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Abstract: Color image denoising under the simultaneous presence of multiplicative and Gaussian
noise is challenging due to the differing statistical properties of the two noise types. We propose a
variational framework that integrates an infimal-convolution-based data-fidelity term with saturation-
value total variation (SVTV) and group-based sparse representation (GSR) regularization. By
explicitly decoupling the multiplicative and Gaussian noise components, the data-fidelity term enables
effective suppression of mixed noise. The two regularizers play complementary roles: SVTV promotes
piecewise-smooth reconstructions while preserving edges, whereas GSR enhances fine details and
textures and mitigates the staircase artifacts induced by SVTV. The resulting nonconvex optimization
problem is addressed using a proximal alternating minimization strategy, with the alternating direction
method of multipliers employed to efficiently solve the subproblems. A convergence analysis
of the proposed algorithm is provided. Numerical experiments demonstrate that the proposed
method consistently outperforms existing approaches for denoising color images corrupted by mixed
multiplicative and Gaussian noise.
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1. Introduction

Images are often degraded by multiple noise types during acquisition or transmission. Image
denoising is thus a fundamental problem in image processing, aiming to reconstruct a clean image
from its noisy observation. In this work, we address the denoising of color images contaminated by
mixed multiplicative noise and additive Gaussian noise. Multiplicative noise commonly arises in
coherent imaging systems such as synthetic aperture radar (SAR) [1], ultrasound imaging [2], and
laser imaging [3]. Owing to the coherent nature of these modalities, multiplicative noise can severely

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2026158


3921

distort the acquired signal, often masking crucial structural details. Consequently, removing
multiplicative noise is considerably more challenging than removing additive Gaussian noise.
Additive Gaussian noise, in contrast, typically stems from sensor thermal fluctuations or variations in
environmental illumination and affects all pixels uniformly. In many practical scenarios, both noise
types occur simultaneously, complicating the denoising task. Furthermore, denoising color images is
more challenging than grayscale restoration, as noise affects multiple channels and can disrupt
inter-channel correlations. Effective methods must suppress noise while preserving spectral
consistency to avoid color distortions. These factors make mixed-noise removal in color images
particularly challenging.

Let Ω ⊂ R2 be an open, bounded domain with a Lipschitz boundary, and let u : Ω → R denote
the underlying clean image. The degradation model for the observed image f , corrupted by mixed
multiplicative noise and additive Gaussian noise, is given by f = uη + v, where v denotes additive
Gaussian noise distributed as N(0, σ2) with zero mean and standard deviation σ, and η represents
multiplicative noise following a prescribed distribution, such as Gamma or Rayleigh, depending on
the imaging modality. In this work, we focus on Gamma-distributed multiplicative noise commonly
encountered in SAR imaging. Specifically, η is assumed to follow a Gamma distribution with density
given by [4]

g(η) =
MM

Γ(M)
ηM−1e−Mη, η ≥ 0, (1.1)

where M > 0 is an integer parameter controlling the noise level and Γ(·) denotes the Gamma function.
The mean of η is 1, and its standard deviation is 1/

√
M.

For the removal of multiplicative Gamma noise, numerous filtering-based approaches [5–7] and
variational models [8–10] have been proposed. Among filtering-based methods, the SAR
block-matching 3D (SAR-BM3D) [7] is particularly notable for leveraging nonlocal self-similarity
and wavelet-domain collaborative filtering. Despite its strengths, it is computationally demanding and
may produce ringing artifacts near edges or block artifacts due to patch-based processing. Within the
variational framework, Aubert and Aujol (AA) [8] proposed a model that couples a Gamma-based
data-fidelity term with total variation (TV) regularization [11]. However, the nonconvexity of the
data-fidelity term can lead to suboptimal solutions and high sensitivity to initialization. To address
these issues, several convex variants have been proposed [9, 10, 12], often relying on logarithmic
transformations or additional penalty terms. More recently, a few studies [13–15] have extended these
variational formulations to color images, using the data-fidelity terms from [8, 9, 12]. Nevertheless, all
these models focus solely on multiplicative Gamma noise and do not account for mixed-noise
scenarios.

When mixed noise is present, a single data-fidelity term is often insufficient to achieve satisfactory
denoising, and combining multiple fidelity terms has proven more effective. For example, linear
combinations of L1 and L2 data-fidelity terms have been used to remove mixed impulsive and
Gaussian noise [16, 17], and similar approaches have been proposed for mixed Poisson and Gaussian
noise [18–20]. More recently, Calatroni et al. [21, 22] introduced TV-based models for denoising
images corrupted by mixed salt-and-pepper and Gaussian noise, or mixed Poisson and Gaussian
noise, using a data discrepancy defined via the infimal-convolution of the respective noise
distributions. These fidelity terms have shown superior performance compared with simple linear
combinations of individual noise-specific terms. Following this approach, [23] proposed an
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infimal-convolution-type data-fidelity term specifically designed for mixed multiplicative Gamma and
additive Gaussian noise. In this work, we extend that model by incorporating a patch-based
regularization to further enhance denoising performance.

TV regularization has been widely extended for color image restoration [24–26]. Jia et al. [26]
introduced saturation-value-based TV (SVTV) in the HSV color space, which improves edge
preservation and reduces color artifacts compared with RGB-based TV. This approach was
subsequently applied to remove multiplicative noise and blur in color images [13]. However, SVTV
suffers from staircase artifacts; to mitigate this, higher-order SV-based regularizers [14] were
proposed. Nevertheless, local derivative-based methods still struggle to preserve fine textures and
repeated patterns, often leading to detail smearing. To overcome these limitations, nonlocal methods
exploiting image self-similarity have been extensively explored. The nonlocal means filter [27]
aggregates similar patches based on global repetitiveness, and BM3D [28] extended this idea by using
block-matching and 3D collaborative filtering, forming the basis for SAR-BM3D [7]. Nonlocal
regularizations for inverse problems [29–31] generally outperform local methods, although inaccurate
similarity weights can limit fine-detail recovery. Patch-based sparse representation methods, such as
K-means singular value decomposition (K-SVD) [32], represent each patch using a learned
dictionary. Despite its effectiveness, K-SVD ignores inter-patch self-similarity and is computationally
intensive. Later studies integrated sparsity with nonlocal self-similarity [33–35] or employed
low-rank modeling [36–38], with patches serving as the fundamental representation unit.

Zhang et al. [39] proposed the group-based sparse representation (GSR) model, which processes
groups of similar patches to capture both local sparsity and nonlocal self-similarity using an adaptive
group dictionary. This framework has demonstrated strong performance in image deblurring,
inpainting, and compressive sensing, and has been extended to tasks such as image deblocking [40],
low-light enhancement [41], and Cauchy noise removal [42]. Subsequent works combined GSR with
low-rank and patch-based sparse methods [43–45]. Most existing GSR approaches for color images
convert RGB to YCbCr and process only the luminance (Y) channel, which may be insufficient when
noise affects all channels independently. To address this, [46] formed groups for each RGB channel
separately, while [15] proposed a full-color GSR formulation that computes patch similarities directly
on color patches across all channels, better preserving cross-channel correlations. Quaternion-based
methods provide an alternative framework for color image processing by representing images as
quaternion matrices, which inherently preserve inter-channel correlations. Representative approaches
include low-rank approximation and matrix completion [47–49], as well as weighted nuclear norm
and weighted Schatten p-norm minimization [50–52]. However, most quaternion-based methods do
not explicitly exploit nonlocal patch grouping as in GSR. In this work, we adopt the full-color GSR
framework [15] for mixed multiplicative and Gaussian noise removal, leveraging nonlocal
self-similarity and adaptive sparsity to effectively preserve textures and cross-channel correlations.

The main contribution of this work is the development of a novel variational model for color
images corrupted by mixed multiplicative Gamma and additive Gaussian noise. The model combines
an infimal-convolution-based data-fidelity term with SVTV and full-color GSR regularization. The
fidelity term decouples the multiplicative and Gaussian noise components, enabling their
simultaneous removal. The two regularizers complement each other: SVTV smooths homogeneous
regions while preserving edges, whereas GSR maintains fine textures and structural details across all
channels and mitigates staircase effects. An efficient iterative algorithm based on alternating
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minimization and the alternating direction method of multipliers is proposed to solve the resulting
nonconvex problem, with a theoretical convergence guarantee. The remainder of this paper is
organized as follows. Section 2 reviews variational models for removing multiplicative or a mixture
of multiplicative and Gaussian noise, along with SVTV regularization and the GSR framework.
Section 3 introduces the proposed model and its optimization algorithm, with a convergence analysis.
Section 4 presents experimental results and comparisons with existing methods, and Section 5
concludes the paper with a summary and discussion.

2. Preliminaries

2.1. Variational models for removing multiplicative or a mixture of multiplicative and Gaussian noise

We first recall a key property from [8]. Let U and N be independent random variables with
continuous density functions gU and gN , and let F = UN. Then, for u > 0, gN

(
f
u

)
1
u = gF|U( f |u).

Assume the data follows the multiplicative noise model f = uη, with f , u > 0, where η is Gamma-
distributed with unit mean, as defined in (1.1). Then the conditional density of F given U is

gF|U( f |u) =
MM

uMΓ(M)
f M−1e−

M f
u .

A maximum a posteriori (MAP) estimator yields the following variational formulation [8]:∫
Ω

(
log u +

f
u
−

M − 1
M

log f
)

dx + µΨ(u), (2.1)

where µ > 0 balances the negative log-likelihood term induced by the Gamma noise and the
regularizer Ψ(u), which encodes prior information on u. By using TV regularization, AA [8] proposed
the following variational model for removing multiplicative Gamma noise:

min
u>0

∫
Ω

(
log u +

f
u

)
dx + µ

∫
Ω

|∇u| dx, (2.2)

where |∇u| =
√

(∂x1u)2 + (∂x2u)2 with x = (x1, x2). The TV regularizer is well known for its convexity,
edge-preserving properties, and wide applicability in image processing. However, the nonconvexity of
the AA model’s data-fidelity term makes the overall objective (2.2) nonconvex, which may result in
convergence to local minima and sensitivity to initialization.

Shi and Osher (SO) [9] addressed the limitations of the model (2.2) by applying a logarithmic
transformation w = log u while retaining the original variable, resulting in a convex variational model.

min
u
λ

∫
Ω

(
u + f e−u

)
dx +

∫
Ω

|∇u| dx.

As shown in [9], this convex model outperforms the model (2.2) and eliminates dependence on
initialization. However, these models primarily target multiplicative noise and do not explicitly handle
the simultaneous presence of additive Gaussian noise.

Assume the observed data follows f = uη + v, where η is multiplicative Gamma noise and v ∼
N(0, σ2). To jointly address both noise types, the authors in [23] introduced an infimal-convolution-
based data-fidelity term derived from (2.1):

Φ(u, f ) := inf
v< f

{∫
Ω

(
log u +

f − v
u
−

M − 1
M

log( f − v)
)

dx +
λ

2

∫
Ω

v2 dx
}
,
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where λ > 0 is a regularization parameter that balances smoothing with fidelity to each noise
component. In addition, following the SO model, a logarithmic transformation w = log(u) was
applied while keeping the original variable, leading to the reformulated data-fidelity term:

Φ̃(u, f ) := inf
v< f

{∫
Ω

(
u + ( f − v)e−u − γ log( f − v)

)
dx +

λ

2

∫
Ω

v2 dx
}
, (2.3)

where γ = M−1
M . In [23], this fidelity term was combined with SVTV to restore color images corrupted

by mixed multiplicative and Gaussian noise, demonstrating its effectiveness over existing
single-fidelity methods.

2.2. Saturation-value total variation

For a color image u = (ur,ug,ub), the saturation (S) and value (V) components can be expressed in
terms of the RGB channels as

S (x) =
1
3
∥Cu(x)T ∥2, V(x) =

1
√

3
|ur(x) + ug(x) + ub(x)|,

where x = (x1, x2) ∈ Ω, ∥ · ∥2 is the Euclidean norm and

C =


2 −1 −1
−1 2 −1
−1 −1 2

 , u(x)T =


ur(x)
ug(x)
ub(x)

 .
Noting that structural features such as edges and textures are primarily captured in the saturation

and value components, Jia et al. [26] introduced the SVTV regularization for color images:

SV-TV(u) =
∫
Ω

√∑
j=1,2

|∂x ju(x)|2s + α
√∑

j=1,2

|∂x ju(x)|2v dx, (2.4)

where α > 0 controls the relative weight of the value component and for j = 1, 2,

|∂x ju(x)|s =
1
3
∥C∂x ju(x)T ∥2, |∂x ju(x)|v =

1
√

3
|∂x jur(x) + ∂x jug(x) + ∂x jub(x)|,

with ∂x ju(x)T = (∂x jur(x), ∂x jug(x), ∂x jub(x))T . The corresponding dual formulation is

SV-TV(u) := sup
(ϕ1,ϕ2)∈K2,ϕ3∈K1

{ ∫
Ω

1
√

2
(ur(x) − ug(x)) div(ϕ1(x)) (2.5)

+
1
√

6
(ur(x) + ug(x) − 2ub(x)) div(ϕ2(x))

+
α
√

3
(ur(x) + ug(x) + ub(x)) div(ϕ3(x))

}
dx,

where Km = C1(Ω,B2m) denotes the space of continuously differentiable functions with compact
support in Ω that take values in the closed unit ball B2m ⊂ R2m. The convexity, lower semi-continuity,
and compactness properties of SVTV were established in [26] based on this dual formulation.
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From the dual formulation (2.5), the matrix P can be defined, which is related to C as follows:

P =


1
√

2
− 1
√

2
0

1
√

6
1
√

6
− 2
√

6
1
√

3
1
√

3
1
√

3

 , C = PT AP with A =


3 0 0
0 3 0
0 0 0

 .
Thus, by defining ũ(x) = Pu(x)T for x ∈ Ω, the saturation and value components can be expressed
compactly as S (x) = ∥(ũ1(x), ũ2(x))∥2 and V(x) = |ũ3(x)|.

2.3. Group-based sparse representation

This subsection provides a brief overview of the GSR model [39] for grayscale image restoration.
Let x ∈ RN1×N2 denote a grayscale image. The image is first partitioned into N overlapping patches

xk of size
√

P ×
√

P using a stride of S pixels, where k = 1, 2, . . . ,N. For each reference patch xk,
the c most similar patches are identified within a local search window of size L × L, and these patches
are stacked column-wise to form the group matrix xGk = [xGk ,1, xGk ,2, ..., xGk ,c] ∈ R

P×c. The grouping
operation can be expressed via a linear operator RGk such that xGk = RGk(x). Its adjoint RT

Gk
places the

group back into the image domain at the corresponding patch location, padding zeros elsewhere.
The GSR model assumes that each group xGk can be accurately represented using only a few atoms

from a self-adaptive dictionary DGk = [dGk ,1, dGk ,2, . . . , dGk ,m], which is learned during optimization.
Each dictionary atom dGk ,i ∈ R

P×c has the same dimensions as the group xGk , and the number of
atoms is set to m = min(P, c). The sparse coding process seeks a sparse coefficient vector αGk =

[αGk ,1,αGk ,2, . . . ,αGk ,m]T such that xGk = DGkαGk :=
∑m

i=1 αGk ,i dGk ,i. After estimating the sparse codes
for all groups, the image is reconstructed by aggregating all group contributions as

x = DG ◦ αG :=
N∑

k=1

RT
Gk

(DGkαGk)./
N∑

k=1

RT
Gk

(1P×c), (2.6)

where DG and αG denote the concatenation of all group dictionaries and corresponding sparse codes,
respectively, The symbol ./ represents element-wise division, 1P×c is an all-ones matrix used for
normalization, and ◦ denotes the group-based synthesis operator.

For an observed degraded image y = Hx + v, where H is a known linear degradation operator and
v denotes additive noise, the GSR-based restoration problem is formulated as

α̂G := arg min
αG

1
2
∥H DG ◦ αG − y∥22 + µ ∥αG∥0, (2.7)

where µ > 0 is a regularization parameter that balances data fidelity and sparsity, and ∥αG∥0 counts
the number of nonzero elements in αG. With an appropriately constructed self-adaptive dictionary DG,
problem (2.7) can be efficiently solved via sparse approximation techniques. The restored image is
then obtained via (2.6) as x̂ = DG ◦ α̂G.

3. Proposed model and algorithm

In this section, we present a variational model for denoising color images corrupted by mixed
multiplicative and Gaussian noise, along with an optimization algorithm for its solution.
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3.1. Proposed model

Consider a noisy color image f : Ω → R3, degraded by a mixture of multiplicative Gamma noise
and additive Gaussian noise, where Ω = {1, 2, ...,N1} × {1, 2, ...,N2}. The degradation model is

f ch
s = uch

s · η
ch
s + vch

s , s ∈ Ω, ch = r, g, b, (3.1)

where u ∈ RN1×N2×3 denotes the clean image, ηch
s represents multiplicative Gamma noise following the

distribution in (1.1), and vch
s ∼ N(0, σ2) represents additive Gaussian noise.

The degradation model in (3.1) gives rise to an ill-posed inverse problem; thus, we formulate a
variational minimization problem to recover u from the observed data f . To simultaneously address
multiplicative Gamma noise and additive Gaussian noise, we introduce the logarithmic variable w =
log(u), while keeping u as the primary variable, and employ the data-fidelity term in (2.3):

F(u, v) =
〈
u + ( f − v)e−u − γ log( f − v), 1

〉
+
λ

2
∥v∥22, (3.2)

where v < f , γ = M−1
M , ⟨·, ·⟩ denotes the inner product, 1 ∈ RN1×N2×3, and λ > 0 regulates the penalty

on the Gaussian noise component. The quadratic term λ
2∥v∥

2
2 models and extracts the additive Gaussian

noise from f , while the remaining terms correspond to the data-fidelity for the multiplicative Gamma
noise applied to f −v. This unified formulation decouples the two noise components, enabling effective
restoration of color images corrupted by mixed noise.

We first combine the data-fidelity term (3.2) with SVTV regularization, yielding the model in [23].
SVTV effectively suppresses noise in homogeneous regions and preserves edges, while substantially
reducing color artifacts compared with conventional TV. However, its reliance on local derivatives
limits the preservation of fine textures and details, and its first-order formulation may produce staircase
artifacts. To overcome these limitations, we incorporate GSR as an additional regularization term. By
representing the image as u = DG ◦ αG, we formulate the minimization problem as

min
u,αG,v< f

E(u,αG, v) = F(u, v) + µ∥αG∥0 + βSV-TV(u), subject to: u = DG ◦ αG, (3.3)

where µ > 0 is a regularization parameter that promotes sparsity in the coefficients αG, β > 0 controls
the smoothness of u, and SV-TV(u) is defined in (2.4). After solving the problem (3.3), the restored
image is obtained as eu. This model extends [23] by incorporating the GSR framework and builds
upon [15], which combined SVTV and GSR for heavy multiplicative noise removal. However, the
model in [15] was designed specifically for multiplicative noise and cannot effectively handle additive
Gaussian noise. In that work, SVTV played only a minor role, primarily reducing slight ringing or
block artifacts from patch-based processing. From a regularization perspective, GSR imposes a
sparsity-based nonlocal prior that promotes low-dimensional structure within groups of similar
patches, encouraging strong correlations among them. This property makes GSR particularly effective
at preserving repeated or correlated patterns, including fine textures (e.g., grass, fabric weaves),
periodic or geometric structures (e.g., tiles, fences, lattice patterns), and directional features. Unlike
first-order local regularizers, which often oversmooth high-frequency details, GSR retains consistent
variations across similar patches. The performance of GSR, however, depends on accurate patch
grouping. In smooth regions or under heavy mixed noise, distortions may impair patch similarity
estimation, leading to inaccurate grouping and residual artifacts. Moreover, without complementary
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local regularization, GSR may be less effective near sharp edges, where patch matching across
intensity discontinuities becomes unreliable. SVTV complements GSR by providing local
edge-preserving regularization in the saturation-value domain. It promotes piecewise smoothness,
suppresses color artifacts in homogeneous regions, and stabilizes reconstruction around edges. While
SVTV effectively handles smooth areas, GSR preserves nonlocal textures and repeated patterns that
SVTV alone may oversmooth. By combining SVTV and GSR, the proposed model integrates a local
edge-preserving prior with a nonlocal sparsity-based structural prior, forming a principled framework
that balances texture preservation and mixed-noise suppression. This complementary interaction
demonstrates that the model is not merely an empirical combination of priors but a coherent fusion of
local and nonlocal regularization mechanisms tailored for mixed-noise removal in color images.

For GSR, we adopt the approach in [15], which evaluates patch similarity using full-color patches
across all channels, thereby capturing inter-channel relationships more effectively. Unlike methods
that process each color channel independently, the full-color GSR framework models all RGB
channels simultaneously, exploiting their inherent correlations. This integrated representation
preserves structures such as edges, textures, and fine details consistently across channels, reducing
color mismatches and artifacts that commonly arise from channel-wise processing. Specifically, for a
color patch uk = [ur

k,u
g
k ,u

b
k]T ∈ R3P, where uch

k denotes a
√

P ×
√

P patch in the ch-channel
(ch = r, g, b), the group uGk of the c most similar patches is reconstructed as

uGk =


ur

Gk,1
ur

Gk,2
· · · ur

Gk,c

ug
Gk,1

ug
Gk,2

· · · ug
Gk,c

ub
Gk,1

ub
Gk,2

· · · ub
Gk,c

 ∈ R3P×c.

To identify similar patches in u, we consider the following model, obtained by applying a
logarithmic transformation to (3.1): f̂ = u + η̂, where f̂ = log( f − v), u denotes the logarithmically
transformed clean image, and η̂ = log(η). This formulation assumes that v effectively removes the
additive Gaussian noise component, leaving primarily multiplicative noise. Under this assumption,
the logarithmic transformation converts multiplicative noise into an approximately additive form,
which is easier to handle statistically. As illustrated in Figure 1, the histograms of η̂ in the RGB color
space closely resemble Gaussian distributions across all noise levels. Motivated by this observation,
we extract color patches in the RGB space and measure the similarity between two patches, uk1 and
uk2 , using the Euclidean distance. Although v is estimated iteratively and may be imprecise in early
iterations, the log-domain noise approaches a Gaussian distribution as the estimation converges.
Consequently, Euclidean distance provides a reasonable and practical metric for patch similarity
throughout the iterative process.
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Figure 1. Histogram of η̂ = log(η) with fitted normal density curves (red) at noise levels
M = 20, 10, 5.
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Parameter roles and selection. The parameters λ, µ, and β play complementary roles in
balancing data fidelity, texture modeling, and spatial regularity. From a MAP perspective, the balance
parameter λ in the infimal convolution data-fidelity term corresponds to the precision of the Gaussian
noise component v. Since v models Gaussian noise with variance σ2, its negative log-likelihood yields
a quadratic term weighted by 1/σ2. Thus, λ should scale inversely with σ2: higher Gaussian noise
favors smaller λ, relaxing the penalty on v, while lower noise favors larger λ, enforcing stricter
fidelity. The sparsity weight µ, which controls the group-sparse representation, can be made
adaptive [46]. For each patch group uGk , µ is inversely related to the local patch variance σ2

Gk
, so that

smoother regions receive stronger sparsity while textured regions preserve details. In the mixed-noise
setting, µ also depends on both the multiplicative noise level M and the Gaussian variance σ2.
Stronger noise in either component increases patch distortions, requiring larger µ to suppress
noise-induced coefficients. Conceptually, this can be expressed as µGk ∝

g(M,σ)
σGk+ϵ

, where g(M, σ) grows
with overall noise strength and ϵ prevents division by zero. This formulation allows µ to adapt both to
local patch smoothness and to the global noise level, effectively targeting nonlocal correlations in
similar patches. For simplicity and reproducibility, fixed µ values were manually selected for each
image and noise setting, as detailed in the experimental section. The SVTV weight β governs local
smoothness in the saturation-value domain. Larger β suppresses noise more effectively in
homogeneous regions but may oversmooth fine textures and edges. In practice, β typically increases
with the overall noise level: smaller M corresponds to stronger multiplicative fluctuations, while
larger σ2 introduces larger Gaussian perturbations. By adjusting β according to the noise
characteristics, the model balances noise suppression with detail preservation. While the
multiplicative Gamma noise level M does not yield a direct analytical formula for the regularization
terms, its effect is implicitly handled through the joint adjustment of λ, µ, and β. In combination, µ
and β complement each other: µ preserves nonlocal textures via the GSR prior, whereas β stabilizes
local smoothness via SVTV. These considerations offer qualitative, model-consistent guidance for
parameter selection and justify the empirical choices reported in the experimental section.

3.2. Optimization algorithm

First, the proposed model (3.3) can be equivalently rewritten as

min
u,αG,v

E(u,αG, v) = E(u,αG, v) + ιC1(u,αG) + ιC2(v), (3.4)

where C1 = {(u,αG) : u = DG ◦ αG}, C2 = {v : v < f }, and ιC(z) is the indicator function of a
set C, defined by ιC(z) = 0 if z ∈ C and ∞ otherwise. Here, DG is not an optimization variable; it is
deterministically computed (via SVD) from the current iterate and does not depend on αG. Therefore,
it does not need to be included explicitly in the optimization, and the problem can be solved over
(u,αG, v) only.

The optimization problem in (3.4) is nonconvex and nonsmooth due to the presence of both ℓ0 and
ℓ1 regularization terms, and the variables u and v are coupled through the data-fidelity term, which
complicates direct joint optimization. To handle this coupling, we adopt a block-coordinate approach.
Specifically, the classical alternating minimization algorithm (AMA) [53] iteratively updates one
block of variables while keeping the others fixed, decomposing the original problem into two tractable
subproblems. Although the AMA is attractive for its simplicity, it generally lacks strong convergence
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guarantees in nonconvex and nonsmooth settings. To address these limitations, we employ the
proximal AMA (PAMA) [54], which augments each subproblem with proximal regularization terms.
Accordingly, at iteration n, we alternate between solving the following two subproblems:

vn+1 := arg min
v

{
E(un,αn

G, v) + ιC2(v) +
δ

2
∥v − vn∥22

}
, (3.5)

(un+1,αn+1
G ) := arg min

u,αG

{
E(u,αG, vn+1) + ιC1(u,αG) +

δ

2
∥u − un∥22 +

δ

2
∥αG − α

n
G∥

2
2

}
,

where δ > 0 is a proximal parameter. The proximal terms stabilize the iterations and ensure sufficient
descent of the objective, which is critical for convergence in nonconvex and nonsmooth settings.

To establish the convergence of the proposed PAMA in (3.5), we first show that the iterates remain
bounded under a mild assumption, as stated in the following lemma.

Lemma 3.1. Assume that infv∈C2( f − v) > 0. Then the sequence {(un,αn
G, v

n)} generated by the PAMA
in (3.5) is bounded.

Proof. First, note that the energy E is proper: it is finite at least at the initial iterate (u0,α0
G, v

0) and
never takes the value −∞. Hence, the PAMA iterates are well-defined, and the descent inequalities
below are meaningful.

By construction of the PAMA, the iterates satisfy

E(un,αn
G, v

n+1) +
δ

2
∥vn+1 − vn∥22 ≤ E(un,αn

G, v
n),

E(un+1,αn+1
G , v

n+1) +
δ

2
∥un+1 − un∥22 +

δ

2
∥αn+1

G − αn
G∥

2
2 ≤ E(un,αn

G, v
n+1).

Adding these inequalities gives the monotone decrease of the augmented energy.

E(un+1,αn+1
G , v

n+1) +
δ

2
∥un+1 − un∥22 +

δ

2
∥αn+1

G − αn
G∥

2
2 +
δ

2
∥vn+1 − vn∥22 ≤ E(un,αn

G, v
n). (3.6)

Next, let (u, v) belong to the domain {(u, v) : v < f }. By the assumption infv∈C2( f − v) > 0, there
exists a constant ϵ > 0 such that ( f s − vs) ≥ ϵ for all s ∈ Ω. For each pixel s ∈ Ω, define

ϕ(us, vs) = us + ( f s − vs)e−us − γ log( f s − vs). (3.7)

Since f s−vs ≥ ϵ, the logarithmic term is bounded from below. Moreover, ϕ(us, vs)→ +∞ as us → +∞

due to the linear term, and ϕ(us, vs) → +∞ as us → −∞ due to the exponential term. Hence, ϕ(us, vs)
is bounded below on R for each s ∈ Ω. Summing over all pixels yields the existence of a constant
C > −∞ such that

∑
s∈Ω ϕ(us, vs) ≥ C. In addition, the quadratic term λ

2∥v∥
2
2 is nonnegative. Therefore,

the fidelity term F(u, v) admits a finite lower bound on the feasible set. The constraint u = DG ◦ αG

restricts u to lie in the image of the linear operator DG, which is a subset of RN1×N2×3. Since F(u, v)
is already bounded below for all u and v < f , this restriction cannot introduce new directions along
which the fidelity term decreases without bound. Furthermore, the ℓ0 regularization term ∥αG∥0 is
nonnegative and therefore does not contribute any negative unbounded directions in the coefficient
space. Moreover, the regularization term SV-TV(u) is nonnegative, and the indicator functions ιC1 and
ιC2 vanish on feasible iterates. Consequently, the total energy E(u,αG, v) is bounded below by a finite
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constant. Since the PAMA scheme generates a monotone decreasing sequence of energy values, it
follows that the sequence {E(un,αn

G, v
n)} converges.

Suppose, for contradiction, that the sequence is unbounded, so that at least one of ∥un∥2, ∥αn
G∥2, or

∥vn∥2 diverges. The proximal terms

δ

2
∥un+1 − un∥22,

δ

2
∥αn+1

G − αn
G∥

2
2,
δ

2
∥vn+1 − vn∥22

grow quadratically with the iterate differences and will thus make the left-hand side of (3.6)
arbitrarily large, contradicting the convergence of the sequence {E(un,αn

G, v
n)}. Hence, no component

of {(un,αn
G, v

n)} can diverge, and the sequence is bounded. □

Next, we prove the convergence of the PAMA iterates generated by (3.5), adopting the analysis
framework developed in [54]. We first recall the definitions of semi-algebraic and subanalytic sets and
functions from [55] and [56].

Definition 3.1. (Semi-algebraic and subanalytic functions)

(i) A subset A ⊂ Rd is called a semi-algebraic set if there exists a finite number of real polynomial
functions Pi j, Qi j : Rd → R such that A =

⋃p
j=1

⋂q
i=1 {x ∈ R

d : Pi j(x) = 0, Qi j(x) < 0}. A
function g : Rd → (−∞,+∞] is called semi-algebraic if its graph {(x, t) ∈ Rd+1 : g(x) = t} is a
semi-algebraic subset in Rd+1.

(ii) A function g : Rd → (−∞,+∞] is called subanalytic if its graph is a subanalytic subset of Rd+1;
equivalently, locally it is the projection of a bounded semianalytic set.

All semi-algebraic and real-analytic functions are subanalytic. Moreover, finite sums,
compositions, and products of subanalytic functions remain subanalytic. Every proper, lower
semicontinuous, subanalytic function satisfies the Kurdyka–Łojasiewicz (KL) property [57], which is
crucial for establishing convergence of the PAMA iterates.

Theorem 3.1. Assume that infv∈C2( f − v) > 0. Then the sequence {(un,αn
G, v

n)} generated by the PAMA
in (3.5) converges to a critical point of E(u,αG, v) defined in (3.4).

Proof. Based on Theorem 9 in [54], it is sufficient to show that the following conditions hold:
(1) The objective function E(u,αG, v) in (3.4) is a KL function.
(2) ∇F(u, v) is Lipschitz continuous on any bounded subset of its domain.
First, we prove the first condition as follows:

• Each pixelwise component defined in (3.7) is real-analytic on the domain {vs < f s}, since it is
composed of linear, exponential, and logarithmic functions, all of which are real-analytic. The
sum of real-analytic functions is real-analytic, and every real-analytic function is subanalytic. The
full fidelity term F(u, v) =

∑
s∈Ω ϕ(us, vs)+ λ2∥v∥

2
2 is a finite sum of subanalytic functions (note that

the quadratic term λ
2∥v∥

2
2 is also real-analytic and hence subanalytic). Therefore, F is subanalytic.

Since F is proper and lower semicontinuous, it satisfies the KL property.
• The synthesis constraint u = DG ◦ αG defines the set C1. Since DG is linear, C1 is an affine

subspace. Affine subspaces are defined by linear equalities, which are polynomial equations, so
C1 is a semi-algebraic set. Its indicator function ιC1 is thus semi-algebraic. Moreover, since affine
subspaces are closed sets, ιC1 is lower semicontinuous. Combining these properties, ιC1 satisfies
the KL property.
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• The set C2 = {v : vs < f s, ∀s ∈ Ω} is defined by linear inequalities. Hence, C2 is semi-
algebraic and its indictor function ιC2 is semi-algebraic. Although C2 is open and ιC2 is not lower
semicontinuous at the boundary, the KL property holds at all points in its domain. Under the
assumption infv∈C2( f − v) > 0, all iterates vn remain strictly inside C2, so the KL property applies
along the sequence of iterates.
• Let G(z) = ∥z∥0 for z ∈ Rd, where d = m × N. The graph of G can be expressed as graph(G) =
{(z, r) ∈ Rd+1 : ∥z∥0 = r} =

⋃
J⊆{1,...,d} S J, where

S J = {(z, r) : r = |J|, zi , 0 if i ∈ J, zi = 0 if i < J}.

Equivalently, the condition zi , 0 can be written as z2
i > 0, which is a polynomial inequality.

Since each S J is defined by finitely many polynomial equalities and inequalities, it is
semi-algebraic. Therefore, graph(G) is a finite union of semi-algebraic sets, and hence G is
semi-algebraic. Furthermore, all sublevel sets

{z ∈ Rd : ∥z∥0 ≤ r} = ∪J⊆{1,...,d},|J|≤r{zi = 0 if i < J}

are finite unions of closed linear subspaces and hence closed. Therefore, G is lower
semicontinuous, thus it satisfies the KL property.
• The SVTV integrand is constructed using linear operations, including spatial derivatives and

linear combinations of the color channels, together with Euclidean norms, absolute values, finite
summations, and square roots of nonnegative expressions. All these operations are
semi-algebraic, and therefore the SVTV pointwise integrand is a semi-algebraic function. In the
discrete image setting, spatial derivatives are replaced by finite differences, and the integral over
Ω reduces to a finite sum, which preserves semi-algebraicity. Moreover, the resulting SVTV
functional is proper and lower semicontinuous, since it is a finite sum of continuous nonnegative
terms. Consequently, the discrete SVTV functional satisfies the KL property.

Therefore, the total energy E(u,αG, v) is a finite sum of KL functions and hence satisfies the KL
property.

Next, let T be a bounded subset of the domain {(u, v) : v < f } ⊂ Rd×Rd, where d = N1×N2×3. By
the assumption, there exist constants U > 0 and ϵ > 0 such that |us| ≤ U, f s − vs ≥ ϵ for all (u, v) ∈ T ,
s ∈ Ω. The gradient of F is given pixelwise, and its Hessian is block-diagonal with 2 × 2 blocks:

(∇F)s =
[(
∇uF)s,

(
∇vF)s

]T
=

[
1 − ( f s − vs)e−us ,−e−us + γ( f s − vs)−1 + λvs

]T
,

Hs =


(
∂2F
∂u2

)
s

(
∂2F
∂u∂v

)
s(

∂2F
∂u∂v

)
s

(
∂2F
∂v2

)
s

 = [
( f s − vs)e−us −e−us

−e−us γ( f s − vs)−2 + λ

]
.

Since T is bounded, the spectral norm of Hs is bounded by

∥Hs∥2 ≤ |b| +max{a, c} = eU +max
{
( f max − vmin)eU , γ/ϵ2 + λ

}
:= L̃,

where a = ( f s − vs)e−us , b = −e−us , and c = γ( f s − vs)−2 + λ. Since ∇2F is block-diagonal, its spectral
norm is the maximum over pixels:

∥∇2F(u, v)∥2 = max
s∈Ω
∥Hs∥2 ≤ L̃.
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By standard results for twice continuously differentiable functions, this implies that the gradient of F
is Lipschitz continuous on T with constant L̃; that is, for any (u1, v1), (u2, v2) ∈ T ,

∥∇F(u1, v1) − ∇F(u2, v2)∥2 ≤ L̃∥(u1, v1) − (u2, v2)∥2.

Therefore, the assumptions required in Theorem 9 of [54] are fulfilled, which yields the conclusion of
the theorem. □

Remark 1. The assumption in Lemma 3.1 and Theorem 3.1, infv∈C2( f − v) > 0, requires that f − v
remains strictly positive. This condition is typically satisfied in practical applications because the
feasible set C2 = {v : v < f } explicitly enforces an upper bound on the Gaussian noise component v
relative to the signal f . In real imaging scenarios, the noise v is typically smaller in magnitude than
the underlying signal f , and the strict positivity is further maintained by the closed-form
update (3.10), which preserves the inequality at each iteration. Thus, the assumption is mild,
physically meaningful, and naturally satisfied in practical imaging scenarios, thereby supporting the
validity of the convergence analysis.

In the following subsections, we solve the subproblems of (3.5).

3.2.1. Solving for v-subproblem in (3.5)

First, we consider the v-subproblem in (3.5), which can be expressed as

min
v< f

〈
( f − v)e−un

− γ log( f − v), 1
〉
+
λ

2
∥v∥22 +

δ

2
∥v − vn∥22. (3.8)

Following the arguments in [23], we can show that the subproblem in (3.8) is strictly convex, and
therefore admits a unique minimizer. The explicit form of the solution is summarized in the following
proposition.

Proposition 3.1. For any f̄ , ū, ν0 ∈ R and positive parameters γ, λ, and δ, define the function g : X →
R, where X = {ν ∈ R : ν < f̄ }, by

g(ν) = ( f̄ − ν)e−ū − γ log( f̄ − ν) +
λ

2
ν2 +

δ

2
(ν − ν0)2.

Then the minimization problem minν∈X g(ν) admits a unique solution, which can be expressed in closed
form.

Proof. The first- and second-order derivatives of g are

g′(ν) = −e−ū +
γ

f̄ − ν
+ λν + δ(ν − ν0), g′′(s) =

γ

( f̄ − ν)2
+ λ + δ.

Since all parameters are positive and ν < f̄ , g′′(ν) > 0 for all ν ∈ X, which implies that g is strictly
convex on X. Thus, if the equation g′(ν) = 0 has a solution, then that solution is unique. The equation
g′(ν) = 0 yields the following quadratic equation for ν: aν2 − (a f̄ + b)ν+ (b f̄ − γ) = 0, where a = λ+ δ
and b = e−ū + δν0. The determinant D = (a f̄ + b)2 − 4a(b f̄ − γ) = (a f̄ − b)2 + 4aγ > 0, so the quadratic
equation admits two distinct real roots. The smaller root is given by

ν̃ =
(a f̄ + b) −

√
(a f̄ − b)2 + 4aγ
2a

, (3.9)
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which satisfies the condition ν̃ < f̄ ; if a f̄ − b < 0, then

ν̃ =
(a f̄ + b) −

√
(a f̄ − b)2 + 4aγ
2a

<
(a f̄ + b) − |a f̄ − b|

2a
= f̄ ,

while if a f̄ − b ≥ 0, then

ν̃ =
(a f̄ + b) −

√
(a f̄ − b)2 + 4aγ
2a

<
a f̄ + b − (a f̄ − b)

2a
=

b
a
≤ f̄ .

Therefore, ν̃ is the unique global minimizer of the problem minν∈X g(ν). □

Based on the closed-form expression in (3.9), the solution vn+1 of problem (3.8) is given by

vn+1 =
(λ + δ) f + exp(−un) + δvn −

√
((λ + δ) f − (exp(−un) + δvn))2 + 4(λ + δ)γ

2(λ + δ)
. (3.10)

3.2.2. Solving for (u,αG)-subproblem in (3.5)

Now, we solve the (u,αG)-subproblem in (3.5), which can be rewritten as

min
u,αG

{
E(u,αG, vn+1) +

δ

2
∥u − un∥22 +

δ

2
∥αG − α

n
G∥

2
2

}
, subject to: u = DG ◦ αG. (3.11)

To handle the linear constraint and nonconvexity, we adopt the nonconvex alternating direction
method of multipliers (ADMM) [58]. The iterative ADMM procedure decouples the original
subproblem into two simpler updates, allowing efficient numerical solution while handling the linear
constraint and nonconvexity of the problem. The augmented Lagrangian function (ALF) of
problem (3.11) is

Lτ(u,αG; p) = E(u,αG, vn+1) +
δ

2
∥u − un∥22 +

δ

2
∥αG − α

n
G∥

2
2 − ⟨p,u − DG ◦ αG⟩ +

τ

2
∥u − DG ◦ αG∥

2
2,

where p ∈ RN1×N2×3 are the Lagrangian multipliers and τ > 0 is a penalty parameter.
The ADMM algorithm consists of sequential updates of the variables as follows:

αℓ+1
G := arg minαG Lτ(uℓ,αG; pℓ),

uℓ+1 := arg minu Lτ(u,αℓ+1
G ; pℓ),

pℓ+1 = pℓ − τ(uℓ+1 − (DG ◦ αG)ℓ+1),

(3.12)

where ℓ denotes the inner ADMM iteration index.

Solving the αG-subproblem in (3.12). The αG-subproblem in (3.12) can be expressed as

min
αG

τ

2
∥DG ◦ αG − uℓ + pℓ/τ∥22 + µ ∥αG∥0 +

δ

2
∥αG − α

n
G∥

2
2.
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By introducing the variables x = DG ◦ αG and r = uℓ − pℓ/τ, this problem can be equivalently
reformulated as

min
αG

1
2
∥x − r∥22 +

µ

τ
∥αG∥0 +

δ

2τ
∥αG − α

n
G∥

2
2. (3.13)

The following proposition shows that, under suitable statistical assumptions, the total error ∥x− r∥22
can be well approximated by the sum of groupwise error terms: ∥x − r∥22 ≈

∑N
k=1 ∥xGk − rGk∥

2
2, where

xGk and rGk denote the components of x and r corresponding to the k-th group.

Proposition 3.2. Let x, r ∈ RN1×N2×3 and xGk , rGk ∈ R
3P×c for k = 1, 2, ...,N. Assume that the elements

of the error vector e = x− r are independent random variables with zero mean and variance σ2. Then,
for any ε > 0, the following holds:

lim
B1→∞
B2→∞

Pr

∣∣∣∣ 1
B1
∥x − r∥22 −

1
B2

N∑
k=1

∥xGk − rGk∥
2
2

∣∣∣∣ < ε = 1,

where Pr(·) denotes the probability, B1 = 3N1N2, and B2 = 3P · c · N.

Proof. The claim follows directly from the law of large numbers; see [39] for further details. □

Based on Proposition 1 and the identities

∥αG∥0 =

N∑
k=1

∥αGk∥0 and ∥αG∥
2
2 =

N∑
k=1

∥αGk∥
2
2,

problem (3.13) can be equivalently expressed as

min
αG

N∑
k=1

(
1
2
∥xGk − rGk∥

2
2 + τ̃1∥αGk∥0 +

τ̃2

2
∥αGk − α

n
Gk
∥22

)
,

where τ̃1 =
µB2
τB1

and τ̃2 =
δB2
τB1

. This decomposition shows that the original problem (3.13) can be
efficiently solved by minimizing N independent subproblems, each corresponding to a group αGk :

min
αGk

{
1
2
∥DGkαGk − rGk∥

2
2 + τ̃1∥αGk∥0 +

τ̃2

2
∥αGk − α

n
Gk
∥22

}
, (3.14)

where DGk is the self-adaptive learned dictionary constructed from rGk as follows.
We first perform the SVD of rGk :

rGk = UGkΣGkV
T
Gk
=

m∑
i=1

γrGk ,i
(uGk ,iv

T
Gk ,i), (3.15)

where ΣGk = diag(γrGk
) is a diagonal matrix with the singular values γrGk

= [γrGk ,1
,γrGk ,2

, ...,γrGk ,m
]T on

its main diagonal and m = min(3P, c). The vectors uGk ,i and vGk ,i are the i-th columns of UGk and VGk ,
respectively. The atoms of the dictionary are defined as dGk ,i = uGk ,ivT

Gk ,i
, and the learned dictionary

DGk is formed as DGk = [dGk ,1, dGk ,2, . . . , dGk ,m].
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Since rGk = DGkγrGk
from (3.15) and DGk is unitary, the subproblem (3.14) reduces to

min
αGk

1
2
∥αGk − γrGk

∥22 + τ̃1∥αGk∥0 +
τ̃2

2
∥αGk − α

n
Gk
∥22,

which can be rewritten as

min
αGk

1 + τ̃2

2

∥∥∥∥αGk −
γrGk
+ τ̃2α

n
Gk

1 + τ̃2

∥∥∥∥2

2
+ τ̃1∥αGk∥0.

This problem has the following closed-form hard-thresholding solution:

αGk = hard
(
gGk , ρ

)
= gGk ⊙ 1

(
|gGk | > ρ

)
, (3.16)

where
gGk = (γrGk

+ τ̃2α
n
Gk

)/(1 + τ̃2), ρ =
√

(2τ̃1)/(1 + τ̃2),

hard(·, ·) denotes the hard thresholding operator, ⊙ is the elementwise multiplication, and 1(·) is the
indicator function, which equals 1 when the condition is satisfied and 0 otherwise.

Consequently, the reconstructed group xGk is obtained as xGk = DGkαGk , using the coefficients
from (3.16). Aggregating all reconstructed groups yields the image estimate x = DG ◦ αG, as in (2.6).

Solving the u-subproblem in (3.12). The u-subproblem in (3.12) can be formulated as

min
u

{
F(u, vn+1) + βSV-TV(u) +

δ

2
∥u − un∥22 +

τ

2
∥u − h∥22

}
,

where h = (DG ◦αG)ℓ+1+ pℓ/τ. To facilitate the optimization, we introduce an auxiliary variable w = u
and equivalently rewrite

min
u,w

{
F(u, vn+1) + βSV-TV(w) +

δ

2
∥u − un∥22 +

τ

2
∥u − h∥22

}
, subject to: w = u. (3.17)

The ALF corresponding to (3.17) is given by

Lξ(u,w; q) = F(u, vn+1) + βSV-TV(w) +
δ

2
∥u − un∥22 +

τ

2
∥u − h∥22 − ⟨q,w − u⟩ +

ξ

2
∥w − u∥22,

where q ∈ RN1×N2×3 is the Lagrangian multiplier and ξ > 0 is a penalty parameter. Applying the convex
ADMM [59] to (3.17) results in the following iterative updates:

ut+1 := arg minu

{
F(u, vn+1) + δ2∥u − un∥22 +

τ
2∥u − h∥22 +

ξ

2∥u − wt + qt/ξ∥22

}
,

wt+1 := arg minw

{
βSV-TV(w) + ξ2∥w − ut+1 − qt/ξ∥22

}
,

qt+1 = qt − ξ(wt+1 − ut+1).
(3.18)

We first consider the u-subproblem in (3.18). Since F(u, vn+1) is strictly convex in u and the
additional terms are quadratic, the objective function admits a unique minimizer. However, due to the
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complexity of the data-fidelity term, a closed-form solution is not available. This subproblem can be
efficiently solved using Newton’s method, with the following update formula:

u j+1 = u j −
1 − ( f − vn+1) exp(−u j) + δ(u j − un) + τ(u j − h) + ξ(u j − wt + qt/ξ)

( f − vn+1) exp(−u j) + δ + τ + ξ
, (3.19)

where j denotes the iteration index of Newton’s method.
Next, we consider the w-subproblem in (3.18). Using the orthogonal matrix

P =


1
√

2
I − 1

√
2
I 0

1
√

6
I 1

√
6
I − 2

√
6
I

1
√

3
I 1

√
3
I 1

√
3
I

 ,
where I ∈ RN1×N2 is the identity matrix, we define z = Pw and s = P(ut+1 + qt/ξ). Under this
transformation, the w-subproblem in (3.18) can be equivalently rewritten as

min
z

ξ

2
∥z − s∥22 + β (∥∇ ẑ∥1 + α∥∇z3∥1), (3.20)

where ẑ = (z1, z2) and ∇ ẑ = (∇z1,∇z2). To handle the nondifferentiable terms, we introduce auxiliary
variables d1 and d2, thereby transforming problem (3.20) into the following constrained form:

min
z,d1,d2

ξ

2
∥z − s∥22 + β (∥d1∥1 + α∥d2∥1), subject to: d1 = ∇ ẑ, d2 = ∇z3. (3.21)

The ALF corresponding to problem (3.21) is given by

Lθ(z, d1, d2; b1, b2) =
ξ

2
∥z − s∥22 + β (∥d1∥1 + α∥d2∥1) − ⟨b1, d1 − ∇ ẑ⟩ +

θ

2
∥d1 − ∇ ẑ∥22

−⟨b2, d2 − ∇z3⟩ +
θ

2
∥d2 − ∇z3∥

2
2,

where b1 ∈ (RN1×N2×3×)2 and b2 ∈ R
N1×N2×3 are the Lagrangian multipliers and θ > 0 is a penalty

parameter. Applying the ADMM to problem (3.21) yields the following iterative updates:
z j+1 := arg minzLθ(z, d j

1, d
j
2; b j

1, b
j
2),

(d j+1
1 , d

j+1
2 ) := arg mind1,d2 Lθ(z j+1, d1, d2; b j

1, b
j
2),

b j+1
1 = b j

1 − θ(d j+1
1 − ∇ ẑ j+1),

b j+1
2 = b j

2 − θ(d j+1
2 − ∇z j+1

3 ).

(3.22)

The z-subproblem in (3.22) can be equivalently expressed as

min
z

ξ

2
∥z − s∥22 +

θ

2
∥∇ ẑ − d j

1 + b j
1/θ∥

2
2 +
θ

2
∥∇z3 − d j

2 + b j
2/θ∥

2
2.

Applying the first-order optimality condition, z satisfies the following normal equations:

(ξ + θ∇T∇)zi = ξsi + θ∇
T (d j

1,i − b j
1,i/θ), i = 1, 2, (3.23)

(ξ + θ∇T∇)z3 = ξs3 + θ∇
T (d j

2 − b j
2/θ),
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where ∇T = −div and the discrete divergence operator is defined by

div(s1, s2) = ∂x1 s1 + ∂x2 s2.

Assuming periodic boundary conditions, the linear system in (3.23) can be efficiently solved in closed
form using the two-dimensional discrete Fourier transform (DFT).

The (d1, d2)-subproblem in (3.22) can be decomposed into two independent subproblems, one for
each variable. Specifically, the subproblems for d1 and d2 are given by

d j+1
1 := arg min

d1
β∥d1∥1 +

θ

2
∥d1 − (∇ ẑ j+1 + b j

1/θ)∥
2
2,

d j+1
2 := arg min

d2
αβ∥d2∥1 +

θ

2
∥d2 − (∇z3

j+1 + b j
2/θ)∥

2
2.

These are standard ℓ1-regularized quadratic problems, whose solutions are given by the
soft-thresholding (shrinkage) operator. Thus, we have

d j+1
1 = shrink

(
∇ ẑ j+1 +

b j
1

θ
,
β

θ

)
, d j+1

2 = shrink
(
∇z j+1

3 +
b j

2

θ
,
αβ

θ

)
, (3.24)

where shrink(·) is defined elementwise as

shrink(a, b)s =
as

∥as∥2
·max(∥as∥2 − b, 0), s ∈ Ω.

The overall algorithm for solving the proposed model (3.3) is summarized in Algorithm 1.

Algorithm 1 Solving the proposed model (3.3).
1: Input: choose the parameters λ, µ, α, β, δ, τ, ξ, θ > 0, patch size P, similar patch number c, window

size L, stride S , maximum iteration numbers Ñout, Ñu,out, Ñu,in, Ñu,Newton, Ñz, tolerance values tolout,
tolu,out, tolu,in, tolu,Newton, tolz.

2: Initialization: set u0 = log(max( f , ϵ)) with ϵ > 0, α0
G = 0, v0 = 0, p0 = q0 = 0, b0

i = 0 (i = 1, 2).
3: repeat
4: Compute vn+1 as in (3.10).
5: Compute un+1 by iterating ℓ = 1, 2, ..., Ñu,out:
6: Compute xℓ+1 = (DG ◦ αG)ℓ+1 with DGk and αGk obtained from (3.15) and (3.16).
7: Compute uℓ+1 by iterating t = 1, 2, ..., Ñu,in:
8: Compute ut+1 using Newton’s method as in (3.19),
9: Let s = P(ut+1 + qt/ξ),

10: Compute zt+1 by iterating j = 1, 2, ..., Ñz:
11: compute z j+1 by solving (3.23) using DFT,
12: compute d j+1

1 and d j+1
2 as in (3.24),

13: compute b1 and b2 as in (3.22),
14: Let wt+1 = PT zt+1.
15: Update qt+1 = qt − ξ(wt+1 − ut+1),
16: Update pℓ+1 = pℓ − τ(uℓ+1 − xℓ+1).
17: until a stopping criterion is satisfied.
18: Output: restored image eu.
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4. Experimental results

This section presents the experimental results of the proposed model and compares its performance
with several existing approaches, including L2-SVTV [26], AA-SVTV [13], and SO-L2-SVTV [23].
These methods incorporate SVTV with the L2 data-fidelity term, the term in (2.2), and the term in (2.3),
respectively. For a fair comparison, L2-SVTV and AA-SVTV were implemented using a variable
splitting strategy and solved via the ADMM framework. All numerical experiments were performed
in MATLAB R2025a on a 64-bit Windows 11 workstation equipped with a 3.6 GHz Intel CPU and 64
GB of RAM.

4.1. Implementation settings

We evaluate each model on 11 natural images and 7 SAR images, as shown in Figure 2. The
intensity range of all original images is assumed to be [0, 255]. In our experiments, we consider six
mixed noise configurations (M, σ), where the multiplicative Gamma noise takes values M = 20, 10,
5, and the additive Gaussian noise levels are σ = 20 and 30. Because the Gaussian component can
introduce nonpositive pixel values in the observed data f and the AA-SVTV model requires strictly
positive inputs, we define f̃ = max( f , 10−5) and use f̃ only for AA-SVTV. For all other models,
including the proposed one, we use the original observed data f without modification. All numerical
results are provided in the supplementary material available at https://buly.kr/8Ix7tH0. Source
code is available at https://github.com/mjungHUFS/SO-L2-SVTV-GSR.

(a) Airplane (b) Baboon (c) Barbara (d) Boat (e) Butterfly (f) Castle

(g) Cathedral (h) Hill (i) Lena (j) Policemen (k) Statues (l) SAR1

(m) SAR2 (n) SAR3 (o) SAR4 (p) SAR5 (q) SAR6 (r) SAR7

Figure 2. Original test images. (a)–(d), (i): 256 × 256, (e): 321 × 481, (f), (g), (j), (k):
481 × 321, (h): 201 × 266, (k): 278 × 350, (l)–(r): 512 × 512.

To assess the performance of the models, we compute the peak signal-to-noise ratio (PSNR):

PSNR(u,u∗) = 10 log10

(
3N1N2 × 2552

∥u − u∗∥22

)
,
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where u and u∗ denote the restored and original images, respectively, and N1N2 is the total number of
pixels. We also evaluate the structural similarity (SSIM) index [60], a perceptually motivated metric
that accounts for structural information in the visual scene. For color images, we report the SSIM value
obtained by averaging the SSIM scores computed over the three RGB channels. For each model, all
parameters are tuned to achieve the best restoration results with respect to both visual fidelity and the
quantitative PSNR and SSIM metrics.

All models are terminated once the following stopping condition is satisfied:

∥giter − giter−1∥2

∥giter∥2
< tol or n > Ñ,

where g ∈ {u, z}, tol > 0 denotes the prescribed tolerance and Ñ > 0 is the maximum number of
iterations. For the proposed model, we set tol = 5 × 10−3 and Ñ = 15 for the outer loop. To mitigate
the additional computational cost introduced by the GSR module, the number of outer iterations for
u is restricted to Ñu,out = 1, which is sufficient to maintain reconstruction quality. For the inner loops
associated with u, we set Ñu,in = Ñu,newton = 5, while the inner loop for z is limited to Ñz = 10. All inner
loops use a tolerance of 10−3. For the SO-L2-SVTV model, we adopt the stopping criteria reported
in [23], using tol = 10−3 and a maximum of Ñ = 100 outer iterations; details of the inner loop settings
can be found in the cited reference. For the L2-SVTV and AA-SVTV models, we set tol = 10−4 and
Ñ = 200 for the outer loop. The inner loop of the AA-SVTV model employs the same tolerance and
iteration limits as those used in [23]. For the SO-L2-SVTV and the proposed models, we initialize
u as u0 = log(max( f , 1)), whereas for the L2-SVTV and AA-SVTV models, we set u0 = f and f̃ ,
respectively.

The parameter settings for the proposed model are summarized as follows. For the GSR
representation, the image patch size is set to 6 × 6 for natural images except Statues and to 5 × 5 for
SAR images and Statues. The number of similar patches c is fixed at 80, resulting in a group matrix of
size 108 × 80 or 75 × 80. The search window is set to 20 × 20 pixels, and the overlap between
adjacent patches is S = 4 pixels. The GSR regularization parameters µ and τ control sparsity strength.
In general, larger values of µ or τ produce smoother reconstructions, although increasing τ also
increases the computational cost. To balance reconstruction quality and efficiency, we fix τ = 1. The
SVTV parameter α is set to 0.6 for all experiments. The parameter λ, which penalizes the Gaussian
noise component, also affects smoothness: smaller values of λ yield smoother restored images. In our
experiments, we use λ = 0.001 by default, except for (M, σ) = (20, 30) and (10, 30), where
λ = 0.0005, and (M, σ) = (5, 20), where λ = 0.002. The regularization parameters µ and β have a
primary impact on restoration quality. The parameter β, governing the SVTV strength, is selected
from {0.1, 0.2, 0.3} based on noise level and image characteristics. For instance, we use β ∈ {0.1, 0.2}
for (M, σ) = (20, 20) and (20, 30); β = 0.2 for (M, σ) = (10, 20); β ∈ {0.2, 0.3} for (M, σ) = (10, 30);
β = 0.3 for (M, σ) = (5, 20) and (5, 30). The optimal value of µ is influenced by the noise level, the
characteristics of the underlying image, and the selected value of β. In general, µ is chosen from the
range {0.01, 0.02, . . . , 0.12}. The specific (µ, β) values used in each experiment are provided in the
corresponding figure. Finally, we set the proximal parameter δ to a small value, 10−6, since a small δ
allows the iterates to move more freely along descent directions, reducing the damping effect of the
proximal term and often leading to faster practical convergence. The ADMM parameters ξ and θ,
used for updating u and z, respectively, are fixed at 1.
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4.2. Denoising results on natural color images

Figure 3 presents the denoising results of all models for noise levels M = 20, 10, 5 with σ = 20.
AA-SVTV reduces the mixed noise to some extent but introduces artifacts, such as white or black dots
in the sky regions. It also tends to oversmooth dark areas, such as the lower part of the boat, particularly
at higher noise levels, which degrades the overall tone quality of the restored images. L2-SVTV
suppresses both noise types more effectively than AA-SVTV; however, it does not completely remove
noise in bright regions, such as the sky, and may produce erroneous color values as M increases. Dark
regions are also oversmoothed, similar to AA-SVTV. These effects are more evident in the zoomed-
in images shown in Figure 4. In contrast, SO-L2-SVTV effectively reduces noise in both dark and
bright regions while preserving structural details, such as the lines and lower parts of the boat. The
restored images exhibit improved visual quality compared to AA-SVTV and L2-SVTV, with better
overall tone preservation, highlighting the benefits of the data-fidelity term used in SO-L2-SVTV,
which is also incorporated in the proposed model. Nevertheless, SO-L2-SVTV exhibits staircasing
artifacts in smooth regions, particularly in the sky, a known limitation of TV-based regularization. The
proposed model, which incorporates GSR regularization, alleviates these artifacts while preserving
more image details and producing cleaner results than SO-L2-SVTV. This improvement also yields
the highest PSNR and SSIM values among all models. These results demonstrate the effectiveness of
combining the data-fidelity term with SVTV and GSR regularization for removing both multiplicative
and Gaussian noise.

(a) 16.68/0.3417 (b) 25.77/0.7692 (c) 25.41/0.7415 (d) 26.64/0.7846 (e) 27.18/0.8028

(a) 14.33/0.2840 (b) 24.33/0.7145 (c) 23.99/0.6826 (d) 25.52/0.7477 (e) 26.27/0.7766

(a) 11.73/0.2258 (b) 23.24/0.6582 (c) 22.03/0.5742 (d) 24.42/0.7088 (e) 25.09/0.7411

Figure 3. Denoising results at noise levels M = 20, 10, 5 (from top to bottom) and σ = 20.
(a) Data f ; (b) L2-SVTV; (c) AA-SVTV; (d) SO-L2-SVTV; (e) Proposed. Parameters (µ, β)
for (e) (from top to bottom): (0.02, 0.2), (0.04, 0.2), (0.06, 0.3).
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L2-SVTV AA-SVTV SO-L2-SVTV Propposed

Figure 4. Zoomed-in regions from Figure 3 for the noise level (M, σ) = (5, 20).

Figures 5 and 6 present the denoising results at high noise levels, specifically (M, σ) = (10, 30),
(5, 20), and (5, 30). Similar to the previous results, AA-SVTV exhibits artifacts, such as white dots
and color distortions in bright regions, which are visible in the wing area of Butterfly, the headscarf in
Barbara, and the sky and tower regions in Policemen. These issues are clearly visible in the
zoomed-in patches shown in Figure 7. L2-SVTV eliminates the white-dot artifacts but still fails to
adequately denoise bright regions, resulting in misleading color values. Both AA-SVTV and
L2-SVTV also oversmooth dark regions, including the textured background in Barbara and the tree
and grass areas in Policemen. In contrast, SO-L2-SVTV achieves more effective denoising across the
entire image, preserving details and textures while avoiding color artifacts, demonstrating the
advantage of the SO-L2 data-fidelity term. Nevertheless, it produces noticeable staircasing artifacts in
smooth regions, such as the background of Butterfly, the face area of Barbara, and the sky of
Policemen, caused by the SVTV regularization. The proposed model substantially reduces these
artifacts while further preserving textures, such as the headscarf in Barbara and the tree and tower
regions in Policemen, resulting in more natural-looking restored images. It also achieves significantly
higher PSNR and SSIM values compared to the other models. These results highlight the
effectiveness of incorporating GSR and collectively validate the superiority of the proposed model for
removing mixed multiplicative and Gaussian noise.

(a) 14.48/0.3332 (b) 22.92/0.7998 (c) 21.52/0.7624 (d) 23.41/0.8030 (e) 24.52/0.8518

(a) 12.44/0.1863 (b) 23.96/0.6172 (c) 22.93/0.5444 (d) 24.48/0.6625 (e) 25.51/0.7154

Figure 5. Denoising results at noise levels (M, σ) = (10, 30) (top) and (5, 20) (bottom). (a)
Data f ; (b) L2-SVTV; (c) AA-SVTV; (d) SO-L2-SVTV; (e) Proposed. Parameters (µ, β) for
(e): top-(0.07, 0.2); bottom-(0.07, 0.3).
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(a) 12.50/0.2276 (b) 21.70/0.6548 (c) 20.99/0.5973 (d) 22.49/0.6998 (e) 23.69/0.7447

Figure 6. Denoising results at noise level (M, σ) = (5, 30). (a) Data f ; (b) L2-SVTV; (c)
AA-SVTV; (d) SO-L2-SVTV; (e) Proposed. Parameters (µ, β) for (e): (0.08, 0.3).

L2-SVTV AA-SVTV SO-L2-SVTV Proposed

Figure 7. Zoom-in regions from Figures 5 and 6.

In Figure 8, we illustrate the effect of the v term in the proposed model by comparing the
reconstruction results obtained with and without this term at noise levels (M, σ) = (20, 30) and
(10, 30). When v = 0, the data-fidelity term requires f > 0; thus, we use the cropped data
f̃ = max( f , 10−5) in place of f . Even with this adjustment, the model without the v term fails to
adequately remove the mixed noise in dark regions. This deficiency is clearly visible in the upper sky,
clothing, and shadow regions in Policemen, the body areas in Statues, the lower part of the ship in
Boat, and the right-hand tree regions in Hill, as shown in the zoomed-in images in Figure 9. Although
increasing µ and β can reduce noise in these areas, doing so leads to excessive smoothing elsewhere,
thereby degrading the overall reconstruction quality. By contrast, the full proposed model, which
includes the v term, effectively suppresses mixed noise across both dark and bright regions. Even with
relatively small values of µ and β, the model adequately eliminates noise in dark areas, better
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preserving fine details and textures and achieving significantly higher PSNR and SSIM values. This
improvement is evident in the tower region in Policemen, the pebble areas in Statues, and the roof
regions in Hill. These enhancements arise because the v term explicitly extracts the Gaussian noise
component, facilitating more accurate removal of both noise types. Overall, the results highlight the
importance of the v term and validate the effectiveness of the proposed data-fidelity formulation in
properly separating multiplicative Gamma noise from additive Gaussian noise.

(a) 23.43/0.6587 (b) 25.32/0.8035 (a) 22.83/0.5968 (b) 24.73/0.7031

(a) 24.59/0.7043 (b) 25.69/0.7561 (a) 24.69/0.5824 (b) 26.01/0.6640

Figure 8. Effect of the v term in the data-fidelity term (3.2) of the proposed model. Top:
(M, σ) = (20, 30); bottom: (10, 30). (a) Without the v term (i.e., v = 0); (b) With the
v term. Parameters (µ, β) for (a): top-(0.1, 0.3), (0.04, 0.3); bottom-(0.08, 0.3), (0.14, 0.3).
Parameters (µ, β) for (b): top-(0.05, 0.2), (0.03, 0.2); bottom-(0.06, 0.2), (0.03, 0.3).

Figure 9. Zoomed-in regions from Figure 8. Top: without the v term; bottom: with the v
term.

Figure 10 illustrates the effect of the SVTV term in the proposed model and its complementary
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interaction with GSR at noise level (M, σ) = (10, 20). Specifically, we compare the proposed model
with and without the SVTV term, as well as the SO-L2-SVTV model. When the SVTV term is
removed, the proposed model reduces to a GSR-only regularization. This variant effectively preserves
textures and fine details but performs poorly in homogeneous regions, where unreliable patch
grouping leads to residual noise or oversmoothing. Typical artifacts include residual noise in the eye
regions and the left-hand black fur of Baboon, as well as oversmoothing in the face of Barbara and the
lips of Lena. In contrast, the SO-L2-SVTV model, which relies solely on local SVTV regularization,
effectively denoises homogeneous regions and preserves major edges. However, it tends to
oversmooth textured areas and introduces noticeable staircasing artifacts in smooth regions. By
jointly incorporating GSR and SVTV, the proposed model benefits from nonlocal texture preservation
and local piecewise-smooth regularization while mitigating their respective limitations. As a result, it
achieves improved visual quality across both textured and homogeneous regions, along with higher
PSNR and SSIM values. These results demonstrate the complementary roles of GSR and SVTV in
the proposed model.

(a) 25.94/0.7596 (b) 25.46/0.7164 (c) 26.69/0.7673

(a) 21.92/0.6389 (b) 21.99/0.5867 (c) 22.67/0.6499

(a) 26.27/0.7888 (b) 25.99/0.7621 (c) 27.43/0.8066

Figure 10. Effect of the SVTV term in the proposed model at noise level (M, σ) =
(10, 20). (a) Proposed model without the SVTV term; (b) SO-L2-SVTV; (c) Proposed model.
Parameters (µ, β) for (c) (from top to bottom): (0.05, 0.2), (0.03, 0.2), (0.06, 0.2).

In Figure 11, we illustrate the effects of the parameters λ, µ, and β at a noise level (M, σ) = (10, 30).
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The top row shows denoising results for β = 0.1 and µ ∈ {0.06, 0.07, 0.08, 0.09, 0.10}, while the middle
row shows results for β = 0.2 and µ ∈ {0.03, 0.04, 0.05, 0.06, 0.07}, with λ fixed at 0.0005 in both cases.
The bottom row illustrates the effect of varying λ ∈ {0.0001, 0.0002, 0.0005, 0.001, 0.002}, with (µ, β)
fixed at (0.05, 0.2). From the first two rows, it can be observed that increasing µ reduces noise but also
smooths fine details. Based on PSNR and SSIM values, the optimal µ is 0.08 for β = 0.1 and 0.05 for
β = 0.2. Increasing β leads to stronger smoothing, which slightly decreases PSNR values but enhances
noise suppression near edges, resulting in clearer edges and higher SSIM values. Considering both
visual quality and quantitative metrics, (µ, β) = (0.05, 0.2) is selected as the overall optimal setting.
From the bottom row, increasing λ preserves more image details, yielding higher PSNR values, but also
introduces additional noise, lowering SSIM values. The restored images for λ ∈ {0.0005, 0.001, 0.002}
appear visually similar, with correspondingly similar PSNR and SSIM values. Taking both quantitative
metrics into account, we select λ = 0.0005 as the optimal value. In practice, the choice of λ is less
critical than that of µ and β; for example, λ = 0.001 generally provides satisfactory denoising, though
minor adjustments may be needed depending on the noise level. By contrast, µ and β primarily govern
the overall smoothness of the restored image and are more sensitive, requiring careful tuning according
to the noise characteristics and image content.

24.77/0.7401 24.99/0.7463 25.05/0.7475 25.05/0.7473 25.00/0.7454
(0.06, 0.1) (0.07, 0.1) (0.08, 0.1) (0.09, 0.1) (0.1, 0.1)

24.71/0.7426 24.92/0.7506 24.93/0.7508 24.89/0.7503 24.83/0.7488
(0.03, 0.2) (0.04, 0.2) (0.05, 0.2) (0.06, 0.2) (0.07, 0.2)

24.31/0.7604 24.76/0.7560 24.93/0.7508 24.95/0.7486 24.90/0.7463
(λ = 0.0001) (λ = 0.0002) (λ = 0.0005) (λ = 0.001) (λ = 0.002)

Figure 11. Effect of the parameters λ, µ, and β at noise level (M, σ) = (10, 30). Top and
middle rows: λ = 0.0005 with varying (µ, β); bottom row: (µ, β) = (0.05, 0.2) with varying
λ. The best denoising result is obtained using (µ, β) = (0.05, 0.2) and λ = 0.0005.
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4.3. Denoising results on real SAR images

Figure 12 presents the denoising results on real SAR images at (M, σ) = (5, 20). These SAR
images contain numerous dark regions, such as trees and shadows, as well as bright regions, including
buildings, cars, and ships. Similar to the results observed for natural color images, AA-SVTV
introduces white artifacts in bright regions and tends to oversmooth dark regions. L2-SVTV reduces
the mixed noise more effectively; however, it still oversmooths dark areas and fails to fully denoise
bright regions, resulting in inaccurate color values. In contrast, SO-L2-SVTV successfully suppresses
mixed noise in both dark and bright regions while better preserving structural details, leading to
higher PSNR and SSIM values compared to AA-SVTV and L2-SVTV. The proposed model further
enhances the denoising performance by mitigating staircasing artifacts, effectively removing mixed
noise, and preserving fine details. As a result, it produces cleaner images than SO-L2-SVTV and
achieves the highest PSNR and SSIM values. These results demonstrate the superior denoising
capability of the proposed model, even when applied to real SAR images.

(a) 15.86/0.3064 (b) 24.53/0.6636 (c) 23.91/0.6324 (d) 25.31/0.7391 (e) 25.85/0.7657

(a) 15.73/0.3792 (b) 24.19/0.6776 (c) 23.33/0.6361 (d) 25.15/0.7657 (e) 25.72/0.7898

(a) 15.56/0.3366 (b)24.47/0.6740 (c) 23.78/0.6468 (d) 25.56/0.7612 (e) 26.21/0.7874

(a) 14.64/0.2431 (b) 24.91/0.6458 (c) 24.36/0.6270 (d) 25.76/0.7117 (e) 26.29/0.7397

Figure 12. Zoomed-in regions of the restored images at noise level (M, σ) = (5, 20). (a) Data
f with zoomed-in regions; (b) L2-SVTV; (c) AA-SVTV; (d) SO-L2-SVTV; (e) Proposed.
Parameters (µ, β) for (e) (from top to bottom): (0.07, 0.3), (0.09, 0.3), (0.08, 0.3), (0.07, 0.3).
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In Figure 13, we compare the proposed model with a BM3D-based method at (M, σ) = (5, 30).
Since SAR-BM3D [7] cannot be directly applied to images with additive Gaussian noise, we first use
color BM3D (CBM3D) [61] to suppress the Gaussian noise and then apply SAR-BM3D to each RGB
channel to remove multiplicative Gamma noise. We refer to this as CBM3D+SAR-BM3D.
CBM3D+SAR-BM3D effectively reduces the mixed noise while preserving edges and structural
details; however, it introduces color artifacts near edges, as shown in the zoomed-in regions in
Figure 14. This results in lower PSNR and SSIM values compared to the proposed model. In contrast,
the proposed model produces well-denoised images with preserved details and without the color
artifacts observed in CBM3D+SAR-BM3D. Moreover, CBM3D+SAR-BM3D requires precise
knowledge of the noise levels σ and M, whereas the proposed model achieves effective denoising
without this information by setting γ = 1. Overall, these results highlight the superior denoising
performance and robustness of the proposed model compared to the BM3D-based approach.

(a) 24.24/0.6862 (b) 24.88/0.7073 (a) 22.88/0.6912 (b) 23.88/0.7372

(a) 26.40/0.7475 (b) 26.95/0.7622 (a) 24.69/0.6493 (b) 25.91/0.7080

Figure 13. Comparison of the proposed model with CBM3D+SAR-BM3D at noise level
(M, σ) = (5, 30). (a) CBM3D+SAR-BM3D; (b) Proposed with γ = 1. Parameters (µ, β) for
(b): top-(0.12, 0.3), (0.1, 0.3); bottom-(0.11, 0.3), (0.08, 0.3).

Figure 14. Zoomed-in regions from Figure 13. Top: CBM3D+SAR-BM3D; bottom:
Proposed.
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Figure 15 illustrates the evolution of the PSNR values, together with the relative errors of u and v
generated by the proposed model, as functions of the outer iteration index n, under noise levels
(M, σ) = (10, 20) and (5, 20). As the iteration proceeds, the relative errors of both u and v decrease
monotonically, indicating stable and consistent updates of the estimated variables. Meanwhile, the
PSNR values increase rapidly in the early iterations and gradually converge to steady plateaus,
reflecting the progressive improvement and stabilization of the reconstructed images. This
convergence behavior demonstrates the numerical stability of the proposed algorithm and the
consistent enhancement of reconstruction quality across iterations. Moreover, the observed monotonic
error decay and PSNR stabilization provide empirical evidence supporting the theoretical
convergence guarantees established in the analysis.
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Figure 15. Plots of PSNR and relative errors versus the outer iteration n at noise levels
(M, σ) = (10, 20) (top) and (5, 20) (bottom). (a) PSNR values of the restored images exp(un);
(b) log

(
∥un − un−1∥2/∥un∥2

)
; (c) log

(
∥vn − vn−1∥2/∥vn∥2

)
.

In Tables 1 and 2, we report the PSNR and SSIM values of all models at noise levels M = 20, 10, 5
and σ = 20, 30. The proposed model produces similar PSNR and SSIM values whether γ = (M−1)/M
or γ = 1 in the data-fidelity term, indicating that high-quality results can be achieved without prior
knowledge of the multiplicative noise level. The parameter γ regulates the relative contribution of the
multiplicative noise component. Larger γ values enforce the multiplicative likelihood more strongly,
yielding smoother reconstructions and higher PSNR but slightly lower SSIM due to suppression of
fine textures and weak edges; smaller γ values preserve more structural detail while retaining some
residual noise. In all experiments, we adopt γ = (M − 1)/M according to the assumed number of looks
in the Gamma noise model, although comparable results can be obtained with γ = 1. Despite these
variations, the proposed method consistently achieves the highest PSNR and SSIM values across all
noise levels, confirming its robustness and superiority over existing approaches.
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Table 1. PSNR and SSIM values for all models at noise levels M = 20, 10, 5 and σ = 20.

Image Data f L2-SVTV AA-SVTV SO-L2-SVTV Proposed Proposed
(γ = M−1

M ) (γ = 1)
M = 20, σ = 20

Airplane 14.78/0.2323 25.18/0.7670 24.78/0.7360 25.68/0.8065 26.85/0.7942 26.90/0.7943
Baboon 16.81/0.4765 22.37/0.5986 22.28/0.6411 22.89/0.6465 23.94/0.7127 23.97/0.7106
Barbara 17.27/0.3215 25.92/0.7272 25.09/0.6860 26.46/0.7578 28.05/0.8111 28.06/0.8127

Boat 16.68/0.3417 25.77/0.7692 25.41/0.7415 26.64/0.7846 27.18/0.8028 27.20/0.7986
Butterfly 17.67/0.4365 24.66/0.8526 23.28/0.7831 25.43/0.8533 26.58/0.8940 26.61/0.8938

Castle 17.10/0.2453 27.29/0.7921 26.01/0.7527 27.85/0.8170 28.47/0.8409 28.46/0.8425
Cathedral 16.85/0.3125 25.35/0.7557 24.95/0.7451 25.93/0.7923 26.56/0.7833 26.53/0.7825

Hill 17.96/0.3464 26.46/0.6709 25.15/0.6290 27.20/0.7286 27.52/0.7280 27.58/0.7292
Lena 16.66/0.2803 26.55/0.7670 25.61/0.7623 26.92/0.7840 28.64/0.8322 28.74/0.8358

Policemen 17.76/0.3812 24.81/0.7848 24.03/0.7334 25.28/0.8015 26.62/0.8397 26.63/0.8442
Statues 18.15/0.4718 24.55/0.6498 24.78/0.7159 25.40/0.7516 25.86/0.7775 25.94/0.7788
SAR1 19.56/0.4575 26.63/0.7538 26.73/0.7721 27.35/0.8116 27.87/0.8222 27.90/0.8246
SAR2 19.28/0.5802 25.33/0.7779 25.33/0.7960 26.20/0.8394 26.72/0.8516 26.74/0.8502
SAR3 19.55/0.4435 26.51/0.7532 26.66/0.7714 27.19/0.8028 27.84/0.8186 27.86/0.8198
SAR4 20.07/0.3557 28.46/0.7885 28.05/0.7815 29.07/0.8274 29.72/0.8405 29.80/0.8437
SAR5 19.48/0.5255 26.38/0.7771 26.11/0.7863 27.10/0.8288 27.68/0.8451 27.72/0.8444
SAR6 19.36/0.4766 26.82/0.7767 26.52/0.7831 27.53/0.8241 28.23/0.8400 28.31/0.8405
SAR7 18.78/0.3875 27.13/0.7506 27.05/0.7578 27.89/0.7938 28.34/0.8074 28.42/0.8083

Average 17.99/0.3929 25.90/0.7506 25.43/0.7430 26.56/0.7917 27.37/0.8134 27.41/0.8140
M = 10, σ = 20

Airplane 12.19/0.1786 23.96/0.7178 22.99/0.6035 24.56/0.7583 25.36/0.7484 25.43/0.7477
Baboon 14.48/0.3836 21.45/0.5212 21.16/0.5527 21.99/0.5867 22.67/0.6499 22.75/0.6432
Barbara 15.03/0.2545 25.00/0.6732 24.05/0.6210 25.46/0.7164 26.69/0.7673 26.78/0.7700

Boat 14.33/0.2840 24.33/0.7145 23.99/0.6826 25.52/0.7477 26.27/0.7766 26.35/0.7690
Butterfly 15.53/0.3781 23.21/0.8136 22.12/0.7389 24.19/0.8288 25.17/0.8722 25.22/0.8709

Castle 14.81/0.1936 25.81/0.7595 24.73/0.6957 26.70/0.7992 27.59/0.8201 27.69/0.8239
Cathedral 14.55/0.2492 23.88/0.7051 23.62/0.6813 24.56/0.7485 25.59/0.7585 25.61/0.7572

Hill 15.83/0.2819 25.20/0.6045 24.11/0.5585 26.40/0.6971 26.77/0.7003 26.91/0.7047
Lena 14.36/0.2248 25.46/0.7277 24.54/0.7003 25.99/0.7621 27.43/0.8066 27.50/0.8053

Policemen 15.63/0.3298 23.00/0.7176 22.73/0.6760 24.22/0.7754 25.63/0.8230 25.73/0.8291
Statues 16.11/0.3997 23.30/0.5692 23.48/0.6486 24.53/0.7112 24.97/0.7449 25.15/0.7443
SAR1 17.97/0.4012 25.55/0.7081 25.52/0.7248 26.60/0.7932 27.06/0.8064 27.15/0.8075
SAR2 17.56/0.5143 24.22/0.7276 24.09/0.7406 25.31/0.8145 25.87/0.8338 25.99/0.8311
SAR3 17.94/0.3825 25.75/0.7247 25.52/0.7225 26.44/0.7806 27.03/0.8017 27.10/0.8013
SAR4 18.69/0.3095 27.53/0.7593 27.03/0.7462 28.42/0.8123 28.90/0.8273 29.03/0.8294
SAR5 17.85/0.4620 25.31/0.7307 24.97/0.7338 26.19/0.8018 26.85/0.8248 26.90/0.8188
SAR6 17.70/0.4143 25.64/0.7271 25.36/0.7320 26.66/0.7982 27.41/0.8199 27.48/0.8164
SAR7 16.93/0.3187 26.03/0.6993 25.86/0.7056 26.92/0.7591 27.45/0.7785 27.55/0.7763

Average 15.97/0.3311 24.70/0.7000 24.22/0.6814 25.59/0.7606 26.37/0.7867 26.46/0.7859
M = 5, σ = 20

Airplane 9.44/0.1292 22.72/0.6373 20.93/0.4727 23.19/0.7187 23.60/0.6686 23.69/0.6683
Baboon 11.87/0.2870 20.51/0.4307 19.86/0.3828 21.15/0.5334 21.54/0.5594 21.61/0.5502
Barbara 12.44/0.1863 23.96/0.6172 22.93/0.5444 24.48/0.6625 25.51/0.7154 25.58/0.7147

Boat 11.73/0.2258 23.24/0.6582 22.03/0.5742 24.42/0.7088 25.09/0.7411 25.16/0.7262
Butterfly 13.01/0.3061 21.45/0.7582 20.67/0.7209 22.76/0.7923 23.55/0.8333 23.61/0.8310

Castle 12.25/0.1405 24.51/0.7193 23.01/0.6301 25.42/0.7589 26.14/0.7789 26.18/0.7759
Cathedral 11.92/0.1831 22.67/0.6577 22.01/0.5928 23.41/0.7008 24.17/0.7084 24.24/0.7083

Hill 13.40/0.2136 24.31/0.5578 22.97/0.4829 25.45/0.6539 25.87/0.6631 25.99/0.6660
Lena 11.69/0.1686 24.04/0.6861 22.82/0.6063 24.75/0.7251 25.99/0.7579 26.07/0.7555

Policemen 13.14/0.2699 22.00/0.6664 21.28/0.6102 22.94/0.7346 24.17/0.7778 24.21/0.7777
Statues 13.71/0.3143 22.24/0.4973 21.81/0.5489 23.54/0.6657 23.66/0.6869 23.91/0.6867
SAR1 15.89/0.3277 24.39/0.6576 23.88/0.6440 25.28/0.7483 25.84/0.7714 25.86/0.7650
SAR2 15.41/0.4256 23.02/0.6664 22.16/0.6116 24.00/0.7666 24.58/0.7958 24.70/0.7883
SAR3 15.86/0.3064 24.53/0.6636 23.91/0.6324 25.31/0.7391 25.85/0.7657 25.92/0.7610
SAR4 16.78/0.2516 26.46/0.7220 25.63/0.6890 27.33/0.7827 27.90/0.8002 27.95/0.7997
SAR5 15.73/0.3792 24.19/0.6776 23.33/0.6361 25.15/0.7657 25.72/0.7898 25.73/0.7771
SAR6 15.56/0.3366 24.47/0.6740 23.78/0.6468 25.56/0.7612 26.21/0.7874 26.31/0.7813
SAR7 14.64/0.2431 24.91/0.6458 24.36/0.6270 25.76/0.7117 26.29/0.7397 26.40/0.7366

Average 13.58/0.2608 23.53/0.6441 22.63/0.5918 24.44/0.7183 25.09/0.7412 25.17/0.7372
* The bolded values denote the best denoising performance.

AIMS Mathematics Volume 11, Issue 2, 3920–3956.



3950

Table 2. PSNR and SSIM values for all models at noise levels M = 20, 10, 5 and σ = 30.

Image Data f L2-SVTV AA-SVTV SO-L2-SVTV Proposed Proposed
(γ = M−1

M ) (γ = 1)
M = 20, σ = 30

Airplane 13.88/0.2034 24.76/0.7609 23.59/0.6518 25.23/0.7865 26.13/0.7963 26.20/0.7964
Baboon 15.45/0.4003 22.12/0.5847 21.26/0.5330 22.37/0.6225 23.00/0.6600 23.07/0.6556
Barbara 15.79/0.2542 25.28/0.6975 25.49/0.7043 24.33/0.6573 26.80/0.7602 26.73/0.7586

Boat 15.37/0.2870 25.04/0.7431 23.90/0.6895 25.63/0.7420 26.13/0.7641 26.08/0.7577
Butterfly 16.06/0.3756 23.83/0.8290 22.09/0.7885 24.30/0.8053 25.32/0.8675 25.19/0.8664

Castle 15.68/0.1921 26.55/0.7917 25.60/0.7481 26.63/0.7859 27.11/0.8123 27.02/0.8110
Cathedral 15.48/0.2589 24.70/0.7341 24.26/0.6992 24.82/0.7559 25.56/0.7539 25.50/0.7521

Hill 16.24/0.2590 25.64/0.6325 24.75/0.5905 26.15/0.6701 26.44/0.6713 26.47/0.6747
Lena 15.33/0.2281 26.11/0.7495 24.42/0.7025 26.12/0.7584 27.61/0.8062 27.55/0.8053

Policemen 16.12/0.3086 23.65/0.7474 23.34/0.7067 23.83/0.7394 25.32/0.8035 25.24/0.8024
Statues 16.39/0.3651 23.81/0.6046 24.03/0.6685 24.32/0.6843 24.73/0.7031 24.75/0.7000
SAR1 17.27/0.3461 25.22/0.6879 25.39/0.7140 25.67/0.7416 26.35/0.7530 26.45/0.7614
SAR2 17.10/0.4663 24.12/0.7196 24.22/0.7398 24.80/0.7809 25.45/0.8044 25.50/0.8045
SAR3 17.26/0.3386 25.25/0.6949 25.48/0.7174 25.66/0.7344 26.48/0.7598 26.46/0.7646
SAR4 17.56/0.2516 27.27/0.7445 26.76/0.7291 27.61/0.7736 28.20/0.7903 28.21/0.7949
SAR5 17.22/0.4088 25.21/0.7237 24.99/0.7387 25.51/0.7641 26.36/0.7956 26.37/0.7946
SAR6 17.16/0.3677 25.26/0.7069 25.39/0.7362 25.96/0.7626 26.93/0.7940 26.93/0.7937
SAR7 16.79/0.2978 25.90/0.6902 26.15/0.7138 26.53/0.7349 27.16/0.7558 27.18/0.7566

Average 16.23/0.3116 24.98/0.7135 24.51/0.6984 25.30/0.7389 26.17/0.7695 26.16/0.7695
M = 10, σ = 30

Airplane 11.66/0.1619 23.67/0.7185 22.58/0.5773 24.15/0.7629 24.93/0.7508 25.06/0.7508
Baboon 13.65/0.3345 21.29/0.5082 20.46/0.4369 21.59/0.5499 22.24/0.6064 22.29/0.5925
Barbara 14.06/0.2083 24.75/0.6601 23.80/0.6081 24.91/0.6789 25.55/0.7100 25.47/0.7058

Boat 13.51/0.2439 24.01/0.7032 23.00/0.6415 24.99/0.7205 25.69/0.7561 25.70/0.7441
Butterfly 14.48/0.3332 22.92/0.7998 21.52/0.7624 23.41/0.8030 24.52/0.8518 24.44/0.8485

Castle 13.94/0.1582 25.54/0.7546 24.51/0.7018 26.00/0.7684 26.58/0.7984 26.56/0.7985
Cathedral 13.66/0.2141 23.59/0.6936 23.12/0.6513 24.09/0.7275 24.71/0.7346 24.69/0.7322

Hill 14.73/0.2200 25.10/0.6006 23.95/0.5330 25.73/0.6548 26.01/0.6640 26.07/0.6633
Lena 13.47/0.1888 24.99/0.7200 23.73/0.6653 25.38/0.7456 26.73/0.7860 26.80/0.7865

Policemen 14.57/0.2739 22.74/0.7070 22.30/0.6608 23.14/0.7258 24.68/0.7837 24.65/0.7857
Statues 14.92/0.3164 23.05/0.5546 23.06/0.6093 23.76/0.6560 24.01/0.6818 24.27/0.6828
SAR1 16.25/0.3099 24.88/0.6754 24.68/0.6834 25.25/0.7282 25.62/0.7389 25.82/0.7457
SAR2 15.99/0.4212 23.72/0.7039 23.30/0.6987 24.27/0.7640 24.77/0.7891 24.93/0.7848
SAR3 16.24/0.3001 24.71/0.6663 24.72/0.6775 25.25/0.7188 25.83/0.7428 25.83/0.7435
SAR4 16.72/0.2262 26.69/0.7243 26.14/0.7076 27.08/0.7635 27.54/0.7803 27.65/0.7839
SAR5 16.19/0.3678 24.42/0.6820 24.19/0.6942 25.08/0.7472 25.70/0.7791 25.82/0.7738
SAR6 16.09/0.3289 24.64/0.6764 24.63/0.6963 25.36/0.7393 26.28/0.7793 26.41/0.7764
SAR7 15.54/0.2561 25.32/0.6641 25.35/0.6763 26.08/0.7191 26.56/0.7383 26.57/0.7346

Average 14.76/0.2702 24.22/0.6785 23.61/0.6490 24.75/0.7207 25.44/0.7484 25.50/0.7463
M = 5, σ = 30

Airplane 9.13/0.1199 22.57/0.6652 20.81/0.4568 23.12/0.7106 23.58/0.6807 23.74/0.6795
Baboon 11.38/0.2569 20.34/0.4152 19.70/0.3611 20.90/0.5215 21.23/0.5324 21.31/0.5124
Barbara 11.92/0.1575 23.91/0.6158 22.88/0.5491 24.24/0.6489 25.06/0.6854 25.13/0.6903

Boat 11.24/0.1964 22.62/0.6449 21.81/0.5694 24.00/0.6830 24.61/0.7207 24.74/0.7048
Butterfly 12.40/0.2774 21.15/0.7421 20.43/0.7070 22.47/0.7634 23.30/0.8173 23.24/0.8128

Castle 11.73/0.1202 24.26/0.7219 22.95/0.6346 25.01/0.7484 25.72/0.7565 25.76/0.7650
Cathedral 11.43/0.1631 22.61/0.6501 21.94/0.5847 23.12/0.6865 23.89/0.6942 23.98/0.6928

Hill 12.71/0.1734 24.15/0.5495 22.92/0.4744 25.07/0.6253 25.26/0.6224 25.41/0.6303
Lena 11.23/0.1464 24.05/0.6792 22.76/0.6093 24.54/0.7166 25.72/0.7499 25.72/0.7447

Policemen 12.50/0.2276 21.70/0.6548 20.99/0.5973 22.49/0.6998 23.69/0.7447 23.66/0.7484
Statues 12.99/0.2567 22.45/0.5325 21.73/0.5198 23.11/0.6242 23.23/0.6362 23.42/0.6294
SAR1 14.75/0.2609 24.18/0.6440 23.57/0.6220 24.68/0.7070 25.02/0.7154 24.88/0.7073
SAR2 14.40/0.3583 22.78/0.6525 21.85/0.5926 23.14/0.7087 23.94/0.7553 23.88/0.7372
SAR3 14.73/0.2504 24.28/0.6528 23.47/0.6060 24.54/0.6921 25.10/0.7190 25.03/0.7140
SAR4 15.41/0.1912 26.00/0.6999 25.20/0.6657 26.60/0.7484 26.94/0.7557 26.95/0.7622
SAR5 14.64/0.3118 23.71/0.6484 22.92/0.6091 24.37/0.7203 24.98/0.7506 24.82/0.7293
SAR6 14.51/0.2746 24.17/0.6565 23.39/0.6179 24.75/0.7149 25.47/0.7488 25.41/0.7375
SAR7 13.78/0.2038 24.67/0.6310 24.18/0.6078 25.27/0.6803 25.77/0.7097 25.91/0.7080

Average 12.83/0.2193 23.31/0.6365 22.42/0.5769 23.97/0.6889 24.58/0.7108 24.61/0.7059
* The bolded values denote the best denoising performance.
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4.4. Algorithm complexity and computational cost

The computational complexity of the proposed model is dominated by the GSR operations
performed on overlapping patches of size P, together with pixel-wise data-fidelity and SVTV
computations. Let N̂ = N1N2 denote the total number of image pixels and S the patch stride. The total
number of patches is approximately N ≈ N̂/S 2. For each patch, the average cost of searching for
similar patches is denoted by Ts. The SVD of the grouped patch matrix of size 3P × c has a
computational cost of O(3P · c ·m) per patch, where m = min(3P, c). Sparse coding and reconstruction
reduce to multiplying the unitary dictionary DGk ∈ R

3P×c×m by the coefficient vector αGk ∈ R
m, which

also requires O(3P · c · m) operations per patch. Including pixel-wise operations such as data-fidelity
and SVTV computation, the overall complexity per iteration can be expressed as

O
(

N̂
S 2 (Ts + 3P · c · m) + N̂

)
.

Since S is a small fixed constant, the complexity simplifies to

O
(
N̂(Ts + 3P · c · m)

)
,

indicating that the GSR operations dominate the total computation.
The computational costs of all methods are reported in Table 3, particularly for the noise level

(M, σ) = (10, 20). For the proposed model, the total number of outer iterations is also indicated.
Although the proposed model achieves the best denoising performance, it has the highest
computational cost, mainly due to the nonlocal patch search, the SVDs of grouped patches, and the
subsequent sparse coding and reconstruction of each group. These operations dominate the
computational complexity but can be efficiently parallelized, offering the potential for substantial
runtime reduction. Future work could focus on improving efficiency through approximate or
reduced-complexity nonlocal patch search and more efficient implementations of both SVD and
sparse coding.

Table 3. Computational time (in seconds) for all models at noise level (M, σ) = (10, 20).

Image Image size L2-SVTV AA-SVTV SO-L2-SVTV Proposed (Ñout)
Airplane 256 × 256 1.54 5.26 0.42 44.53 (6)
Baboon 256 × 256 1.77 5.31 0.52 59.23 (8)
Barbara 256 × 256 1.54 5.33 0.51 77.53 (9)

Boat 256 × 256 1.78 5.32 0.89 106.71 (12)
Butterfly 321 × 481 1.47 4.60 0.47 59.99 (10)

Castle 481 × 321 5.46 14.84 1.28 161.24 (9)
Cathedral 481 × 321 5.35 14.76 1.25 166.58 (8)

Hill 201 × 266 2.47 7.57 1.00 116.15 (11)
Lena 256 × 256 1.58 5.37 0.53 66.51 (9)

Policemen 481 × 321 5.40 15.17 2.16 250.77 (13)
Statues 278 × 350 5.42 14.56 2.52 188.60 (12)
SAR1 512 × 512 7.36 21.72 3.87 480.16 (15)
SAR2 512 × 512 7.38 21.59 3.83 416.97 (13)
SAR3 512 × 512 7.34 21.37 3.38 376.30 (13)
SAR4 512 × 512 7.38 22.21 3.62 446.01 (14)
SAR5 512 × 512 7.31 21.70 3.80 414.39 (13)
SAR6 512 × 512 7.29 21.65 3.37 410.49 (13)
SAR7 512 × 512 7.38 20.76 2.54 319.46 (10)
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5. Conclusions

In this paper, we proposed a novel variational model for color image denoising in the presence of
mixed multiplicative and Gaussian noise. The proposed formulation combined an
infimal-convolution-based data-fidelity term with SVTV and GSR regularization. The data-fidelity
term explicitly separated the multiplicative and Gaussian noise components, thereby enabling
effective suppression of mixed noise. The two regularization terms served complementary purposes.
The SVTV term promoted effective denoising in homogeneous regions and near edges while
preserving sharp discontinuities, whereas GSR regularization enhanced reconstruction quality by
preserving fine-scale details and textures and alleviating the staircase artifacts caused by SVTV. To
solve the resulting nonconvex optimization problem, we employed a PAMA framework to address
variable coupling, while convex or nonconvex ADMM schemes were used to efficiently solve the
resulting subproblems. This yielded an effective iterative algorithm, and we provided a convergence
analysis for the proposed PAMA framework. Numerical experiments demonstrated that the proposed
model consistently outperforms existing methods for removing mixed multiplicative and Gaussian
noise in color images. Despite its effectiveness, further reduction in computational cost remains an
important topic for future research. In particular, the inherently parallel structure of the GSR
regularization enables concurrent patch extraction, similarity search, and group-wise sparse coding
and SVD. These operations can be independently performed for each group, allowing acceleration on
multi-core CPUs and GPUs. In addition, automatic parameter selection schemes, such as spatially
adaptive regularization, could be incorporated to further improve reconstruction quality and enhance
the preservation of fine details.
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