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Abstract: The data used for the analysis were collected from multiple regions or years. Evaluating
each region or year separately may be insufficient for drawing comprehensive inferences and may fail
to reveal statistically significant differences. To ensure the reliability of the analysis and to enable
overall conclusions, it is necessary to apply a statistical method known as simultaneous confidence
intervals. This technique enables the simultaneous construction of confidence intervals for multiple
parameters. Therefore, we proposed and evaluated methods for constructing simultaneous confidence
intervals for all pairwise differences between the coefficients of variation in zero-inflated Birnbaum-
Saunders distributions. The methods utilized for constructing simultaneous confidence intervals
comprise the generalized confidence interval (GCI), the bootstrap confidence interval (BCI), the
method of variance estimates recovery (MOVER), the MOVER based on GCI, the MOVER based on
BCI, the Bayesian credible interval, and the highest posterior density interval (HPD). Monte Carlo
simulations were employed to evaluate the performance of each method, which involved the
assessment of coverage probabilities and average widths under a set of parameter configurations and
sample sizes. The generalized confidence interval method was the most efficient overall, as indicated
by the simulation results. Finally, all proposed methods were applied to real-world wind speed data to
examine their practical applicability and to demonstrate the consistency of the results between the
simulation study and real-world applications.
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1. Introduction

Interest in clean energy has been steadily increasing, as it provides an alternative to fossil fuels
and helps mitigate environmental problems caused by greenhouse gas emissions and air pollution.
Wind energy is one of the best renewable sources of energy because it comes from the movement of
air. This natural flow of air results in the generation of wind, which in turn leads to environmental
changes, particularly in the areas of wind energy and air quality. In terms of wind energy, wind turbines
can turn powerful winds into electricity. Even a small increase in wind speed can lead to a big increase
in the amount of energy created. Wind power plants are best built in places where the winds are strong
and steady. These plants create clean energy without polluting the air. Wind speed is also crucial for
managing the buildup and spread of pollutants such as fine particulate matter (PM2.5), nitrogen
dioxide, and harmful smoke. On the other hand, when there is no wind or the wind speed is relatively
low, pollutants tend to stay in the same place, which can have serious effects on public health. This
phenomenon happens a lot in big cities with a lot of pollution sources, like Bangkok and Chiang Mai,
where the air is often still and the winds are weak in the winter. Wind speed is very important for
making energy and controlling pollution, so many academics have looked at the properties of wind
speed data, especially the statistical distributions that can accurately characterize how wind speed
changes over time. These kinds of studies are helpful for making wind energy planning more accurate.
For instance, Mohammadi, Alavi, and McGowan [1] performed a study and discovered that the
Birnbaum-Saunders (BS) distribution is one of the most effective statistical models for wind speed
data. However, although the BS distribution can adequately describe the characteristics of wind speed
data, it has a significant limitation in that it cannot analyze data with zero values. At certain times,
wind speed may decrease to nearly zero. As a result, the BS model does not properly show what the
data resembles. Consequently, when wind speed data encompasses positive and zero values,
researchers have formulated a novel model termed the zero-inflated Birnbaum-Saunders (ZIBS)
distribution. Many researchers have studied ZIBS distribution by constructing confidence intervals for
various parameters. For example, Ratasukharom, Niwitpong, and Niwitpong [2] developed confidence
intervals for the mean of the ZIBS distribution. In the same year, they also investigated methods for
constructing confidence intervals for the variance [3]. Subsequently, Janthasuwan Niwitpong, and
Niwitpong [4] proposed a method for constructing confidence intervals for the coefficient of variation.
More recently, Thangjai et al. [5] examined the use of functions of percentiles to construct confidence
intervals for ZIBS distribution.

In cases where wind speed data from multiple areas or regions need to be analyzed simultaneously,
for example, comparing wind speeds in Thailand's northern, northeastern, and southern regions,
analyzing each region separately may not be sufficient to draw comprehensive conclusions or to reveal
statistically significant differences. Because of such circumstances, one must apply a statistical
procedure called Simultaneous Confidence Intervals (SCIs). The use of SCIs enables the simultaneous
comparison of wind speed parameters across regions. As a result, many researchers have investigated
SClIs for all pairwise differences between parameters in various distributions. For instance, Li, Song,
and Shi [6] suggested a parametric bootstrap method to create SCls for the mean differences among
several pairs of two-parameter exponential distributions. Subsequently, Thangjai Niwitpong and
Niwitpong [7] introduced methods for estimating SCIs for the differences in means across several
normal populations when the coefficients of variation are unknown. Their proposed techniques
included the generalized confidence interval (GCI) and the method of variance estimates recovery
(MOVER). Later, Malekzadeh and Kharrati-Kopaei [8] applied GCI, fiducial GCI (FGCI), and
parametric bootstrap methods to construct SCIs for quantile differences among multiple two-parameter
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exponential distributions under a progressive Type II censoring scheme. Puggard Niwitpong and
Niwitpong [9] presented estimation methods for SCIs that consider all potential pairwise differences
between the coefficients of variation in BS distributions. These techniques involve the use of the highest
posterior density interval, Bayesian credible intervals, the percentile bootstrap, the GCI, the MOVER
based on the asymptotic confidence interval, and the MOVER based on the GCI. Furthermore, Ren, Liu,
and Pu [10] developed three fiducial methods, one exact and two approximate, for constructing SCIs for
differences in the means of multiple delta-gamma distributions.

One parameter of importance in statistical data analysis that has not been examined in relation to
the generation of simultaneous confidence intervals for the ZIBS distribution is the coefficient of
variation (CV). The CV is a statistical measure of how datasets are distributed in relation to each other.
The CV is the standard deviation divided by the mean. A higher CV means that the data is more variable
compared to other data, whereas a lower CV means that the data is less variable compared to other
data. The CV is important because it has no units of measurement, which makes it easy to compare
variability between datasets with various units of measurement. In many real-world situations, the
coefficient of variation serves as a useful tool. For instance, environmental scientists utilize the
coefficient of variation to study the variability in environmental data, such as rainfall patterns,
temperature fluctuations, or pollutant levels [11-13]. Moreover, the difference in the coefficient of
variation, which is a useful method for comparing the level of relative dispersion between data sets,
enables us to assess and compare the consistency or volatility of data quantitatively with greater clarity.
This is applicable in various scenarios, such as comparing the consistency of different processes,
evaluating the impact of changes on data volatility, or identifying significant differences between
groups. This information can be effectively used for practical decision-making.

Based on a comprehensive review of the literature, it has been found that no prior research has
utilized the coefficients of variation of the ZIBS distributions for constructing simultaneous confidence
intervals. Therefore, we propose seven statistical methods: The generalized confidence interval (GCI),
the bootstrap confidence interval (BCI), the method of variance estimates recovery (MOVER), the
MOVER based on GCI (MG), the MOVER based on BCI (MB), the Bayesian credible interval (BAY),
and the highest posterior density (HPD). These methods will be employed to construct simultaneous
confidence intervals for the differences in the coefficients of variation in the ZIBS distributions. Finally,
the proposed approaches will be applied to wind speed data in Thailand.

2. Properties of the ZIBS distribution

Let Y =(13,Y;,...,Y,) be a random sample drawn from the ZIBS distribution with the
probability of zero &, shape parameter «, and scale parameter S, denoted by ZIBS(a,[,6). The
probability density function of the ZIBS distribution can be defined as

3

fOi@B,6) = Slolyl + (1 = &) = [(5)% + (E)E] exp |~ 35 (G +2-2)|lombl, ()

y

where a, > 0, I is an indicator function, in which I,[y] takes the value 1 when y =0 and 0
when y >0 and Ig.)[y] takes the value 0 when y =0 and 1 when y > 0. The cumulative

distribution function (CDF) of Y is
_ 1) ;y=0

where F(y;a, ) isthe CDF of the Birnbaum-Saunders distribution. For Y = 0, the number of zero
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observations is distributed according to the binomial distribution denoted by n,~Bin(n, §). Given
n = ngy + n), where ngy and n, repreisent the numbers of positive and zero values, respectively,
the maximum likelihood estimate of & is & = n()/n. According to the Aitchison [14] concept, the
population mean, variance, and coefficient of variation can be calculated as follows:

EW)=(1-6)p(1+2).

2

V(Y) = (1-8)@p)*(1+ 5%) +6(1-8)p*(1+ “7) ,

and

JV () 1 [a2(4 + 5a%) + 6(2 + a?)? 2

T EQY)  2+a? 1-6

In this study, we are interested in all pairwise differences between the CVs of ZIBS populations, as

follows: @, = v; — Uy, where i,7 = 1,2,3, ...,k and i # r. Assume that & and &; are independent,
then the maximum likelihood estimator of @;, can be determined as

1 1

1 [a§(4+sa§)+3i(z+a5)2 z g [a$(4+5a$)+3r(z+ar)z]5

2+a? 1-5; 2+a2 1-6, ’

3)

Wiy = V; —Up =
1

1
where @; = {2 [(Znimﬂznim yl—_ﬁ)z -1

j=1 Nj(1) j=1 Nj(1)

} is the modified moment estimator of a; proposed by

Ng, Kundu, and Balakrishnan [15]. According to Janthasuwan, Niwitpong, and Niwitpong [4], the
asymptotic variance of ¥;, derived using the Taylor series in the delta method, is given by

~ a*(1+202)°  3.[2+a2(4+302)]°
() 1 {32al(1+2al) +61[2+al(4+3a1)] } )

T (2+ad)’(1-8)[a¥(a+5a2)+9;(2+22)"] | micey (2+2)° ny(1-8;)

Therefore, the estimated variance of @;,- can be written as
V(ﬁir) = V(ﬁl - ﬁr) = V(ﬁl) + V(ﬁr);
where i,r =1,2,3,...,k, i # r,and COV(D;,0,) = 0.

3. Interval estimation

The concept of the method to construct simultaneous confidence intervals for @;, is explained
in detail as follows:

3.1. The generalized confidence interval (GCI)
The GCI method, which is predicated on the idea of a generalized pivotal quantity (GPQ), was
suggested by Weerahandi [16] for creating confidence intervals. The generalized pivotal quantities for

the parameters f;, @;,and §; are obtained to construct the simultaneous confidence interval for @,
using GCI. According to Sun [17], the GPQ of f; can be defined as
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Cay _ fmax(Biy, Biz); A; < 0;
Qp, (i A1) = {min(ﬁill'ﬁizz);/li >0, ©®)

where A; follows the t-distribution with n;;) — 1 degrees of freedom, and B;; and B;, are the two
solutions of the following quadratic equation:

A Bi® = 2B,8; + (i) — 1)C* — (1/myry ) Did? = 0,

1
where A;y = [(ni(l) — 1)A7 - _BiAlZ:Ia Az = (nyqy — 1)A;C; — (1 = A,CHAZ,

ni(1)

2

Ly 1 p _yuw (1, 1 o) O [ )

Al - ni(l) Z]=1 \/Y_ij’ Bl - 2]=1 (\/Y_U Al) 5 Cl — Tli(l) 2]=1 Yl]’ and Dl - Z]=1( Yl_] Cl) .
Then, according to Wang [18], the GPQ of «; is derived as

1

Yij+{2?=l(11)[Yij]_l}(;[zfi(yij?Ai)_Zni(DQﬁi(J’ij?Ai) 2

Qﬁi(Yij;Ai)Hi ’

(1)

X
Qai(yij;Hi,Al-) — { j=1

(6)

where H; follows the Chi-squared distribution with n;;y degrees of freedom. Note that A; and H;
denote the generalized pivotal quantities for the scale and shape parameters, respectively, of the
Birnbaum—Saunders component in the i-th ZIBS population. Both quantities are constructed as
functions of the observed data and auxiliary random variables, and their distributions are free of
unknown parameters. They are used as intermediate components in deriving the GPQ of the coefficient
of variation.

For the GPQ of §;, we use variance stabilized transformation (VST). According to Wu and Hsieh [19],
the GPQ of §; is defined as

Qs, = sin? larcsin d;
2

K;

where K; = 2\/?1- <arcsin\/6§- - arcsinﬁ) ~N(0,1). The GPQs for B;, a;, and 6;, defined in
Eqgs (5)—(7), can be used to calculate the GPQ for v; as

1
_1 —
QUL' = {2 + [Qai(yij;Hi)Ai)]z} (1 - QSL-) ’
1
.
X {[Qai(yij;Hi'Ai)]z [4 + S[Qai(Yij;Hi'Ai)]z] + Qs {2 + [Qai(}Iij;Hi'Ai)]z} }2- (8)
Now, the GPQ for ;. as szr = Qvi — Qu, > where i,r=1,2,3,...,k and i #r. The (1—
p)100% SCI for @;- using the GCI is given by
Clocroy, = [LGCI:miT' UGCI:wir] = [Qmir(P/Z); Qmir(l - ,0/2)], ©

where Qg, (p/2) and Qg, (1 —p/2) denote the 100(p/2)th and 100(1 — p/2)th percentiles
of Qg respectively. The procedure for constructing SCIs for @, based on the GCI method is
presented in Algorithm 1 in the Appendix.
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3.2. The bootstrap confidence interval (BCI)

The bootstrap technique, introduced by Efron [20], is a resampling method that involves
repeatedly drawing samples with replacement from the original dataset to approximate the sampling
distribution of a statistic. Lemonte, Simas, and Cribari-Neto [21] found that the constant-bias-
correcting parametric bootstrap is the most effective approach for bias reduction. Therefore, this
method was employed to construct the confidence interval for @;,.. Given that B bootstrap samples
are obtained, the corresponding &; series for these samples can be derived and represented as
af,al,...,ak. Inthis context, @& refers to the sequence of bootstrap maximum likelihood estimates
(MLEs) of a;;, where i =1,2,...,k and [ =1,2,...,B. The estimation of the MLE for a; is
carried out using the Broyden—Fletcher—Goldfarb—Shanno (BFGS) quasi-Newton method, a widely
used algorithm for solving nonlinear optimization problems. Accordingly, the bias of the estimator «;
can be expressed as B(a;, al) = E(@;) — a;. The bootstrap expectation E(@&;) is estimated using the
average a = (1/B) Y5, &!. Thus, the bootstrap-based bias estimate for B replications of @; is

derived as B(@;, a;) = ai/ — ;. According to Mackinnon and Smith [22], the bias-corrected estimate

of @/ is obtained by incorporating the bootstrap bias estimate, resulting in
ar = af — 2B(a;, a;). (10)

Let 67 be the bootstrap sample-based observed values of §;. According to Brown, Cai, and
DasGupta [23], S{‘~Beta(nic§f + 0.5, ni(l — Si#) + 0.5) is the bootstrap estimator of ;. Hence,
the bootstrap estimators of @;,- can be defined as

2 % R ) 1
1 @) [ars@) [+ @) P 1 (@pPlars@p?]sizr@p?])?
T @)’ 1-5; 2+(@;)? 1-5; '

(11)

Consequently, the (1 —p)100% SCI for @;, using the BCI method is provided by
CIBCI:wir = [LBCI:miT' UBCI:miT] = [ﬁi*r (p/2), 55(1 —p/2)], (12)

where @[,.(p/2) and @;.(1 —p/2) denote the 100(p/2)th and 100(1 — p/2)th percentiles of
@, respectively. The procedure for constructing SCIs for @;, based on the BCI method is presented
in Algorithm 2 in the Appendix.

3.3. The method of variance estimates recovery (MOVER)

The MOVER method was used to derive a closed-form approximation for the confidence intervals
of parameter differences 8; — 6, (for i,r = 1,2,3, ...,k and i # r). The confidence intervals of 8; —
0, rely on the confidence intervals of the individual parameters. Let [l;,u;] represent the
(1 —p)100% confidence interval for 8;. As proposed by Zou and Donner [24], the confidence interval
for the difference between parameters can be expressed as follows: The lower limit for 8; — 8, is

Ly = (0= 8,) - (60— 1) + (u, - 8,)’

and the upper limit for 8; — 0, is

- ~ ~ - 2
Uy = (6; - 6,) + J (ui—0)" + (6, -1,),
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where i,r =1,2,3,...,k and i # .

To begin, we consider the asymptotic confidence interval for the CV under the ZIBS distribution,
which can be computed as

[l w;] = [ﬁi — 21N V(00,0 + 21 2/ V(ﬁi)], (13)

1
where 0; = (2 + a@?)™?! {(1 — Si)_l[o?iz(él +5a82) +6;(2 + c?l-z)z]}z, and V(9;) is calculated based
on Eq (4). Therefore, the (1 — p)100% SCI for @;, using the MOVER method can be expressed as

Clyover:w;, = [LMOVER:miT' UMOVER:wir]a (14)

where Lyoverw;, = @; — 0,) — \/(ﬁi — 1))+ (ur — 0,)2,

UMOVER:ZD'ir = (ﬁl - ﬁr) + \/(ul - ﬁi)z + (ﬁT‘ - l-r-)z, i,7” = 1,2,3, ...,k, and i Fr.

3.4. The MOVER based on GCI (MG)

Based on Eq (8), the lower and upper limits of v; can be derived using the GCI method, expressed as

[lGCI:vi; uGCI:vi] = [Qui(P/z); Qvi(l - P/Z)], (15)

where Q,,(p/2) and Q, (1 —p/2) denote the 100(p/2)th and 100(1 — p/2)th percentiles of
Qu,» respectively. Hence, the (1 —p)100% SCI for @;, can be obtained using the MG method, as
shown in Eq (16), which is

CIMG:wiT = [LMG:wir' UMG:wiT]a (16)

~ oA ~ 2 N2
where LyG.w,;, = ®; —0,) — J(Ui - lGCI:vi) + (uGCI:vr - Ur) >

2
UMG:wir = (ﬁl - ﬁr) + \/(uGCI:vl. - ﬁi)z + (ﬁT‘ - lGCI:Ur) . i,T' = 1,2,3, ,k and i Fr.
3.5. The MOVER based on BCI (MB)

The bootstrap estimators for v; can be expressed as

1-8;

1

PR PRy R/ %\ 2 2)2
i)\* _ 1 txl-) [4-+5(0(L-) ]+6i [2+(ai) ] 2
b)) '

The lower and upper limits of v; can be obtained using the BCI method, given by
[lBCI:vL-r uBCI:vi] = [0;(p/2),0;(1 —p/2)], (17)

where 0;(p/2) and 9;(1 — p/2) denotethe 100(p/2)th and 100(1 — p/2)th percentiles of U;,
respectively. Consequently, the (1 — p)100% SCI for @;, using the BCI method is provided by

CIMB:wir = [LMB:wiT: UMB:wir]a (18)
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~ oA ~ 2 N2
where Lyp.w,, = ®; —0,) — J(Ui - lBCI:vL-) + (uBCl:vr - Ur) >

5 2
Ump:w, = (0; — ;) + \/(uBCI:vi —0;)" + (0, - lBCI:vr) , Lr=123,...,k and i #7.

The procedure for constructing SCIs for @; based on the MOVER, MG, and MB methods is
presented in Algorithm 3 in the Appendix.

3.6. The Bayesian credible interval (BAY)

Bayes’ theorem, which is sometimes referred to as Bayes’ rule, is a method for updating
probability estimates when new information becomes available. It is vital to realize that Bayes’
theorem applies to sequences of events, where fresh information from a later event is used to modify
the probability of an earlier occurrence. Markov chain Monte Carlo (MCMC) sampling techniques can
be used when the posterior distribution is difficult to compute and complicated. These samples are then
used to compute Bayesian estimates and to construct consistent credible intervals for the parameter of
interest. In the case of the ZIBS distributions, represented as Y;;~ZIBS(«;, B;,6;), where i =

1,2,...,k and j = 1,2,...,n;. The joint likelihood function of k independent ZIBS distributions is
1 3
i k (o) ; i) | Bi)? Bi \?
L(yijs @i, B, 6;) Hi=1{5i V(= 8" s TS [(;) * (y_f) ]

_ytim L (Vi Bi
X exp[ Zj:l 207 (ﬁi + Yij 2)]}

Wang, Sun, and Park [25] recommended the use of proper priors with known hyperparameters when
constructing confidence intervals for the parameters of the Birnbaum-Saunders distribution using
Bayesian inference. Parameter f[; is assumed to follow an inverse gamma distribution with
parameters p; and q;, denoted IG(p;, q;), and similarly, a? is modeled as IG(t;, s;). Furthermore,
under the assumption that §; follows a binomial distribution, the Jeffrey's prior for the binomial
parameter is given by P(8;) < 6; 1 (1 — 6;)~1/2, which corresponds to a Beta distribution, denoted
as Beta(1/2,1/2). As a result, the joint posterior density function for a?, f;, and §; is expressed
as follows:

1 3
io)—1/2 o i i \? i\?
H(a?, B, 8|yi;) « Tk, {57 @721 = ;)M —1/2 B ]_[;.lz(i) [(ﬂ) + <ﬁ_) ]

n
(a2)™i@/2 M Yij YVij

X exp[ z; L(i) zl (3;’ + Li )] CNEE exp( )ﬁi_pi_lexp (— %)}

The marginal posterior distribution of f3; |yi ; can be obtained by integrating the joint posterior
density function with respect to «;, resulting in

o) < () ()]

YVij Yij
_ni(1)+1
st -z)s] T (19)
ij
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while the conditional posterior distribution of a? |,8i, Yij 1s
2 i) M) L (Yij B
a?|(Buyi)~1G (T +t, X005 (ﬁ—’ T 2) + sl->. (20)

Additionally, the marginal posterior distribution of §; |yi i 1s given by

1 1
5l-|yl-j~Beta (ni(o) +E,Tll‘(1) +E) (21)

The posterior samples of a? and &; can be readily obtained using the LearnBayes package in
R software. Parameter a; is then computed as the square root of a?. Moreover, Eq (19) cannot be
expressed in closed form and are analytically intractable; it is not possible to generate posterior samples
of B; using conventional methods. Therefore, the generalized ratio-of-uniforms method, as proposed
by Wakefield, Gelfand, and Smith [26], is utilized for the posterior sampling of f;. The following
details describe the procedure for the sampling algorithm based on the generalized ratio-of-uniforms
method.

Let (a;, b;) be a pair of random variables uniformly distributed over the set

Wie) = {(ai, b):0 <a <P (”—Iy,)]_} (22)

where ¢; = 0 is a constant and P(- |yi ]-) is defined in Eq (19). Define B; = b;/ aici. It follows that
P has a probability density function of the form

P(Bilyij) '
I P(Bi|yij)dB;

Random samples uniformly distributed over W (c;) are generated via the accept-reject method,
employing a suitably chosen one-dimensional enclosing rectangle [0, p(c;)] X [q~(¢;), g™ (¢;)], with

ol bounds (e = swp {[P(BI I} () = e H[PBIY )T . and q*(e) =

f5,(Bilyis) =

ﬁ'su>% {[P(ﬁl-b/i j)]ci?}, assumed finite. An appropriate value for ¢; occurs when g~ (c;) = 0, while

p(c;) and q*(c;) are finite, as proposed by Wang, Sun, and Park [25]. In the generalized ratio-of-

uniforms method, the computation proceeds as follows: First, compute p(c;) and q*(c;). Next,

generate a; from  Uni(0,p(c;)), b; from Uni(0,q*(c;)), and compute 9; = b;/a;*. If the
1

condition a; < [P(ﬁl-|yl- ])]CLT is satisfied, it is accepted; otherwise, the process is repeated.

Note that the posterior samples of «;, B;, and §; are denoted by «;, B;, and §;, respectively.
Accordingly, the Bayesian estimate of @, is given by

.1 (a;)2[4+5(a;)2]+s;[z+(a;)2]2}5_ . {(an"’[4+s(o4>"’]+s4[z+(o4)2]2E )

T 24 (al)’ 1-5] 2+(a))’ 1-5] :

where i, = 1,2,3,...,k and i # r. Now, the (1 —p)100% SCI for @w;, using the BAY method is
provided by

Clpay.w;, = [LBAY:wir' UBAY:wir] = [@i,.(p/2), @, (1 — p/2)], (24)

AIMS Mathematics Volume 11, Issue 2, 4043-4067.



4052

where @, (p/2) and @w;.(1 — p/2) denote the 100(p/2)th and 100(1 — p/2)th percentiles of
@, respectively.

3.7. The highest posterior density (HPD)

The HPD interval in Bayesian statistics is a credible interval that shows the narrowest range that
includes a certain probability mass from the posterior distribution. For constructing the HPD interval
under the ZIBS distribution, the posterior distribution of @;,. in Eq (23) is considered. Accordingly,
the (1 —p)100% SCI for @w;, using the HPD method is given by

CIHPD:wL-r = [LHPD:wL-r; UHPD:mir]a (25)

where Lypp.q,, and Uypp.s,, are computed using the Adi function in the HDInterval package of the

R statistical software. The procedure for constructing SCIs for @; based on the BAY and HPD
methods is presented in Algorithm 4 in the Appendix.

4. Simulation studies

To assess the performance of each method, we conducted an extensive Monte Carlo simulation
study using R software. Random samples were drawn from the ZIBS model under different sample sizes
and parameters, thereby enabling an evaluation of each method’s performance across scenarios. The
sample sizes and parameter settings were specified as shown in Table 1. Parameter f; was setto 1. A
total of 3,000 replications were conducted, with 3,000 iterations for the GCI method, 500 iterations for
the BCI method, and 1,000 iterations for the BAY and HPD methods. For the simulation procedures of
the BAY and HPD methods, we set ¢; = 2. The hyperparameters were chosenas p; = q; =t; = §; =
10~*, which are values close to zero, as recommended by Congdon [27]. These weakly informative
priors were adopted to reflect limited prior information and to enable the data to primarily drive the
inference. A qualitative sensitivity assessment indicated that moderate variations in these
hyperparameters do not materially affect the coverage probabilities and average widths of the BAY
and HPD methods. Two major criteria were used for performance evaluation: The coverage
probabilities (CPs) equal to or greater than the nominal confidence level of 0.95, together with the
narrowest average width (AW). In simulations, let C; = 1 if the parameter values fall within the
confidence interval range, else C; = 0. The coverage probability and average width can be calculated

by
1
CP = Ez’;’:l Cs (D
and
AW = =3 (U — L), (1)

where Lg and U are the lower and upper bounds of the confidence interval for loop s, respectively,
and M represents the total number of simulations runs. The computational procedure for estimating the
coverage probability and the average width of all methods is outlined in Algorithm 5 in the Appendix.
For the case of £=3 (Table 2 and Figure 1), the simulation results revealed that, with respect to
CPs, nearly all methods achieved values close to or greater than the nominal level of 0.95. In particular,
the GCI method consistently maintained CPs at or above the nominal threshold while producing the
narrowest AWs in nearly all scenarios. For instance, when the sample sizes were equal (S=1), GCI
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attained a CP of 0.952 with an AW of 0.391, which was markedly narrower than those obtained from
the competing methods. In some cases, such as S=12, the MG method yielded narrower AWs while
preserving CPs above the nominal level. Nevertheless, GCI remained the most efficient method overall.
In contrast, the MB method consistently produced the widest intervals among the approaches considered.

Table 1. Parameter settings for k=3, 5, 10.

Scenarios (S) (ny,ny, ..., Ng) (ay, a9, ..., ) (61,05, ...,0,)

k=3

1-8 (30%) (0.5%), (1.0%) (0.1%), (0.3%), (0.1,0.3,0.5), (0.5%)

9-16 (30,50,100) (0.5%), (1.0% (0.1%), (0.3%), (0.1,0.3,0.5), (0.5%)

17-24 (50% (0.5%), (1.0%) (0.1%), (0.3%), (0.1,0.3,0.5), (0.5%)

25-32 (100%) (0.5%), (1.0%) (0.1%), (0.3%), (0.1,0.3,0.5), (0.5%)

k=5

33-42 (30%,50%) (0.5%), (1.0% (0.1%), (0.3%), (0.1%,0.3%,0.5), (0.1,0.3%,0.5%), (0.5°)
43-52 (30%,50,100%) (0.5%), (1.0% (0.1%), (0.3%), (0.1%,0.3%,0.5), (0.1,0.3%,0.5%), (0.5°)
53-62 (50%) (0.5%), (1.0%) (0.1°), (0.3%), (0.1%,0.3%,0.5), (0.1,0.3%,0.5%), (0.5°)
63-72 (50%,100°) (0.5%), (1.0% (0.1%), (0.3%), (0.12,0.3%,0.5), (0.1,0.3%,0.5%), (0.5°)
73-82 (100%) (0.5%), (1.0%) (0.1°), (0.3%), (0.1%,0.3%,0.5), (0.1,0.3%,0.5%), (0.5°)
k=10

83-92 (30°,50°) (0.5'%, (1.0 (0.1'9), (0.1%,0.3%), (0.3'%), (0.35,0.5%), (0.5'%)
93-102 (30°,50°,100%) (0.5'%, (1.0 (0.1'9, (0.1%,0.3%), (0.3'%), (0.35,0.5%), (0.5'%)
103-112 (50°,100°) (0.519, (1.0 (0.1'9), (0.15,0.3%), (0.319), (0.35,0.5%), (0.5'%)
Notes: nf = Ny, Ny, o, N
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Figure 1. Comparison of the performance of the proposed methods for k = 3 in terms of
CP with respect to (A) sample size and (C) proportion of zeros, and in terms of AW with
respect to (B) sample size and (D) proportion of zeros.
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Table 2. The CPs and AWs for the 95% SCls of @;, : k= 3.
Coverage probabilities Average widths
5 GCI BCI  MOVER MG MB BAY HPD GCI BCI  MOVER MG GB BAY HPD
1 0.952  0.951 0.962 0.993 0.992 0.958 0.963 0.391 0.521 0.523 0.574 0.690 0.553  0.547
2 0952 0.945 0.970 0.994 0.989 0948 0.956 0.434 0.794 0.803 0.495 0916 0.828  0.820
3 0952 0.946 0.967 0.992 0944 0951 0.957 0.474 0.880 0.881 0.625 1.308 0.920  0.906
4 0947 0.945 0.978 0.993 0.988 0.949 0.961 0.588 1.224 1.220 0.668 1.565 1.291 1.275
5 0.948 0.938 0.943 0.993 0991 0949 0.947 0.704 0.740 0.741 0.907 1.132 0.795 0.788
6 0947 0.939 0.953 0.991 0.989 0948 0.952 0.852 1.062 1.053 0.930 1.148 1.139  1.128
7 0947 0.934 0.946 0.993 0.988 0944 0.949 0918 1.181 1.161 0.967 1284 1.272 1.252
8 0948 0.937 0.963 0.992 0.957 0946 0954 1.165 1.634 1.590 1.321 1974 1.778 1.756
9 0952 0.948 0.955 0.991 0.992 0955 0.957 0.299 0.409 0.414 0.337 0454 0427 0.421
10 0.949 0.948 0.964 0991 0991 0951 0.953 0.324 0.615 0.630 0.357 0.678 0.635  0.627
11 0952 0.948 0.964 0.992 0.992 0951 0.954 0.323 0.586 0.599 0.364 0.719 0.602  0.596
12 0.952 0.947 0.970 0.992 0.992 0949 0.955 0422 0.936 0.950 0.399 1.167 0972  0.958
13 0951 0.946 0.946 0.991 0.991 0955 0.953 0.549 0.586 0.589 0.675 0.781 0.619 0.612
14 0.946 0.942 0.947 0.991 0.990 0949 0.951 0.661 0.837 0.834 0.710 0.876 0.882  0.872
15 0.950 0.946 0.953 0.992  0.990 0950 0.950 0.647 0.810 0.809 0.739  0.962 0.847 0.840
16 0.953 0.943 0.956 0.991 0.988 0.949 0.954 0.888 1.265 1.248 1.073  1.547 1.350 1.330
17 0.953 0.952 0.963 0.993 0.993 0956 0.957 0.290 0.401 0.407 0.393 0476 0414 0411
18 0.949 0.948 0.965 0.992 0.991 0949 0.949 0.312 0.603 0.618 0.347 0.641 0.616  0.610
19  0.953 0.946 0.964 0.992 0.989 0948 0.953 0.336 0.662 0.675 0.343  0.695 0.677  0.669
20 0951 0.943 0.969 0.992 0.990 0945 0.950 0.402 0916 0.932 0.511 1.119 0.939  0.930
21 0951 0.943 0.947 0.963 0.931 0950 0.949 0.536 0.578 0.579 0.638  0.659 0.602  0.597
22 0.946 0943 0.953 0.992 0.991 0946 0.947 0.643 0.821 0.818 0.736 0.902 0.856  0.848
23 0951 0.948 0.955 0.993 0.991 0953 0.955 0.687 0.909 0.901 0.791 1.055 0948 0.937
24 0.947 0.945 0.960 0.991 0.990 0951 0.957 0.859 1.235 1.219 0.954 1.382 1.300 1.287
25 0950 0.952 0.961 0.990 0.962 0954 0.953 0.198 0.282 0.289 0.264 0.365 0.286 0.284
26 0950 0.945 0.962 0.992 0.986 0947 0.947 0.208 0.420 0.435 0.243  0.459 0423  0.420
27 0.945 0.947 0.962 0.991 0.990 0949 0.949 0.222 0.460 0.475 0.302 0.601 0.464  0.459
28  0.953 0.951 0.970 0.991 0.992 0949 0.950 0.259 0.630 0.651 0.299 0.718 0.636  0.630
29 0957 0.952 0.954 0.992 0.991 0954 0.952 0.374 0.410 0.411 0.470 0.540 0.418 0.415
30 0950 0.945 0.950 0.992 0.990 0946 0.947 0.445 0.579 0.578 0.512 0.681 0.591 0.586
31 0945 0.948 0.954 0.992 0.990 0952 0.951 0474 0.637 0.635 0.569 0.685 0.650  0.643
32 0947 0.948 0.957 0.991 0.992 0949 0.952 0.587 0.864 0.859 0.646 1.017 0.884 0.877

Note: Bold values indicate coverage probabilities >0.95, and bold italic values indicate the optimal average widths for each scenario.

For the case of /=5 (Table 3 and Figure 2), the overall pattern remains consistent with the results

for k=3. The GCI maintained CPs that were nearly 0.95 while resulting in AWSs that were narrower than
those of the other approaches. Although the MG method generally yielded relatively high CPs and
occasionally provided narrower intervals than GCI, several scenarios showed CPs falling below 0.95,
preventing it from consistently meeting the evaluation criteria. Other methods, the MOVER, MB, BAY,
and HPD, maintained CPs above 0.95 more reliably; however, they produced noticeably wider AWs.
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Table 3. The CPs and AWs for the 95% SCls of @;, : k=5.
Coverage probabilities Average widths
5 GCI BCI  MOVER MG MB BAY HPD GCI BCI  MOVER MG GB BAY HPD
33 0950 0.949 0.957 0.984 0974 0955 0.958 0.352 0475 0.527 0.371 0.545 0.499 0.494
34 0954  0.946 0.965 0.981 0996 0948 0.953 0.389 0.719 0.758 0.386 0.781 0.747 0.739
35 0948 0.948 0.966 0979 0971 0952 0.956 0.387 0.681 0.716 0.520 0.777 0.707  0.699
360951  0.947 0.968 0.975 0968 0.950 0.955 0414 0.796 0.817 0.400 0961 0.823 0.815
37 0945 0.944 0.975 0.984 0996 0946 0.957 0.517 1.108 1.102 0.552 1289 1.159 1.144
38 0951 0.941 0.945 0.987 0996 0.950 0.950 0.640 0.677 0.707 0.721 0.756 0.721 0.715
39 0949  0.940 0.952 0.977 0982 0948 0.951 0.771 0.967 0.964 0.883 1208 1.030 1.020
40 0.950 0.942 0.953 0.985 0996 0951 0.953 0.755 0.931 0.925 0.827 1.011 0.987 0.976
41 0949 0.944 0.957 0.985 0997 0951 0.953 0.825 1.075 1.047 0.888 1.175 1.141 1.129
42 0948 0.942 0.962 0.985 0.997 0950 0.959 1.044 1473 1.398 1.257 1.613 1.587 1.568
43 0950 0.949 0.952 0.982 0992 0953 0.954 0.300 0.410 0.475 0.319 0.484 0.428 0.423
44 0948 0.945 0.962 0.985 0997 0948 0.952 0.327 0.618 0.676 0.386 0.681 0.638 0.631
45  0.950 0.946 0.960 0.985 0.987 0949 0951 0.317 0.543 0.597 0.480 0.902 0.560 0.555
46 0.949 0.947 0.964 0.983 0997 0949 0.952 0334 0.638 0.685 0.394 0.809 0.656 0.650
47 0951 0.944 0.967 0.985 0989 0946 0.953 0.425 0.940 0.969 0.438 1.048 0.977 0.962
48 0.947 0.939 0.939 0.983 0991 0949 0.947 0.549 0.586 0.632 0.635 0.687 0.619 0.612
49  0.949 0.944 0.950 0.985 0998 0.950 0.952 0.661 0.836 0.856 0.761 0941 0.881 0.871
50 0951 0.947 0.952 0.983 0993 0952 0.953 0.620 0.751 0.775 0.692 0.962 0.787 0.779
51 0951 0.947 0.954 0.972 0985 0951 0.952 0.678 0.871 0.879 0.655 0961 0.913 0.904
52 0947 0.942 0.953 0.979 0987 0948 0.953 0.889 1.265 1.236 1.181 1.619 1.350 1.331
53 0949 0.948 0.958 0.977 0995 0952 0.954 0.290 0.402 0.462 0.378 0.513 0415 0411
54 0951 0.947 0.967 0.984 0995 0950 0.953 0.313 0.604 0.655 0.353  0.738 0.617 0.612
55 0.947  0.949 0.965 0.983 0956 0.951 0.954 0.323 0.601 0.647 0.361 0.824 0.616 0.609
56 0950 0.945 0.964 0.986 0988 0946 0.950 0.344 0.704 0.736 0.394 0.819 0.721 0.712
57 0953  0.949 0.974 0.986 0.968 0.950 0.957 0.402 0.912 0.933 0.399 1.092 0.936 0.927
58 0951 0.945 0.950 0.980 0.997 0953 0.952 0.535 0.577 0.615 0.604 0.708 0.602 0.597
59 0948 0.946 0.955 0.983 0996 0.950 0.952 0.641 0.818 0.829 0.685 0951 0.853 0.846
60 0948 0.941 0.948 0.965 0936 0946 0.948 0.648 0.826 0.833 0.705 1.120 0.861 0.852
61 0950 0.945 0.953 0.986 0958 0.950 0.953 0.714 0.960 0.942 0.718 1.074 1.002 0.991
62 0952  0.945 0.962 0.984 0997 0951 0.957 0.859 1.236 1.194 0.979 1.438 1.301 1.288
63 0949 0.949 0.957 0.985 0997 0952 0.953 0.237 0.332 0.406 0.264 0373 0.340 0.337
64 0950 0.944 0.959 0.984 0992 0946 0.947 0.253 0.498 0.567 0.262 0.571 0.506 0.501
65 0950 0.950 0.963 0.986 0998 0.952 0.952 0.252 0.460 0.526 0.267 0.527 0.467 0.463
66  0.947 0.945 0.962 0.985 0.992 0946 0.947 0.266 0.543 0.600 0.291 0.691 0.551 0.545
67 0948 0.945 0.965 0.983 0997 0945 0.949 0319 0.750 0.802 0.371 0.828 0.765 0.756
68 0950 0.943 0.945 0.964 0951 0948 0.947 0.442 0.481 0.536 0.578 0.636 0.497 0.492
69  0.950 0.947 0.952 0.971 0.957 0.950 0.950 0.529 0.681 0.717 0.751 0.972  0.703  0.696
70 0949 0.945 0.951 0.985 0986 0949 0.950 0.512 0.641 0.678 0.561 0.725 0.660 0.654
71 0.948 0.946 0.954 0.985 0986 0949 0.950 0.562 0.749 0.768 0.580 0.861 0.771 0.764
72 0950 0.941 0.952 0.982 0997 0946 0.948 0.702 1.020 1.021 0.833 1.187 1.060 1.049
73 0953 0.949 0.959 0.963 0996 0.952 0.951 0.198 0.282 0.356 0.219 0.319 0.286 0.283
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Coverage probabilities Average widths

GCI BCI  MOVER MG MB BAY HPD GCI BCI  MOVER MG GB BAY HPD
74 0948 0.947 0.963 0.984 0989 0949 0.949 0.208 0.420 0.488 0.251 0.521 0.424 0.420
75 0948 0.947 0.962 0.985 0998 0949 0.949 0.215 0418 0.484 0.256 0485 0.421 0.417
76 0952 0.950 0.964 0.986 0.998 0.950 0.950 0.227 0.489 0.546 0.226  0.529 0.492 0.488
77 0947 0.950 0.968 0.982 0996 0.951 0.952 0.259 0.628 0.682 0.332 0.768 0.634 0.629
78 0950 0.945 0.948 0985 0997 0949 0.947 0.374 0.410 0.465 0.413 0.471 0.418 0415
79 0951 0.947 0.953 0.965 0983 0951 0.949 0.445 0.579 0.616 0.475 0.679 0.590 0.585
80 0.952 0.948 0.952 0.971 0981 0.950 0.950 0.448 0.582 0.618 0.503  0.770 0.593 0.588
81 0.947 0.945 0.951 0.985 0997 0948 0.948 0.491 0.674 0.694 0.484 0.770 0.687 0.681
82 0949 0.944 0.954 0.985 0996 0946 0.948 0.587 0.865 0.870 0.687 1.013 0.885 0.877

Note: Bold values indicate coverage probabilities >0.95, and bold italic values indicate the optimal average widths for each scenario.
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Figure 2. Comparison of the performance of the proposed methods for £k = 5 in terms of
CP with respect to (E) sample size and (G) proportion of zeros, and in terms of AW with
respect to (F) sample size and (H) proportion of zeros (a=(30°,50%), b=(302,50,100?),
c=(50%), d=(502,100%), e=(100%), £=(0.1°), g=(0.3%), h=(0.1%,0.3%,0.5), i=(0.1,0.3%,0.5%), and
j=(0.5%)).
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For the case of &=10 (Table 4 and Figure 3), the results became more complex. The GCI method
began to show limitations, as its CP dropped below 0.95 in several scenarios (e.g., S=96 and S=101),
thereby failing to meet the first evaluation criteria. Nevertheless, in scenarios where GCI maintained
CPs above 0.95, it continued to produce the narrowest AWs compared with the other methods. In
contrast, the MG method, which consistently achieved CPs greater than 0.95, emerged as the more
suitable choice in many cases where GCI failed, as it provided narrower AWs than BAY or MOVER.
For instance, at S=96, the MG method achieved a CP of 0.995 with an AW of 0.477, which was
substantially smaller than those obtained from the competing methods.

The simulation results in Figures 1-3 reveal a distinct pattern concerning the effects of the sample
size and the proportion of zeros on the methods' performance. As the sample size increased, the
efficiency of all methods tended to improve, as evidenced by a noticeable reduction in AWSs. In contrast,
as the proportion of zeros in the data increased, the performance of all methods deteriorated markedly.
This indicated that a higher proportion of zeros inflates the variability of the estimators.

Table 4. The CPs and AWs for the 95% SCIs of @, : k= 10.

Coverage probabilities Average widths

GCI BCI MOVER MG MB BAY HPD GCI BCI MOVER MG GB BAY HPD
83  0.950 0.949 0.977 0.996 0.999 0.955 0.957 0.342 0.463 0.525 0.435 0.598 0.486 0.481
84 0.950 0.945 0.980 0.996 0.994 0.950 0.953 0.353 0.563 0.659 0.376  0.700 0.585 0.580
85 0948 0.947 0.983 0.991 0.997 0.950 0.955 0.374 0.700 0.801 0.400 0.796 0.725 0.717
86 0.949  0.944 0.985 0.994 0.995 0.948 0.954 0417 0.855 1.001 0.462 0951 0.884 0.874
87 0.950 0.944 0.988 0.986 0.994 0.946 0.956 0.497 1.073 1.211 0.517 1.373 1.119 1.104
88 0.951 0.940 0.967 0.994 0.998 0.949 0949 0.622 0.660 0.744 0.732 0.780 0.701  0.695
89 0.949  0.942 0.968 0.993 0.994 0.950 0.951 0.674 0.781 0.869 0.793 0926 0.825 0.818
90 0947 0.941 0.971 0.991 0.985 0.948 0.951 0.751 0.944 1.054 0.865 1.187 1.002 0.992
91 0.950 0.943 0.974 0.989 0.985 0.949 0.954 0.856 1.151 1.274 1.047 1.424 1.221 1.209
92 0949 0.942 0.978 0.992 0.998 0.948 0.956 1.015 1.436 1.579 1.149 1.594 1.542 1.524
93 0.951 0.947 0.982 0.984 0.984 0.952 0.954 0.316 0.430 0.526 0.366 0.522  0.451 0.445
94 0952 0.947 0.986 0.997 0.991 0.950 0.953 0.324 0.517 0.659 0.400 0.616 0.537 0.530
95 0949 0.946 0.988 0.996 0.987 0.948 0.952 0.345 0.651 0.802 0.360 0.726 0.674 0.665
96 0.945  0.950 0.991 0.995 0.998 0.951 0.957 0.379 0.780 0.997 0.477 0.959 0.806 0.796
97 0949 0.948 0.993 0.992 0.991 0.950 0.958 0.450 0.986 1.202 0.531 1.111 1.029 1.011
98 0.950 0.940 0.974 0.990 0.990 0.948 0948 0.577 0.615 0.746 0.755 0.773 0.652 0.645
99 0950 0.944 0.978 0.991 0.997 0.951 0951 0.621 0.718 0.869 0.711 0.824 0.758 0.749
100 0.952 0.942 0.980 0.988 0.969 0.950 0.951 0.694 0.876 1.055 0.865 1.201 0.928 0.916
101 0.946 0.941 0.981 0.996 0.999 0.947 0.952 0.782 1.051 1.268 0.883 1.184 1.112 1.098
102 0.950 0.940 0.984 0.995 0.998 0.947 0.953 0.934 1.324 1.571 1.096 1.536 1.419 1.396
103 0.950 0.948 0.979 0.970 0.953 0.951 0.952 0.246 0.344 0.408 0311 0.439 0.353 0.350
104 0.950 0.949 0.985 0.994 0.999 0.951 0.953 0.251 0411 0.510 0.290 0.497 0419 0415
105 0.948 0.945 0.983 0.996 0.986 0.947 0949 0.263 0.515 0.618 0.308 0.609 0.525 0.520
106 0.949 0.944 0.986 0.991 0.995 0.946 0.948 0.286 0.617 0.769 0.367 0.757 0.626 0.621
107 0.951  0.947 0.987 0.997 0.999 0.949 0.953 0.334 0.777 0.927 0.369 0.897 0.794 0.786
108 0.949 0.943 0.973 0.944 0.953 0.949 0947 0.458 0.497 0.580 0.576 0.633 0.514 0.510
109 0.947 0.944 0.973 0.981 0.977 0.949 0.948 0.491 0.579 0.676 0.612 0.710 0.597 0.592

AIMS Mathematics Volume 11, Issue 2, 4043-4067.



4058

Coverage probabilities Average widths
GCI BCI  MOVER MG MB BAY HPD GCI BCI  MOVER MG GB BAY HPD
110 0.948 0.947 0.977 0.989 0.991 0.950 0.951 0.548 0.705 0.819 0.628 0.848 0.730 0.723
111 0.949 0.942 0.976 0.995 0.995 0.945 0.946 0.615 0.842 0.983 0.757 1.039 0.869 0.861
112 0951 0.944 0.978 0.996 0.990 0.947 0951 0.731 1.062 1.222 0.819 1.239 1.106 1.095

S

Note: Bold values indicate coverage probabilities >0.95, and bold italic values indicate the optimal average widths for each scenario.
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Figure 3. Comparison of the performance of the proposed methods for £ = 10 in terms of
CP with respect to (I) sample size and (K) proportion of zeros, and in terms of AW with
respect to (J) sample size and (L) proportion of zeros (k=(30%,50°), 1=(30°,50°,100?),
m=(50,"100°), n=(0.1'?), 0=(0.1°,0.3%), p=(0.3'%), q=(0.3°,0.5%), and r=(0.5'?)).

5. An empirical application

The empirical application in this study uses wind speed data, a key variable that influences
multiple domains, including the environment, energy, and public health. Wind speed also plays a
significant role in transportation and aviation, particularly with respect to flight safety and punctuality.
For this reason, wind speed data from the Phuket Airport Weather Observing Station were selected as
a case study for constructing SCIs for the coefficients of variation under zero-inflated Birnbaum—
Saunders distributions. The dataset consists of wind speed observations from all directions, collected
between January 1 and 7 of the years 2021 to 2025. Since the data were collected from different years,
the corresponding estimators were considered approximately independent with respect to wind
direction, reflecting year-to-year variability in prevailing wind patterns. Although wind speed
components from different directions may exhibit dependence at a given time due to the influence of
the same atmospheric system, such directional dependence was mitigated in this study by aggregating
the data into daily representative values. Moreover, as all observations originated from a single
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monitoring station, spatial directional dependence was not present. These data were obtained from the
Thai Meteorological Department’s Automatic Weather System (http://www.aws-observation.tmd.go.th
/main/main) and are presented in Table 5. The dataset included positive and zero wind speed values.
To illustrate the distribution of the data, histograms of wind speed for all five years are plotted in Figure 4.
In addition, Table 6 presents the summary statistics of wind speed for each year. For the positive
observations, the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
were employed to assess the goodness of fitness of the distributions. The criterion was calculated as

AIC = 2In(L) + 2p and BIC = 2In(L) + 2pin(r),

where p is the number of parameters estimated, 7 is the number of observations, and L is the likelihood
function. The Birnbaum—Saunders distribution exhibited the lowest AIC and BIC values among the
other candidate distributions, as illustrated in Table 7. This suggested that it is the most suitable model
for the positive wind speed data. Furthermore, to validate that the positive wind speed data follow the
Birnbaum—Saunders distribution, we plotted the cumulative distribution function (CDF) derived from
the observed positive wind speed data alongside the fitted CDF of the Birnbaum—Saunders distribution,
as shown in Figure 5. The close agreement between the two curves indicated a satisfactory fit. Hence,
the wind speed data consisted of positive and zero values and could be appropriately modeled using
the zero-inflated Birnbaum—Saunders distribution. This distribution was employed to construct
simultaneous confidence intervals for all pairwise differences in the coefficients of variation in the
wind speed data. Table 8 presents the 95% simultaneous confidence intervals for all pairwise
differences in the coefficients of variation in wind speed data across the five years, obtained using the
GCI, BCI, MOVER, MG, MB, BAY, and HPD methods. The results indicated that the GCI method
provided an interval of [0.2054, 0.55654], with a width of 0.3510, which was the narrowest among all
methods. This suggested that GCI is the most suitable method for analyzing the wind speed data.
Moreover, these findings are consistent with the simulation results reported in Table 3, Scenario 80,
which most closely resembles the empirical dataset.

Table 5. Wind speed data (knots) from the Phuket Airport Weather Observing Station for
each year from 2021 to 2025.

Wind Speed (knots)
In 2021
0.0 0.0 0.0 0.0 1.3 0.1 0.7 0.0 0.0 0.0 0.0
0.1 0.1 0.1 0.1 1.7 0.4 1.0 0.0 0.0 0.1 0.0
9.2 6.2 7.2 2.4 9.6 5.5 10.1 0.0 0.0 0.1 0.0
76.8 48.3 62.6 22.5 38.3 33.1 32.5 0.0 0.0 0.0 0.0
12.2 9.7 12.0 12.4 3.8 124 11.6 5.8 0.6 33 0.0
0.1 0.1 0.5 4.5 0.1 4.0 2.9 0.1 0.0 0.5 0.0
0.0 0.0 0.0 0.1 0.0 0.3 0.1 0.3 0.6 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0
0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0
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Wind Speed (knots)
In 2022
0.1 0.1 1.3 1.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
1.8 0.8 1.6 0.8 0.8 0.0 0.1 0.0 0.0 0.0 0.0
22.3 23.1 18.8 11.5 5.8 16.7 9.0 2.9 2.4 0.0 0.1
67.1 65.1 44.0 34.5 28.0 66.7 30.1 1.8 3.0 0.0 0.2
8.7 9.0 11.2 17.7 18.3 16.7 22.2 6.1 1.6 11.7 0.1
0.1 1.7 3.1 7.9 7.3 0.0 53 0.0 0.0 1.3 0.0
0.0 0.2 1.4 1.8 2.7 0.0 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.3 0.5 1.1 0.0 0.0 0.0 0.0 0.0 0.1
0.0 0.0 0.8 1.1 0.8 0.0 0.0 0.0 0.0 0.2 0.5
0.0 0.0 0.2 2.0 0.4 0.0 0.0 0.2 1.4 0.0 0.1
0.0 0.0
In 2023
0.6 0.0 1.3 0.8 0.1 1.3 0.9 6.5 1.5 0.0 0.0
0.8 0.6 2.3 3.3 0.8 4.4 2.9 0.0 0.0 0.0 0.0
8.8 9.6 17.2 14.9 14.0 12.8 13.4 3.1 1.3 9.2 7.8
56.3 74.3 47.4 50.4 33.5 24.9 42.6 6.7 2.1 0.6 0.8
14.8 15.3 13.8 9.6 15.9 15.6 25.8 4.1 0.3 8.6 0.0
1.1 0.0 1.8 0.6 7.1 8.1 6.0 7.1 0.8 2.3 0.2
0.0 0.0 0.1 0.1 1.4 2.1 1.3 0.1 0.2 0.0 1.6
0.0 0.0 0.0 0.1 1.0 0.6 0.3 1.0 7.6 0.7 0.0
0.0 0.0 0.1 0.1 1.0 0.5 0.0 0.0 0.0 0.6 0.0
0.0 0.0 0.1 0.0 1.0 0.2 0.0 0.3 4.5 0.1 0.1
0.0 0.0
In 2024
1.5 1.7 1.0 3.1 0.8 0.5 0.1 4.7 6.0 0.0 0.1
1.0 1.5 1.8 1.4 0.9 0.9 0.6 8.5 4.2 0.0 0.1
4.5 8.6 6.8 11.6 14.0 7.2 10.7 2.0 1.3 0.9 0.3
21.0 23.6 22.6 27.5 27.9 25.7 21.3 2.3 7.8 0.4 0.3
22.3 16.3 342 21.9 21.9 12.6 31.5 3.8 2.1 2.8 0.1
14.5 6.2 14.4 11.9 6.2 6.9 15.9 7.0 1.9 0.6 0.0
2.3 0.9 1.8 0.6 0.5 2.2 2.5 0.0 0.1 0.0 0.0
0.3 0.1 0.3 0.0 0.0 1.0 0.4 0.1 0.8 0.1 0.0
0.2 0.0 0.0 0.0 0.1 0.2 0.1 0.9 7.0 0.0 0.0
0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.3 33 0.0 0.1
0.2 0.0
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Wind Speed (knots)
In 2025
0.1 0.5 0.6 0.3 0.6 0.5 2.2 0.0 0.0 0.5 0.1
0.5 1.3 1.3 0.6 0.9 2.4 0.7 7.8 2.6 0.0 0.1
7.5 12.7 7.6 11.8 9.6 12.0 7.2 8.3 2.2 0.0 0.0
322 38.8 43.3 55.6 67.5 54.2 51.5 6.7 1.2 0.0 0.1
24.4 17.0 20.3 9.7 12.9 28.0 19.8 2.0 0.4 1.7 8.6
8.1 5.8 3.0 1.3 1.5 1.9 6.1 0.0 0.0 0.9 1.5
1.4 0.6 0.2 0.1 0.1 0.2 0.3 2.9 3.0 0.1 0.0
0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.5 0.3 0.4
0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 5.8 0.2 0.0
0.0 0.0
Table 6. Summary statistics for the wind speed data.
Statistics Wind speed (knots)
2021 2022 2023 2024 2025
n; 112 112 112 112 112
Ni(1) 52 69 84 94 78
Ni(0) 60 43 28 18 34
Si 0.535 0.383 0.250 0.161 0.304
a; 2.960 2.579 2.414 2.376 2.571
ﬁi 1.675 2.106 2.024 1.611 1.931
D; 2.991 2.449 2.130 1.975 2.276
Wind Speed (knots) by Year
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Figure 4. Histograms of wind speed data from the Phuket Airport Weather Observing
Station for each year from 2021 to 2025.
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CDF of Positive Wind Speed CDF of the Birnbaum-Saunders Distribution
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Figure 5. The CDF of the positive wind speed data compared with the estimated CDF from
the Birnbaum—Saunders distribution.

Table 7. The AIC and BIC values of each distribution for wind speed data.

o o Wind speed (knots)
Distributions Criterion
2021 2022 2023 2024 2025
Normal AIC 440.260 576.834 681.145 671.851 641.617
BIC 444.162 581.302 686.006 676.937 646.330
Lognormal AIC 278.837 391.842 463.951 488.307 423.804
BIC 282.739 396.310 468.813 493.394 428.517
Exponential AIC 334.622 444.896 517.713 531.721 488.353
BIC 336.574 447.130 520.144 534.264 490.709
Gamma AIC 286.136 402.284 476.613 492.343 437.676
BIC 290.039 406.753 481.475 497.429 442.390
Logistic AIC 420.256 553.834 646.027 661.769 614.515
BIC 424.158 558.302 650.888 666.856 619.229
Cauchy AIC 371.745 485.059 571.346 618.019 532.519
BIC 375.648 489.527 576.208 623.106 537.233
Weibull AIC 282.298 397.006 470.048 489.824 430.833
BIC 286.201 401.474 474.909 494911 435.547
Birnbaum- AIC 264.940 383.066 457.083 469.653 413.405
Saunders BIC 270.794 389.768 464.375 477.283 420.475

Notes: The bold number indicates the lowest AIC and BIC of distribution.
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Table 8. The SCIs of all pairwise differences between the CVs for the wind speed data.

Confidence interval for @;,

Methods Length of intervals

Lower Upper
GCI 0.2054 0.5565 0.3510
BCI 0.1609 0.6006 0.4397
MOVER 0.0528 0.7478 0.6951
MG 0.2030 0.5663 0.3633
MB 0.0354 0.7277 0.6924
BAY 0.0643 0.7527 0.6883
HPD 0.0533 0.7343 0.6810

6. Conclusions

Our objective of this investigation was to evaluate the construction of simultaneous confidence
intervals for all pairwise differences in the coefficients of variation under zero-inflated Birnbaum—
Saunders distributions using two critical criteria: Coverage probability and average width. The
simulation results demonstrated that the GCI method performed most effectively when the number of
samples was small to moderate (k = 3, 5), as it consistently maintained coverage probability close to
the nominal level and produced the narrowest intervals. However, the GCI method demonstrated
under-coverage in certain scenarios when the number of samples became large (k = 10). Although it
yielded the shortest confidence intervals, its coverage probability fell below the nominal level in
certain scenarios. This performance deterioration can be attributed to the accumulation of sampling
errors associated with the estimation of nuisance parameters across groups. As k increased, the
compounded variability inherent in GPQ construction led to less precise interval estimation. As a result,
the MG was a more appropriate alternative in certain scenarios, as it consistently maintained a coverage
probability above 0.95 and provided relatively narrow intervals. In contrast, the MOVER and MB
methods, while conservative in maintaining coverage probability above the nominal level, produced
excessively wide intervals. The BCI often failed to achieve adequate coverage, with coverage
probability values often below 0.95, thus raising concerns regarding its reliability. The BAY and the
HPD usually generated coverage probability values that were nearly 0.95; nevertheless, their AWs
were wider than those of the GCI and the MG. Overall, the findings suggested that GCI is the most
appropriate method when the number of samples is small and sample sizes are sufficient, whereas MG
is preferable in scenarios with a large number of samples or a high proportion of zeros. Moreover, the
application of all proposed methods to empirical wind speed data from Thailand demonstrated their
practical applicability. The results of this real-data analysis corroborated the simulation results, further
confirming the reliability of the suggested methods.
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Appendix

The procedure for constructing simultaneous confidence intervals for @;, based on the GCI
method is as follows:
Algorithm 1.
1) Compute A;, B;,C;, and D;
2) Atthe g step
1. Generate /ll-~t(ni(1)_1) and then compute Qﬁi(yi]-;/li) from Eq (5).

i If Qﬁi(yl-j;/li) < 0 regenerate Ai~t(ni(1)_1).
iii. Compute Qai(yij;Hi,Ai) and Qs, from Egs (6) and (7), respectively.
iv. Compute @, from Eq (8).

3) Repeat step 2), a total G=3000 times.
4) Compute Clgcy.q,, from Eq(9).

The procedure for constructing simultaneous confidence intervals for @;, based on the BCI method
is as follows:

Algorithm 2.
1) Atthe b step
i. Generate y;;, with replacement from y;; where i =1,2,...,k and j = 1,2,...,n;.

ii. Compute c’fi/ and B(@;, a;).
iii. Compute @; from Eq (10).
iv. Generate 6 and compute @/, from Eq (11).

2) Repeat step 1), a total B=500 times.
3) Compute Clgc.q,, from Eq (12).

The procedure for constructing simultaneous confidence intervals for @;,- based on the MOVER,
MG, and MB methods is as follows:

Algorithm 3.

1) Compute &; and &;.

2) Compute 9; and V(9;).
For MOVER:

i. Compute [[;,u;] from Eq (13).

ii. Compute Clyovgg:.w, from Eq(14).
For MG:

i. Compute [lGCI:vL-ruGCI:vL-] from Eq (15).

ii. Compute Clyg.s,, from Eq (16).
For MB:

i. Compute D;.
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ii. Compute [lBCI:vi,uBC,:vi] from Eq (17).
iii. Compute Clyp.4, from Eq (18).

The procedure for constructing simultaneous confidence intervals for @;, based on the BAY and HPD
methods is as follows:

Algorithm 4.
1) Set Di» 4qi, ti' and Si.
2) Compute p(c;) and q*(c;)
3) Atthe [ step,
i. © Generate ai~Uni(0,p1(ci)) and b;~Uni(0,q*(c;)), and compute 9; = b;/a;’;

if a; < [P(ﬂl-|yl-j)]ciT then ﬁi(k) =9
else

Go back to® ; end
. . - (k)
ii. Generate a?~IG (% + ti,z;l;(i) % (% + [;;—U — 2) + sl-) and set ai(k) = |a?.
iii. Generate 5i|yi ; from Eq (21).
iv. Compute @, from Eq (23).
4) Repeat step 3), a total L=1000 times.
5) Compute Clgay.q, and Clypp.s, from Egs (24) and (25).
The computational procedure for estimating the coverage probability and the average width of all
methods is outlined as follows:

Algorithm 5.
Define n;, a;, B;, and 6;.
For m=1 to M;
1) Generate sample from the ZIBS distributions with parameters «;, §;, and &;.
2) Compute &; and §;.
3) Compute the (1 —p)100% SCI for @;, based on the GCI, BCI, MOVER, MG, MB,
BAY, and HPD methods, as implemented in Algorithms 1-4.
4) If [L, <@, <U,],set C; = 1;elseset C; = 0;
End m loop
5) Compute the coverage probability and average width from Eqgs (I) and (II).
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