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1. Introduction

Fractional calculus (FC) extends the classical ideas of differentiation and integration by permitting
operators of arbitrary, non—integer order. Although the concept originated in the discussions between
Leibniz and L’Hopital during the 17th century, it was not until the 19th century that Riemann,
Liouville, and Grunwald formalized fractional integrals and derivatives [1, 2]. Their contributions
established a rigorous analytical basis for studying systems governed by nonlocality and hereditary
effects. Since then, FC has evolved into a comprehensive mathematical framework capable of
capturing long range temporal and spatial interactions. In recent decades, FC has attracted substantial
attention due to its capacity to model complex dynamical processes. Advancements in numerical
techniques have expanded the applicability of fractional differential equations (FDEs) in engineering
and scientific research [3,4]. Several fractional operators, including those of Caputo, Riemann—
Liouville, Atangana—Baleanu, and Caputo—Fabrizio, have been introduced to describe anomalous
transport, memory-driven diffusion, and multi—scale dynamics. These formulations have enhanced the
modeling accuracy in viscoelasticity, electromagnetic phenomena, biological systems, and diffusion
processes with memory effects [S]. Partial differential equations (PDEs) remain fundamental tools
for describing processes in physics, fluid dynamics, quantum mechanics, electromagnetism, and
related sciences. Incorporating fractional derivatives into PDEs leads to fractional PDEs (FPDEs),
which provide greater flexibility for modeling physical behaviors influenced by history dependent
and nonlocal phenomena [6]. FPDEs are capable of describing anomalous diffusion, viscoelastic
materials, chaotic evolutions, and systems exhibiting spatial heterogeneity [7]. Considerable research
has investigated theoretical aspects of FPDEs such as existence, uniqueness, stability, and convergence
to ensure their mathematical and physical reliability [8, 9]. FPDE systems have wide applications
in geophysics, biology, finance, and engineering. They effectively describe processes governed by
hereditary laws, including groundwater flow through porous structures, charge transport in irregular
media, and heat conduction in heterogeneous materials [10]. Motivated by these applications, many
analytical and numerical methods have been developed. For instance, Kumar [11] proposed a
method for nonlinear singular boundary value problems; Yang [6] formulated an integral technique
for steady heat transfer; Mohyud Din et al. [7] utilized perturbation approaches; Xie et al. [12]
developed hyperbolic techniques; Biazar and Aminikhah [10] studied coupled Burgers-type models;
and Ahmad et al. [13] applied the Adomian decomposition method and He’s polynomials to the
WBKEs. Additional techniques include homotopy perturbation [14], parabolic convection—diffusion
solvers [15], the residual power series method [16], the redefined quintic B—spline approach with
Von Neumann analysis [17], the Adomian decomposition method [18], the Yang transform combined
with decomposition techniques [19], the g~homotopy analysis transform [20], the Yang residue power
series method [21], Sumudu-based decomposition [22], Laplace Adomian hybrid schemes [23], the
natural decomposition method [20], scaling-based transformations [24], and the optimal homotopy
asymptotic method [25]. These approaches demonstrate the adaptability and the precision of semi—
analytical frameworks for nonlinear FPDEs, and perturbation-based studies of the Caputo—Fabrizio
operator [26]. These efforts highlight ongoing advances in obtaining accurate approximations to
nonlinear and FPDEs. The coupled WBKEs are effective in modeling nonlinear wave propagation
of tsunami shallow water and related physical phenomena [27]. Their classical form is given by
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{a)g(K’ &) + w(k, &) Wik, &) + Yk, &) + B wu(k, &) = 0, (L.D)

wf(K’ 6) + [(,()(K, f)'ﬁ(K, f)]/( _ﬁWKK(K’ f) + Uﬁl kaK(K9 ‘f) = O»

where w represents the horizontal velocity, v is the maximum wave height, ¢ the surface elevation,
and the constants § and B measure dispersive and dissipative effects. These equations capture
nonlinear convection and dispersive wave behavior, and have been applied to shallow water models,
plasma oscillations, and acoustics. A significant number of contributions address nonlinear and
fractional versions of the WBKEs (1.1). Many fractional operators have been constructed to
incorporate memory effects into physical models, motivating analytical and numerical developments
such as the fractional Newton method [28], extended algebraic mapping techniques [29], homotopy
perturbation methods [30], sine-Gordon expansions for Wu—Zhang models [31], Laplace-based
residual power series techniques [32], Aboodh decomposition transform method [33], reproducing
kernel Hilbert space approaches [34], variational iteration schemes [35], numerical studies of telegraph
equations [36], monotone iterative methods [37], expansion methods [38], and modified Adams—
Bashforth algorithms [39]. Nadeem et al. [40] further developed the Yang residual power series
scheme for fractional heat transfer models. A fractional version of the WBKEs-based on the Atangana—
Baleanu—Caputo (ABC) derivative is given in [41] for tsunami shallow water applications:

ABCDE . (K, &) + (K, &) WK, &) + Yk, €) + B Wik, €) = 0,
ABCDE Wk, €) + [w(k, WK, E)], = Bk, &) + U Wik, €) = 0, (1.2)
w(k, 0) = ho(k), Wik, 0) = hy(k),

where ABCDg’g is the ABC fractional derivative of order 0 < a < 1. Here, x denotes the
spatial coordinate, ¢ the temporal variable, w the depth-averaged horizontal velocity and ¢ the free
surface elevation. The parameters § and 8’ regulate dissipation and dispersion. This fractional
model incorporates memory-driven behavior into nonlinear wave evolution. To solve the fractional
WBKEs (1.2), numerous analytical and numerical methods have been introduced. Kumar et al. [41]
presented a dynamical and computational investigation of the fractional WBKEs, highlighting how
fractional-order effects influence shallow water wave evolution. Prakash and Kaur [42] introduced an
efficient numerical simulation scheme for the coupled fractional WBKESs using the ABC derivative,
demonstrating improved accuracy for modeling nonlocal shallow water dynamics. Jeelani et al. [43]
analyzed an ABC fractional system with a generalized Mittag—Leffler kernel, establishing key
mathematical properties and illustrating the impact of generalized nonlocal memory kernels on
fractional dynamical behavior.

Motivated by these challenges, the present study formulates the fractional WBKEs using the
ABC fractional derivative, which incorporates nonlocal memory effects through a nonsingular kernel.
The analysis is carried out in Banach spaces endowed with the compact-open topology over locally
compact Hausdorff domains. Within this setting, we establish the existence, uniqueness, continuity,
and Hyers—Ulam stability of solutions by applying fixed—point theorems and continuity arguments.
In addition to the theoretical analysis, we develop a new hybrid semi—analytical technique, referred
to as the expansion new iterative method (ENIM). This method combines fractional power series
expansions (FPSEs) with the new iterative method (NIM), enabling efficient handling of nonlinearities
and fractional-order operators. The resulting series solutions exhibit rapid convergence and remain
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consistent with known exact solutions in the classical case. The effectiveness of the proposed
approach is demonstrated through an application to a tsunami shallow water problem, highlighting
the physical relevance and robustness of the fractional WBKE model. The main contributions of this
work can be summarized as follows: Establishing rigorous existence and uniqueness results for the
fractional WBKEs within a compact-open Banach space framework; proving Hyers—Ulam stability
of the fractional WBKE system, ensuring robustness under small perturbations; developing a novel
hybrid semi-analytical ENIM scheme based on fractional power series and the NIM and demonstrating
the applicability and accuracy of the proposed method through a physically relevant tsunami shallow
water example. Section 1 introduces fractional calculus and the motivation for studying the fractional
WBKE model. Section 2 presents the definitions and properties of the ABC operators. Section 3
proves well-posedness and stability using continuity arguments and fixed-point theorems. Section 4
constructs fractional power series formulas and develops the ENIM procedure for obtaining convergent
approximate solutions. Section 5 applies the ENIM to a tsunami wave problem, computes approximate
solution terms, interprets the physical parameters, and compares the results with the classical exact
solution for @ = 1.

2. Preliminaries

It is worth noting that the definitions and results presented about ABC fractional operators in this
section were originally developed in the single variable setting [44—46]. We extend these findings
to the two-variable case and, for clarity and to avoid unnecessary repetition, we cite only the works
that contain the corresponding proofs in the one-variable framework, with the understanding that our
contributions provide a natural and straightforward generalization to the two-variable setting.

Definition 2.1. [47] Let w be any map on Q X [0, ], where & > 0. The ABC integral operator of
w(k, &) for order @ > 0 is given by

APCTG e wik, &) = f & - o) wk,o)do, 0<a<l, (2.1)

I'a )A“
where A" is a condition referred to as the normalization function with A° = A' = 1.

Definition 2.2. [47] Let w be any map on QX [0, &]. The ABC derivative operator of w(k, &) for order

a > 0 is given by
aé - ,U)) (n)
Jkwdu, n—-1<a<n,
ABCz)g’fw(K’é_-): l_a,f ( IJ H)ap

wg (k. &), a:=neN,

(2.2)

where E,(-) is is the Mittag—Leffler function

00 k
z
E)=Y — > 0.
@) kz_; Tak+1) °
Recall [45]. For & > 0 and for n — 1 < a < n, we have ABCZ)g,g ABCI&SC w(k, &) = w(k, &).
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Theorem 2.3. [44] Let w be any map on Q X [0, &,]. Then
n—1 é‘:k
VTG D 0k ) = 0k ) = Y S k)| (23)
k=0 "° N

3. Well-posedness and stability analysis of WBKEs (1.2)

In this section, we establish a mathematical setting for studying the existence, uniqueness, and
stability of solutions to the fractional WBKEs (1.2). Working in Banach spaces endowed with
the compact-open topology, we apply fixed-point principles to verify the well-posedness of the
system. Under appropriate assumptions, this framework guarantees that the fractional WBKEs admit
continuous, unique, and Hyers—Ulam stable solutions.

3.1. Locally compact Hausdorff structure of continuity conditions

Here, the domain is assumed to be a locally compact Hausdorff space, which ensures that the
compact-open topology is well defined on the space of continuous functions. This setting provides
uniform convergence on compact subsets and secures the continuity of the involved operators, a key
requirement for applying fixed-point techniques to the fractional WBKEs (1.2). Define the operators
@, : [Q X [0, &]] x R¥W0&] 5 ROXI046] 5 R by

Wk, &, w, ) = —w(k, O)w(k, &) — Yk, &) — B wlk, &) (3.1)
and

Yk, &, w0, 9) = [k, YK, ) + Bk, €) = U B WK, €), (3.2)

where R>%4! denotes the family of all functions from Q x [0, &,] into R. Apply the ABC integral
operator of the system (1.2) and use (2.1) to get that

w(k, &) = ho(k) + w(K & w, ) + T )Aa f(f o) Wk, o, w, Y)do (3.3)
and
n l—a—
Yk, &) = ho(k) + alﬁ(K,g,w#’) e )AC' f(f o) Yk, o, w,¥)do. (3.4)
Define the operators 7, J, : R10¢0] x Rex1040] — X100 by
l—a—
T, 0)(6,€) = ho(K) + —— (K, &, 0, 17)
3.5
+ @A f; ¢ - o) Wk, o, w, P)do
and
~ 1 —a—
Ty @, )k, €) = ho(K) + —— Pk, &, w, 1)
(3.6)

* T )A(,f(f (r)‘“wfww)dc
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Consider the Banach space 8 := Cq, X Cq, with the norm

(., Yllg = max {lw(k, I, [k, I}

(K,f)EQX [0,50]

We say w has Lipschitz property if there is a constant 4,, > 0 such that

lw(k, &, w, ¥) — Wk, & wi, Y1)l < Ay (W, ¥) — (w1, ¥1)llg
for all (x, &) € Q % [0, &].

Theorem 3.1. If w and J satisfy Lipschitz conditions, then J,, and J, satisfy Lipschitz conditions,
respectively.

Proof. By the Lipschitz property of @ and , there are A, Ay > 0 such that

|6(K7 67 w, l/’) - E(Ka é‘:a w1, wl)l < /Lu ”(CL), w) - (CL)I, '7[/1)”8

and
(k. & w, ) — Uk, €, w1, Y1) < Ay W, ) — (w1, ¥l
Hence,

1 -«
Aoz

(T (@, ¥)(k, &) = Tu(wr, gk, &I < Wk, &, w,¥) — w(k, &, wi, Y1)

+

a
T(a)A®

o [0, £ 0,9) ~ Bk, £ w1, Y)

[0

» a-1 |— —
l"(a,)Aa flé:_a-l |(1.)(K,f, w, lﬁ) —(L)(K,f, w]7¢1)|d0-

f(f — o) WOk, o, w, W)do — f(.f — o) Wk, o, Wi, Y)do
0 0

<

+

1-a)d, £5
< % Iw. ) = @1 4nlls + Foi

l(w, ¥) = (w1, ¥1)llg -

Then we have

1 - /Lu a//lw
T (@) — Tulwr i)l < || Aff) ¥ rfg) Aa] @, 1) = (@1, )l (3.7)
Similarly, we have
(1-a) &
|Tu(w. ) = Ty(wr. )| < [ T Lt r(fy)jw] (@, ) = (@1, Y1)lls (3.8)
O
Define the operators O,,, 0, : B — R¥¥04] a9

Ow(w’ lﬁ) = —W W, — wK _ﬁwkk (39)
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and

Ow((,t), w) = _[wl//]/( +ﬁ¢/<x - Uﬁ/ Wi (3.10)

respectively, where Cqo, := C(Q X [0,&]) € R*¥%%] denotes the family of all continuous functions
from Q x [0, &] into R. For the Lipschitz continuity of the operators O,, and Oy, note that if @ and
satisfy Lipschitz conditions, then we have

KOuw(@, ) = Ou(@i, 1), (@, ) = (W1, 1)) < Ay (@, ) = (@1, Y1)l

and

KOy (w,¥h) — Oy(wy, Y1), (W, ) — (W1, Y)Y < Ay [, ¥) = (1, Y1)l -
It is known that in any metrizable topological space, the collection of open balls forms a subbasis for
its topology. Thus, in the metric space R endowed with the standard metric d(k, &) = |k — €|, the family
of open balls B(ky, r) generates the usual topology on R. Since Q X [0, &] is a Hausdorft subspace of
the Euclidean space R?, the family

CO = {{H, B(ky, r)) : H is a compact subset of Q x [0,&], ko € R, r > 0}
constitutes a subbasis for the compact-open topology on Cgq,, where
(H, B(ko, 1)) = {w € Cq, : W[H] C Blko, 1)}
In what follows, the function space R®*1%%! ig considered with this compact-open topology.

Theorem 3.2. If w is continuous, then the operator Q,, is continuous.
Proof. We will show that O;l((H, B(ky, r))) 1s open in B for every subbasic open (H, B(ky,r)) of
R¥*0%! for any compact set H C Q X [0,&], ko € R and r > 0. Note that

O, ((H, B(ko, 1)) = {(5,6") € B: O,(s,s)H] C Blko. 1)}

={(s.¢") € B: w({(s,¢)} x H) C B(ko, 1) }.
Fix (go,¢7) € O;l((H, B(kg, 1))). Then w(go, sy, h) € Blkg,r) for all h € H, ie., {(so,5))} X H C
w ' (B(ko, r)). Since
@ '(B(ko, 1)) C [Q X [0, &oll X Cg, X Cq,

is open and w is continuous, then for each & € H, there exist open neighborhoods O, C Cgq, X Cq, of
(0, sp) and V, € R? of & such that

0, XV, C @ "(Bko,1)).

The family {V}},cy is an open cover of the compact set H, so choose Ay, ...,h, € Hwith H C | Ji_, V,,

and set .
0= ﬂ Oh,--
i=1

Then O is an open neighborhood of (o, ¢7)) in B and hence for any (¢,¢") € O and any k € H, there
exists i with k € V), such that
(h,k) € Oy, X V;,, C @ ' (Blko, 1)).

Then w(s,s’, H) C B(ko, r); equivalently, O,(s,s’) € (H, B(ko, r)). Hence, O c O_'((H, B(xo, r)}), that
is, O ((H, B(xo, r))) is open. Therefore, O, is continuous. O
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Theorem 3.3. If the operator O,, is continuous and Q is locally compact set in R, then the restriction
w on Q X [0,&] x B is continuous.

Proof. We prove directly that E_I(B(K, r)) is open in [Q X [0, &]] X B for each open ball B(k,r) C
R. Fix an arbitrary open ball B(kg,r) C R, and take a point (£, £(, 0,5)) € a_l(B(Ko, r)); that is,
0.(50, )€, €5) € B(ko,r). Since Q is locally compact in R and so it is Hausdorfl space, then Q x
[0,&] is a locally compact Hausdorfl space. Hence, there exists an open neighborhood V' of (£, &)
such that V is compact containing (&), &), where V is the closer set of V. Set H := V: then H is
compact and (£),&;) € V ¢ H. Since O,(s0, s)(&}, &) € B(ko,r) and (£,£7) € H, it follows that
0.(s0, s,)[H] C R intersects B(ko, r) at least at (£}, £). Define the subbasic open set

<H, B(K()’ r)) = {(g’ g,) € RQX[O,&)] X RQX[O,&)] : Ow(g, g,)[H] - B(KO’ 7")}

Since O,, is continuous and (H, B(ky,r)) is an open set in R*0%l  then there exists an open
neighborhood O C B of (v, ;) such that O,(0) C (H, B(ko, r)). Equivalently, for every x € O, we
have O, (x)[H] C B(kg, r). Now consider the product open set

VxO0cC[Qx][0,&]]x8B.

If (£,¢,6,6') € VX O and since (¢,¢) € V ¢ H and O,(s,¢")[H] C B(kg,r), then we get
wé,8,6,6") = 0u(5,6)E, &) € B(kg,r). Therefore, O X V C E_I(B(Ko,r)). We have found,
for the arbitrary (£, £(, S0,5;) € 6_1(3(/(0, r)), an open neighborhood V x O of (£,&(, S0, <) with
O x V c @ '(B(ko,r)); Hence, @ '(B(ko,r)) is open. Since B(kg,r) C R is arbitrary, then w is
continuous. O

If Yy is continuous, then the operator Oyyy is continuous. The proof follows similarly to
Theorem 3.2. Furthermore, if the operator Oy, is continuous and Q is a locally compact subset of
R, then the restriction of ¢ to Q x [0, &] X B is continuous. The proof proceeds analogously to that of
Theorem 3.3.

3.2. Well-posedness of fractional WBKEs (1.2)

Here, we analyze the well-posedness of the fractional WBKESs (1.2) by establishing the existence
and uniqueness of their solutions in a Banach space endowed with the compact-open topology. Using
fixed-point techniques, we identify the conditions that ensure the system possesses a unique and stable
solution. For this purpose, we introduce the operator J : 8 — B given by

T (@, )k, &) = (Jo(w, P)(k, &), Ty(w, P)(k,£))

for all (k, &) € Q % [0,&y]. To ensure the existence and uniqueness of solutions to (1.2), we impose the
following assumptions:

C1: The domain of (1.2)is the space C* [Q X [0, &]] endowed with the compact-open topology, where
Q is a locally compact and bounded subset of R.
C2: There exist constants Rz, RE > 0 such that |w(k, &, w)| < Ry and |¢//(/<, ¢, w, t//)| < Rg.

C3: The functions @ and  satisfy Lipschitz conditions with constants A, Ay > 0, respectively.

Lemma 3.4. If CI is satisfied, then the restrictions of the operators O,, and O, are continuous.
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Proof. Since the operators d,, 8>, : C*[Q x [0,&]] — C[Q X [0, &]] are continuous, then easily to
see that

Ow(w, w) = W Wy — wk _Bwkk and Ow(w’ lﬁ) - lﬁ +:3¢/</< - UIB Wik

are continuous. O

We now clarify why the operator J = (J,, Jy) is compact in the Banach space B = C(Q2X [0, &]) x
C(Q x [0, &]) endowed with the compact-open topology. Recall that QQ X [0, &] is a locally compact
Hausdorff space; therefore, the compact-open topology on C(2x [0, &]) coincides with the topology of
uniform convergence on compact subsets. Let D C B be a bounded set. From the growth assumptions
on the nonlinear operators and the boundedness of the initial data, it follows that (D) is uniformly
bounded in B. Moreover, the continuity of the nonlinear terms, together with the nonsingular and
integrable kernel of the ABC fractional integral, ensures that /(D) is equicontinuous on every compact
subset of Q X [0, &]. By the Arzela—Ascoli theorem, uniform boundedness and equicontinuity imply
that J(D) is relatively compact in the compact-open topology. Hence, J is a compact operator on
B. This compactness, together with the continuity of J and the boundedness of the set {u € B : u =
AJu, A € [0, 1]}, allows the application of Schauder’s fixed-point theorem to establish the existence of
solutions to the fractional WBKEs (1.2).

Theorem 3.5. If C1 and C2 hold, then the system (1.2) has solutions.

Proof. To get this solution we will use Schaefer’s fixed-point theorem. For any € > 0, let

={(w,¥) € B: (w,Y)llg < €}.

First, for the continuity property of 7, we will prove that || (wy, ¥,) — T (w, ¥)llg — O for any
convergent sequence (w,, ¥,) — (w,¥) in B. Let (w,, ¥,) — (w,¥) in B. For any (k, &) € Q X [0, &],
we have

LTw(wm lr//n)(K’ f) - jw(w’ w)(K’ f)l
wn) - E(Ks é:’ w, lﬁ)|

f(f o) 1 [a)(K T, Wy, Wy) — W(K, O, W, lﬂ)] do (3.11)

" Ta )Aa
l/’n) - E(K’ é‘:’ w, l/’)|

* T(a)A? f (= 0)" [@(k, 0, s ) = WK, T, w0, )| dor.

By Lemma 3.4, O, is continuous. Since Q is a locally compact Hausdorft, then by Theorem 3.3, @ is
continuous. Hence, for any (k, &) € Q X [0, &], we have

|a(K’ é‘:’ Wy, lpn) - E(K’ g’ w, lﬁ)| — 0.

By the boundedness of Q, we have w, —  uniformly in D.. Hence, for all » € N and for any
(x,&) € Qx[0,&], lw, < C, and |w| < C, for some constants C,. So, by using the dominated
convergence theorem, we get

SUP( &yeaax(0.£o] T o(@Wns Y (K, &) = T (W, ¥)(k, E)I| — 0.
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Similarly,

SUP( ercaiosy] | T (@ns ¥n) (K, €) = Ty(w, ¥)(k, €)|| — O.

That is, || I (wu, ¥,) — T (W, ¥)llg — 0, and hence 7 is continuous.
Second, we prove that the boundedness of sets is topological property under the continuous map .
Let (w,¥) € D,. Then

T w(w, ¥)(k, O

1- a

a ool —
T B E 0D+ m f; - Bhowplde )

(1 -a)Rs + 8 Ro
Av I'(a)A®

< |ho(®)] +

< lho(x)] +

and

\To(w, ). )|

A - —

<Jho] + = P& w0l + g f =) Pleoowldr g3
Lo -k &Ry

< o]+~ + Fan

Hence, J(D,) € D., where

(1 -a)Ry N Rz
A [(@)A?’

ho(w)| +

(1 -a)R; YR
€ = max{lho(K)l + v 20w }

A ')A
Since €’ is independent on (w, ¥), J (D,) is uniformly bounded set.

Third, for the equicontinuity property of 7, let (k, &), (k, &) € Q X [0, &] be arbitrary points. Note
that

1

— 2 @k, €, 0,0) ~ Bk, 1,0, )

T (W, )&, &) = T (W, )1, &I < 2

* o f € - o) = & - 0] Bk 0 w.9) - Bk, 0, 0, 9) dor
< Y o £ 0.) - D01, 61,0, 0)
. _ (3.14)
* o j: € - o) = @& - o) [Blk. o w. )] + Bl 0 .| do
< o [0 £, 0. Y) ~ Bl 1,0, )

+

2 ([
F(;Aa f: € - o) = (& - o) do

Since the kernel functions are integrable, it follows that |7, (w,y)(k, &) — To(w,¥)(k1, &) —

0 as (k&) — (x1,&). Similarly, |Jy(w, ), &) — Ty(w, s//)(K1,§1)| - 0 as (k& — (k,&).
Therefore, || T (k&) — T (k1,éDllg = 0 as (k. &) — (k1,&1), which implies that J possesses the
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equicontinuity property. Since boundedness and uniform boundedness are preserved under continuous
mappings, the Arzela—Ascoli theorem guarantees that J is a compact operator.

Finally, we prove that the set A = {(w,¥) € B : (w,¥) = 0T (w, ), 6 € [0, 1]} is bounded in B. Let
(w,¥) = 09 (w, ¥) for some ¢ € [0, 1]. Then we have

lw(k, &) = 10T w(w, Y)(k, E)| = 0 |T w(w, Y)(k, &)
(I -a)R5 N &R ] (3.15)

<6
= Aa T(a)A“

|ho(x)] +

and
Wk, &) = |6T y (@, ¥)(k, E)| = 8 | Ty(w, )k, &)
Ry &Ry (3.16)
A F(a)A“]'

1
<6 [|izo(/<)| .

That is, A is bounded in B. Therefore, by applying Schaefer’s fixed-point theorem, it follows that I
possesses at least one fixed-point in D,, which represents a solution of the system (1.2). O

Theorem 3.6. If C1-C3 hold and
& A
< ,
[@) A, + Ay

(1-a)+

then the system (1.2) has a unique solution.

Proof. From C3 and Theorem 3.1, we get that for (w, ¥), (w1, ¥1) € B,
1 _ /10) (l//lw
( @) 4+ 20

lw(w, ¥) = w(wy, Y S[ ]Il(w, ¥) — (w1, ¥1)llg

A I'(a)A®
and a N £
— — -
e, ¥) = W(wr,y)|| < [ = "+ r(;)j‘a] (@, ¥) = (@1 YD)l -
Hence,

1- CL’)/LU + gg/lw
Aa [(a)A®

T (@) - T )l < [(
+ [(1 - a')/Lﬁ + gg/l¢

] (@, ¥) — (w1, ¥1)llg

] l(w, ¥) = (w1, ¥1)llg

A“ [(a)A~
& | A+ Ay
= [(1 —a)+ TZ) A l(w, ¥) — (w1, ¥1)llg -
Therefore, when the inequality
& | Ao+ Ay ) & A
1- 1 (ie., (1-
[( Dt i A e 0Oy <

is satisfied, the operator J qualifies as a contraction mapping. Accordingly, by invoking the Banach
fixed-point theorem, we conclude that the system has a unique solution. O
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3.3. The stability property

In this subsection, we investigate the Hyers—Ulam stability of the fractional WBKEs (1.2), assessing
how small perturbations in the initial data or model parameters influence the behavior of their solutions.
This stability concept guarantees that any approximate solution remains close to an exact one within
a controlled bound, thereby reinforcing the reliability of the analytical results. By applying integral
inequalities in conjunction with the previously established existence and uniqueness properties, we
derive sufficient conditions ensuring the Hyers—Ulam stability of the fractional WBKEs (1.2). Let
(&, ¥) denote an approximate solution of (1.2) satisfying

|ABCZ)&f Wk, &) — ok, &, b, 1/})| <y,
[*CDG Ik, &) = Pk £.0. )] < o

for all (k,&) € Q % [0,&], where u;,u, > 0. Following [48], the nonlinear system (1.2) is said to be
Hyers—Ulam stable if there exists a unique solution (w, ¥) of (1.2) such that

(3.17)

1 - 0ll < i and | = ¢ < g,
where y}, 5, > 0 are constants independent of u;,u, and || - || represents the supremum norm on
ClQ X [0, &l
Theorem 3.7. If C1-C3 hold and
& A“

1 -
R T I

then the system (1.2) is Hyers—Ulam stable.

Proof. Let (&,) be an approximate solution and (w,1) be a unique solution of (1.2). For the
approximate solution (&, /) with satisfying the inequalities (3.17), there are two continuous functions
g and g’ on Q X [0, &] such that

8k, O < &1, 1g'(k, )| < &,
ABCDE L (K, E) = DK, £, 0, 0) + gk, &),
and

ABCD(X

b.e UK, &) = Y, €,0,) + ' (k,6),

for all (k, &) € Q x [0, &]. Here, the approximate solution (&, /) will be as

1- n
(k. £) = oK) + —— @k, £, 0. 9) + gk, &)]

(01 (01

1% R, ‘ _ a—1
T(a)A” f:(f—ﬁ) w(k, o, 0, Y)do + A" f:(f o) gk, P)dor

_l_

and
1-«a
A(z

Pk, &) = 2o6) + —— [ &, @,0) + g, £)

a
T(a)A®

(01

f: & - o) Yk, o, 0, P)do + M)A j: & -0)" gk, o)do
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for all (k, &) € Q X [0, &]. Then by Theorem 3.6, for all (x, &) € Q X [0, &] we have

l-«a

@k, §) — wlk. )l < —

@k, o, 0,8 = @k, o 0,9 + gk, )|

+ F(CLC’;A‘Y f(f - 0_)04—1 [|5(K’ o, b, ‘2) - E(K, o,w, lﬁ)| + |g(K, O')l] do

a a—1
ok f €-o)r" [,

(@, 9) = (@), + & ]

(@, %) — (w, lﬁ)”B + 81] do

<| St | e - @l o],
That is,
16> - wll < C4 [0 [|(@, ) = (.9, + &1
where C := 1;&“ " F(j‘;a. Similarly,
9~ wll = €2 4 [l@.9) ~ @), + ]
Hence,
o — wll < C2 A, [[@.9) - @), + 2]
<A - (c?fi,t M) max{e|, &} | + Clg
and

19w < a4 |
A,

(@, ) = (@, )|, + &]

< Cg max{sl , 82} + Cé{;‘g.
1-(CA, + 4y)
In particular, if we set € := max{ey, &}, then
. A Cydw
o - w|l < e C) +1

1 - (CA, + Ay))

and
A
i o] < o 3| —— 1.
1-(Ch, + 4)
Take
A A
g :=CA Cals +1| and &, := C4 Caty +1].
1 (CA + 4) 1 - (CA, + Ay)
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The Hyers—Ulam stability constants &] and &}, measure how closely the approximate solution remains
to the exact one. These constants are inversely related to the denominator

1 = C3(A, + Ay),

which characterizes the contraction gap of the operator. A smaller value of C4, A, or 4, increases
this denominator, thereby reducing the values of ] and &} and yielding a stronger form of stability. To
reinforce the stability of the system, it is therefore desirable to ensure that

& .
T@) A+,

ClA,+ ) <1, ie, (I-a)+

This condition may be fulfilled by choosing a smaller domain length &), reducing the Lipschitz
constants, or increasing the fractional order « so that I'(«) becomes larger. Any of these adjustments
increase the denominator, thereby strengthening the Hyers—Ulam stability of the fractional nonlinear
system. Consequently, the system (1.2) is Hyers—Ulam stable. m|

Remark 3.8. The Hyers—Ulam stability established in Theorem 3.7 guarantees that the fractional
WBKEs (1.2) are stable under small perturbations in the initial data and system parameters. This type
of stability is local in nature, which is standard within the classical Hyers—Ulam stability framework
for nonlinear FDEs. Extensions of the present analysis to global or generalized Hyers—Ulam—Rassias
stability will be considered in future work.

Remark 3.9. The condition C4(1, + 4;) < 1 ensures that nonlinear and fractional memory effects
do not amplify perturbations in the system, guaranteeing stable wave evolution. Physically, this
corresponds to controlled tsunami wave propagation, while numerically, it ensures convergence and
robustness of the solution method. For realistic tsunami parameters, this condition is readily satisfied
on bounded time intervals, which is standard in shallow water modeling.

4. Semi-analytical development for solving the WBKEs (1.2)

In this section, we develop a semi-analytical framework for solving the fractional WBKE:.
Subsection 4.1 introduces the FPSEs and establishes the operator formulas needed for computing their
coefficients. These results serve as the analytical foundation for Subsection 4.2, where the ENIM
procedure is constructed. Thus, the methodology in 4.2 directly relies on the power series structures
derived in 4.1.

4.1. On power series expansions
Lemma4.1. LetO < a < 1. Then

AT(na+1)

ABC qna nay na—a
Dy (€)= T oirira—a s Bl (.0

where "
= CD () €

L T(n+mya+1)

H,(é) :=

4.2)
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Proof. By the definition of *“Df, with 0 < @ < 1, we have

A —a(E - o)\ O
ABCz)a/f (éana)_ afEa( a’(é‘: 0-) )g(o_n(x)do_

l -«
= lA“a na fE“ (M)oﬂ“—ld(r
_ 0 —
_ A o 0 D (15) € o 4
B na fo- mz;) I'(ma + 1) do

[

— me e na= ld
l—anamzo F(moz+1) f(f o) 7

Note that
I'(na)I'(ma + 1)
IFna+ma+1)

f(é-; _ O_)mao_na—ldo_ — égna+ma
0

Hence, this is proof. O

Consider a power series

[Se]

D el —a) = Co+ CilE —a)’ + CoE —ay* + -+, (4.4)

n=0

to be called an FPSE about a such that £ is a variable, ¢, are called the coefficients of the series, where
O<n—-l<a<nneN,and ¢ > a.

Theorem 4.2. Consider that the FPSE notation of Q about a = 0 has the form

[Se]

Q&) =) ™, (4.5)

n=0

where 0 < @ < 1 and 0 < & < R. If Q(¢), ABCDS%Q(f) € C[0O,R] forn = 1,2,3,..., then the terms ¢,
are given by A

ABCDna Q(f)
S eld I 4.6
“ = T@ an) Lr_o (4.6)
where ABCD"“ ABCD"‘ ABCD&f o--- 0P 6¢ (ntimes), R is the convergence radius, and
A® T(na + 1 =
T(A®, @, n) := (na + 1) ( nd )
1—-al'Qna—-—a+ DI'(1 —na + a)
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Proof. By Lemma 4.1 above, we have

ABC D&f Q &) = Z c, ABC D&g ( é_-na)
n=1

AT(na+1)

“A-al(a—a+1) £ Hy(é)

M DM

= (%) e

AT(na + 1) gra-a
= CVl
— (1-al(na—a+1) g I'((n+m)a+1)
A“F(na/ + 1) - (_l)m (&) g(n—l)a+ma.

Cn

e

lI-a)l(na—a+1) pord I'n+m)a+1)

S
]
—_

Reindex with k = n — 1:

[

ABC o) = AT+ Da+ D) & C(E)
Do,fQ(f)—kZ:(;ck“ (- a)lka + 1) mZ:Or((k+m+1)a+1)f '

Evaluating at & = 0 kills all k > 1, since & = (), giving
AQ’
l -«

YOG Q)| = e
Define recursively Qy(¢) = Q(¢) and
Q&) = CDZg Q-1(&) = CD]Z;Q@)-

Using (2.2) repeatedly, by induction we get

ot s AT(ner + 1) X () e
Da Q) = Que) = ; “ T ala—ka+D* LI T((n+mya+1)
Setk =nin (4.1) to get
ABC 1nr 3 AY I'na +1) a !
DO,fQ(f)L:o - aTQ2na —a+ DI - na + @) (a - 1) '
Hence,
ABCDS%Q@:)
= ['(A?, a,n) le=0"

The proof is completed.

For two-variables, a power series
w(k, &) = ZQn(K) ke, 0<ELR,
n=0

is called a multiple FPSE of w about 0.

4.7)
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Theorem 4.3. If ABCDgfgw(K, &,n=0,1,2,3,...,is continuous on Q X [0, R], in the series (4.7) then

AP Dk, &)

Q. (k) = TAv.a) leo

(4.8)

where R = min,. R, with R, as the convergence radius of the FPSE (4.7).

Proof. Fix an arbitrary «, and define the function @, by Q.(¢) = w(k,&). Then, for this fixed «, the
FPS (4.7) becomes

Q&) = D Q™.
n=0

By the continuity assumptions, Q(¢) and AP D1Q(&) = AP Diw(k,€) satisfy the hypotheses of

Lemma 4.2, we get
MCDIQUE),  MCDMW(K,E)

['(A®, @, n) L*=0 T T@A%an) leo
This is the proof. O

Qn (K) =

Theorem 4.4. Consider that the multiple FPSE notation of w about 0 has the form

Wik €) = ) QUK E, (4.9)
n=0
where k € Q; X Q X ---Q, and 0 < & < R. If ABCDgfgw(K,f),n =0,1,2,3,..., are continuous on

QX Qy x---Q, x[0,R], then
DR w(k, )

W(K) = ————| 4.10
(k) ['(AY, a,n) '§=o (4.10)
where R = min,eq,x0,x-0,, R« With R, as the convergence radius of the FPSE
> Qe @4.11)
n=0
Proof. The proof is directly from Theorem 4.3 and the Cartesian product properties. O
4.2. Methodology of ENIM
Consider that the following Caputo fractional system
ABC D (i, €) = No(k & 0, 8) + Rk &, w0, 10), Wi
ABCDS Wk, &) = Ny, &, w,1) + Ry (K, €, w, ), '

where 0 < a < 1, N,,, N, denote the nonlinear parts, and R,,, R, denote any known functions. The
initial conditions are met by w and i, allowing them to be rewritten as:

{w(k, 0) = ho(k) and (k. 0) = (k). (4.13)
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Consider that the approximate series solution of (4.12) can be expressed as:

fﬂa’
[(A?, @, n)

é':na

T o (4.14)

Wik, &) = Z () =—=—— and Y(k,&) = D7)
n=0

To find the terms of (h,) and (h,), we apply the NIM to system (4.12). The procedure begins by
rewriting the FDEs in an equivalent integral form using the inverse operator of the ABC fractional
derivative. Accordingly, system (4.12) can be expressed schematically as

CL)(K, f) = h()(K) + ABCIg’g {Na)(K’ ‘f’ w, ‘ﬁ) + Rw(K’ f, w, l//)}, (4 15)
Yk, &) = ho(k) + PTG INy (K, & 0, ) + Ry (k. €, w,). '
We separate the known (linear or source) parts from the nonlinear operators by introducing
Fo(k, &) = ho(k) + I ARk &, w, )}, “.16)
Fy(k, &) = ho() + 5T ARy (k. €, w, ). '
and the nonlinear operators
[Go(w, )] (k, &) = PTG AN(K. & w, )
e o @17)
|Gu(w, )| (k&) = PTG Ny (k. &, 0, ).
Thus, (4.12) can be written as
w=F,+G,(w,y) and ¥y = Fy + Gy(w, ¥). (4.18)
Let (S7) and (S :;’) be the partial sum sequences of the series (4.14), that is,
SH6E) = > walk,€) and S, €) = D Yl ©)
n=0 n=0
where g £
wy(k, &) = hn(K)m and ¥, (x, &) = hn(K)m-
Find the terms of {A,) and (iz,) by solving the following:
Wi+ 1 (K7 é‘:) = GLISZ}(K’ f)’ S:;}(Ka f)) - Ga(SZ)l_l (K7 é‘:)’ S{//n_l (K’ é‘:))a (419)
and
U1 (K, €) = GAS (K, £), Sk, £)) = GAS 1™ (K, ), S~ (x, £)) (4.20)

form=0,1,2,3,---, where

GUS, (.6),5, (k,6€) =0 and GAS ' (k, &), S, (k, &) =0

This procedure generates the successive approximations above, which furnish the m-th order
approximate solutions of system (4.12). Under appropriate conditions on the nonlinear operators, the
series ), w, and Y, ¥, converge to the exact solutions w and ¥, respectively.
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5. Some applications

In this section, we apply the ENIM to obtain approximate analytical solutions for the ABC
fractional WBKEs (1.2). This hybrid methodology combines the decomposition of nonlinear terms
with the transform properties inherent in the Laplace operator, resulting in a powerful and efficient
framework for handling nonlinear FPDEs. The method achieves rapid convergence, high accuracy,
and computational simplicity.

Figure 1 illustrates tsunami shallow water dynamics from both a physical and mathematical
perspective. In Figure 1(a), the propagation of tsunami waves toward a shoreline is shown, representing
the real scenario that the WBKEs (1.2) are designed to model. Figure 1(b) displays a schematic
graphical representation of the corresponding solutions, highlighting the effects of the parameters g,
B, and v, where v denotes the maximum wave height in the model. The parameter S regulates the
horizontal spreading and smoothing of the wave profile. Physically, 8 plays the role of an effective
viscosity or dispersion coefficient: For 8 > 0, wave crests broaden and amplitudes decrease as energy
spreads spatially, whereas for § < 0, the profile sharpens and may develop shock-like features. In
Figure 1(b), this effect appears as the horizontal spreading of successive peaks. The higher-order
dispersion parameter ' governs finer oscillatory structures, such as small ripples superimposed on
the main wave. It enters through the term vf’ w, and contributes to oscillatory tails behind the
primary wave crest. In Figure 1(b), these high-frequency ripples reflect the influence of g, with
larger values producing more pronounced oscillations. This physical interpretation also informs
the numerical example discussed later, where the wave maintains its dispersive character without
dissipative smoothing under the parameter choice § = 0,8 = 0.10,v = 10m, and A* = 1. We now
proceed to analyze the following fractional WBKE:s relevant to tsunami shallow water phenomena:

ABCDE (K, &) + Wk, )Wk, &) + (K, &) = 0,
ABCDE (K, &) + [w(k, WK, )], — Wek, €) = 0,
w(k,0) =5—-0.2coth(0.1x + 1),

Y(k,0) = —0.02 csch(0.1x + 1).

(5.1)

Dispersion parameter £
~=

Tsunami' point
(a) Tsunami waves (b) Graphical representation

Figure 1. Tsunami shallow water phenomena with the system (1.2).
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If @ = 1, then the exact solution of (5.1) is

w(k, &) = 5 — 0.2 coth(0.1k — 5¢ + 1),

(5.2)
Uk, &) = —0.02 csch(0.1x — 5& + 1).

In this subsection, we will use the ENIM in solving (5.1). The initial conditions are met by w and i,
allowing them to be rewritten as:

ho(k) =5 —0.2coth(0.1x + 1), s3
ho(k) = —0.02 csch(0.1x + 1). ©3)
Consider that the approximate series solution of (4.12) can be expressed as:
_ > é:noz
Wk §) = th—m ot
go (5.4)
Wik, €) = Z O Tt
Apply A#€J§, to each equation in (5.1), and we obtain
w(k,&) =5 -0.2coth(0.1k + 1) = U5 [w w, + Y]k, ),
N 55
U, &) = =0.02 csch(0.1& + 1) = YIS Jwah + 0 — W] (k. €). )
Hence,
wk, &) =5-0.2coth(0.1k + 1) + Ny(w, ¥)(k, &), (5.6)
Yk, &) = =0.02 csch(0.1« + 1) + Ny(w, ¥)(k, €), '
where
No(@, )k, &) := =PI [w w, + ] (K, €), 57
Ny(w, )k, &) == PTG Loty + o = W] (K, E). '
Let (S7) and (S $> be the partial sum sequences of the series (5.4), that is,
Sh&) = D ik &) and [k &) = D (k. E),
n=0 n=0
where g g
wy(k, &) = hn(K)F(l, @) and ,(k,€) = h, (K)m-
Solve the following:
wo(k, &) =5 —0.2coth(0.1x + 1),
wi(k, &) = No(wo, Yo)(k, &),
(5.8)

wZ(K’ é:) = Nw(wo + Wy, ¢’0 + WI)(K’ é‘:) - Nw((l)(), wO)(K’ ‘f)’
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and

Yok, &) = —0.02 csch(0.1x + 1),

U (K, €) = Ny(wo, Vo) (k. €),

Uk, €) = Ny(wo + w110 + 4 (K. £) — Ny(wo, o)k, £) (59
to get that

hy (k) = [0.004 coth(0.1k + 1) — 0.1] csch?(0.1k + 1)
—0.002 csch(0.1x + 1) coth(0.1x + 1)
(k) = [0.0004 coth(0.1x + 1) — 0.01] csch(0.1« + 1) coth(0.1x + 1)

+0.0008 csch?(0.1k + 1) coth?(0.1k + 1) + 0.0004csch*(0.1x + 1)
+0.0004 csch®(0.1x + 1); (5.10)

hy(k) = (0.2 coth(0.1x + 1) — 5)A} — 0.02 csch*(0.1« + 1)k, — hi;
Iy (k) = 0.02 csch(0.1« + 1)k} — 0.02 csch?(0.1x + 1),
—0.008 csch(0.1x + 1) coth(0.1« + 1)A; — (5 — 0.02 coth(0.1x + 1)k

Hence, the approximate solution of (5.1) for three terms is given by

f(l
- [5-02coth(0.lk+ D] + —>——
W8 = 5 40! coth(0-1x+ DI+ 7=
X [[0.004 coth(0.1k + 1) — 0.1 esch?(0.1k + 1) — 0.002 csch(0.1x + 1) coth(0. 1« + 1)]
2a
+ ﬁ (0.2 coth(0.1x + 1) = 5)k; - 0.02 csch®(0.1k + 1)y — A | + - --
and
(k, &) = _ 1 oo csch(0.1x + 1)+L
V8 = r a0 oK T(La 1)

X [[0.0004 coth(0.1x + 1) — 0.01] csch(0.1x + 1) coth(0.1x + 1)
+ 0.0008 csch?(0.1x + 1) coth?(0.1x + 1) + 0.0004csch*(0. 1k + 1)

2a
+0.0004 csch*(0.1x + )] + _& [0.02.¢sch(0.1x + 1)} = 0.02 esch?(0.1x + 1,
Ira,a,2)

—0.008 csch(0.1«x + 1) coth(0.1x + 1)h; — (5 — 0.02 coth(0.1x + 1))?1’1] + -
An overlay of the exact solution for @ = 1 has been added to Figures 3 and 4 at the same fixed
k values. A brief discussion has also been included in Section 5, immediately after these figures,

confirming that the ENIM solutions exhibit the expected dispersive behavior of tsunami shallow water
waves and show excellent agreement with the exact profiles.

AIMS Mathematics Volume 11, Issue 2, 3957-3985.



3978

6. Numerical discussion

In this section, we present a numerical investigation aimed at validating the efficiency and accuracy
of the ENIM when applied to the ABC fractional WBKEs, which model tsunami-type shallow water
wave dynamics. The objective of this analysis is to demonstrate that the ENIM approximations closely
match the corresponding exact solutions when the fractional order is fixed at @ = 1 and to show
that the resulting approximate solutions behave consistently with the tsunami-related physical wave
features discussed earlier. The numerical evidence is provided through Table 1 and Figures 2-4, which
collectively confirm both the quantitative accuracy and qualitative reliability of the ENIM scheme.
Table 1 compares the exact solutions w(k, &) and ¥(k, &) with the ENIM generated approximations
at several spatial and temporal points («,&). The table lists the exact values, the ENIM solutions,
and the associated absolute errors, AE,, and AE,. A detailed examination of the entries shows that
the ENIM results are in excellent agreement with the exact solutions: The absolute error in w(k, )
consistently remains of order 1073, while the error in y(«, &) is even smaller, typically between 1075
and 107>, These error magnitudes remain stable across the tested ranges of k and &, confirming the
robustness, accuracy, and convergence of the ENIM approach in the classical case @ = 1. Figure 2
provides essential physical and mathematical background related to tsunami modeling. Figure 2,-, oo
shows a real-world depiction of tsunami waves propagating across a shallow water region toward the
coast. This visual context motivates the use of the fractional WBKEs by illustrating the type of long-
crested, large-scale wave structures the model aims to capture. The figure also highlights how tsunami
waves preserve their coherence over large distances while interacting with seabed topography, thus
connecting the mathematical formulation to realistic oceanic behavior. Figure 2,4 o offers a graphical
representation of the analytical solution form employed in the model, illustrating the influence of the
principal parameters. The parameter v sets the maximum wave height, while the dispersion coefficient
B controls the spreading or sharpening of the wave. Positive values of S lead to smoother, more
broadened wave shapes, whereas negative values produce steeper, more peaked profiles. Meanwhile,
the higher-order dispersion parameter S, generates fine oscillatory ripples trailing the primary crest.
This subfigure clarifies how each parameter modulates the wave profile and deepens the physical
interpretation of the model.

O B

19 x=46.00

1) 01 0.z 03 04 1) o ol 02 03 04 s 1} 0.1 0z 03 04 05

£ 4 £
Figure 2. ENIM curves for the solutions w(k, &) of (5.1).
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Table 1. Comparing AEs of exact solution and ENIM solution of (5.1) ate = 1.

K § & OFxact YK OExact @& HENIM YK OENIM AE, AEy
210 0.00 476095984  -0.01309206  4.76000765  -0.01309075  0.00095219  0.00000131
020  4.03366004 -0.09454168  4.03285330  -0.09453223  0.00080673  0.00000945
040 530376254  0.02286300 530270179  0.02286071  0.00106075  0.00000229
060 521147001  0.00686991 521042772  0.00686922  0.00104229  0.00000069
080 520151474  0.00246615 520047444  0.00246591  0.00104030  0.00000025
0.10  4.67249454  -0.02593450  4.67156004  -0.02593191  0.00093450  0.00000259
220 000 476180670 -0.01293679 476085434  -0.01293549  0.00095236  0.00000129
020 407628953  -0.09017988  4.07547427  -0.09017086  0.00081526  0.00000902
040 530641634  0.02321443 530535506  0.02321211  0.00106128  0.00000232
0.60 521170851  0.00694298 521066616  0.00694228  0.00104234  0.00000069
0.80 520154546  0.00249113 520050515  0.00249088  0.00104031  0.00000025
0.10 467580324  -0.02551540  4.67486807  -0.02551284  0.00093516  0.00000255
240 000 476344115 -0.01263332  4.76248847  -0.01263206  0.00095269  0.00000126
020 415072777  -0.08253868  4.14989763  -0.08253042  0.00083015  0.00000825
040 531197502  0.02394335 531091263  0.02394096  0.00106240  0.00000239
0.60 521220091  0.00709171 521115847  0.00709100  0.00104244  0.00000071
080 520160878  0.00254185 520056846  0.00254160  0.00104032  0.00000025
0.10 468210834  -0.02470933  4.68117192  -0.02470686  0.00093642  0.00000247
260 000 476500008 -0.01233895  4.76404708  -0.01233771  0.00095300  0.00000123
020 421351351  -0.07606320 421267081  -0.07605559  0.00084270  0.00000761
040 531789166  0.02470933 531682808  0.02470686  0.00106358  0.00000247
0.60 521271467  0.00724398 521167213  0.00724326  0.00104254  0.00000072
0.80 520167471  0.00259363  5.20063438  0.00259337  0.00104033  0.00000026
0.10  4.68802498  -0.02394335  4.68708737  -0.02394096  0.00093760  0.00000239
280 0.00 476648742  -0.01205327 476553413  -0.01205206  0.00095330  0.00000121
020 426714446  -0.07050370  4.26629103  -0.07049665  0.00085343  0.00000705
040 532419676  0.02551540 532313193 0.02551284  0.00106484  0.00000255
0.60 521325076  0.00739992 521220811  0.00739918  0.00104265  0.00000074
0.80 520174336  0.00264647 520070301  0.00264621  0.00104035  0.00000026
0.10  4.69358366  -0.02321443  4.69264494  -0.02321211  0.00093872  0.00000232

Figure 3 presents the ENIM-generated temporal curves of the horizontal velocity w(k, &) at three
different spatial positions. Each subfigure corresponds to a fixed value of x and depicts how w
evolves over time. Figure 3,., 9 shows the curve at k = 2.00. Here, the velocity exhibits its largest
amplitude, consistent with the region near the main body of the wave. The temporal evolution is
smooth, representing stable and physically meaningful horizontal motion. Figure 3,4 1llustrates the
solution at k = 4.00. A clear reduction in amplitude is observed compared to Fig. 3,-,.9, reflecting the
natural attenuation of horizontal velocity as the wave propagates. The profile remains free of numerical
artifacts, verifying the stability of the ENIM. Figure 3,_¢ o0 shows the curve at k = 6.00, farther from the
wave core. The amplitude is significantly diminished, capturing the expected spatial decay of w. The
smoothness of the curve confirms the ENIM’s ability to model the dispersive weakening of tsunami
like waves without introducing spurious oscillations.

Figure 4 displays the ENIM-generated surface elevation y(k, &) at two spatial positions. Each
subfigure represents the time evolution for a fixed k. Figure 4,-, 9 corresponds to x = 2.00, where
the elevation exhibits a relatively larger amplitude, reflecting the influence of the primary wave region.
The solution evolves smoothly in time, capturing characteristic shallow water displacement behavior.
Figure 4,_400 corresponds to x = 4.00. Here, the amplitude decreases, illustrating the expected
attenuation of the wave with increasing distance. The curve remains stable and smooth throughout,
further demonstrating the numerical reliability of the ENIM. Together, Figures 4,-, oo and 4,4 oo reveal
the progressive spatial decay in surface elevation, consistent with the physical characteristics of long-
crested tsunami waves.
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Figure 3. ENIM curves for the solutions ¥(k, &) of (5.1).

Figure 4. The ENIM surfaces w(k, £) and y(k, €), respectively, of (5.1).

Taken as a whole, Table 1 and Figures 2—4 demonstrate that the ENIM-based fractional power
series approach is highly accurate, numerically stable, and capable of capturing essential tsunami
related shallow water wave dynamics. The extremely small absolute errors confirm the quantitative
performance of the method, while the smooth and realistic solution curves validate its qualitative
effectiveness. Thus, strong evidence is provided that the ENIM is a reliable and efficient technique
for solving the ABC fractional WBKEs. Compared with residual power series and Adomian
decomposition methods, the ENIM avoids the computation of Adomian polynomials, leading to
lower computational cost. The ENIM also requires fewer iterative terms to achieve accurate results,
indicating faster convergence. The close agreement with exact solutions demonstrates that the ENIM
maintains high accuracy while being computationally more efficient for the fractional WBKEs.

All operators and their corresponding details used in this work are presented in Table 2.
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Table 2. Definitions of functions and operators used in the analysis.

Symbol  Definition

w(k, &) Exact solution of the fractional WBKEs

YUk, &) Exact solution of the fractional WBKEs
Wk, &)~k WK, &) = Yk, &) = B wiulk, &)
Y&~k KO + Bk, &) = U Wi (K, €)
Ou(w, ) —ww =Yy — Bwi

Oy(w,¥)  —(wP) + Bk = VBo Wi

Tulw.d) o) + T 00) + o (6= o1 Bl e
T ) ho(w) + 1;0“ Dk, E 0, + F(ac/l;A“ i@ = o) Yk, 0,0, )dor

7. Conclusions

This work conducted a rigorous analytical and semi-analytical study of the ABC fractional WKBEs
formulated with the ABC derivative to model tsunami shallow water dynamics. By employing
Banach spaces endowed with the compact-open topology, we established the existence, uniqueness,
continuity, and Hyers—Ulam stability of solutions, thereby confirming the mathematical reliability
of the fractional WBKE model. Building on this theoretical foundation, we developed the ENIM, a
hybrid approach that integrates FPSEs with the NIM to efficiently handle nonlinearities and fractional
order effects. The application to tsunami wave propagation demonstrated that the ENIM yields rapidly
convergent and highly accurate approximate solutions that remain consistent with classical results
when @ = 1. Overall, the study highlights both the robustness of the ABC fractional WBKEs and the
effectiveness of the ENIM as a powerful tool for analyzing nonlinear FPDES.
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