
(M,o) = (10,20). For the proposed model, the total number of outer iterations is also indicated.
Although the proposed model achieves the best denoising performance, it has the highest
computational cost, mainly due to the nonlocal patch search, the SVDs of grouped patches, and the
subsequent sparse coding and reconstruction of each group. These operations dominate the
computational complexity but can be efficiently parallelized, offering the potential for substantial
runtime reduction. Future work could focus on improving efficiency through approximate or
reduced-complexity nonlocal patch search and more efficient implementations of both SVD and
sparse coding.

Table 3. Computational time (in seconds) for all models at noise level (M, o) = (10, 20).

Image Image size L2-SVTV AA-SVTV SO-L2-SVTV Proposed (N,,;)
Airplane 256 x 256 1.54 5.26 0.42 44.53 (6)
Baboon 256 x 256 1.77 5.31 0.52 59.23 (8)
Barbara 256 x 256 1.54 5.33 0.51 77.53 (9)

Boat 256 x 256 1.78 5.32 0.89 106.71 (12)
Butterfly 321 x 481 1.47 4.60 0.47 59.99 (10)

Castle 481 x 321 5.46 14.84 1.28 161.24 (9)

Cathedral 481 x 321 5.35 14.76 1.25 166.58 (8)
Hill 201 x 266 2.47 7.57 1.00 116.15 (11)
Lena 256 x 256 1.58 5.37 0.53 66.51 (9)

Policemen 481 x 321 5.40 15.17 2.16 250.77 (13)

Statues 278 x 350 542 14.56 2.52 188.60 (12)

SARI1 512 x 512 7.36 21.72 3.87 480.16 (15)

SAR2 512 x 512 7.38 21.59 3.83 416.97 (13)

SAR3 512 x 512 7.34 21.37 3.38 376.30 (13)

SAR4 512 x 512 7.38 22.21 3.62 446.01 (14)

SARS 512 x 512 7.31 21.70 3.80 414.39 (13)

SAR6 512 x 512 7.29 21.65 3.37 410.49 (13)

SAR7 512 x 512 7.38 20.76 2.54 319.46 (10)
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5. Conclusions

In this paper, we proposed a novel variational model for color image denoising in the presence of
mixed multiplicative and Gaussian noise. The proposed formulation combined an
infimal-convolution-based data-fidelity term with SVTV and GSR regularization. The data-fidelity
term explicitly separated the multiplicative and Gaussian noise components, thereby enabling
effective suppression of mixed noise. The two regularization terms served complementary purposes.
The SVTV term promoted effective denoising in homogeneous regions and near edges while
preserving sharp discontinuities, whereas GSR regularization enhanced reconstruction quality by
preserving fine-scale details and textures and alleviating the staircase artifacts caused by SVTV. To
solve the resulting nonconvex optimization problem, we employed a PAMA framework to address
variable coupling, while convex or nonconvex ADMM schemes were used to efficiently solve the
resulting subproblems. This yielded an effective iterative algorithm, and we provided a convergence
analysis for the proposed PAMA framework. Numerical experiments demonstrated that the proposed
model consistently outperforms existing methods for removing mixed multiplicative and Gaussian
noise in color images. Despite its effectiveness, further reduction in computational cost remains an
important topic for future research. In particular, the inherently parallel structure of the GSR
regularization enables concurrent patch extraction, similarity search, and group-wise sparse coding
and SVD. These operations can be independently performed for each group, allowing acceleration on
multi-core CPUs and GPUs. In addition, automatic parameter selection schemes, such as spatially
adaptive regularization, could be incorporated to further improve reconstruction quality and enhance
the preservation of fine details.
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