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Abstract: The data used for the analysis were collected from multiple regions or years. Evaluating 
each region or year separately may be insufficient for drawing comprehensive inferences and may fail 
to reveal statistically significant differences. To ensure the reliability of the analysis and to enable 
overall conclusions, it is necessary to apply a statistical method known as simultaneous confidence 
intervals. This technique enables the simultaneous construction of confidence intervals for multiple 
parameters. Therefore, we proposed and evaluated methods for constructing simultaneous confidence 
intervals for all pairwise differences between the coefficients of variation in zero-inflated Birnbaum-
Saunders distributions. The methods utilized for constructing simultaneous confidence intervals 
comprise the generalized confidence interval (GCI), the bootstrap confidence interval (BCI), the 
method of variance estimates recovery (MOVER), the MOVER based on GCI, the MOVER based on 
BCI, the Bayesian credible interval, and the highest posterior density interval (HPD). Monte Carlo 
simulations were employed to evaluate the performance of each method, which involved the 
assessment of coverage probabilities and average widths under a set of parameter configurations and 
sample sizes. The generalized confidence interval method was the most efficient overall, as indicated 
by the simulation results. Finally, all proposed methods were applied to real-world wind speed data to 
examine their practical applicability and to demonstrate the consistency of the results between the 
simulation study and real-world applications.  
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1. Introduction  

Interest in clean energy has been steadily increasing, as it provides an alternative to fossil fuels 
and helps mitigate environmental problems caused by greenhouse gas emissions and air pollution. 
Wind energy is one of the best renewable sources of energy because it comes from the movement of 
air. This natural flow of air results in the generation of wind, which in turn leads to environmental 
changes, particularly in the areas of wind energy and air quality. In terms of wind energy, wind turbines 
can turn powerful winds into electricity. Even a small increase in wind speed can lead to a big increase 
in the amount of energy created. Wind power plants are best built in places where the winds are strong 
and steady. These plants create clean energy without polluting the air. Wind speed is also crucial for 
managing the buildup and spread of pollutants such as fine particulate matter (PM2.5), nitrogen 
dioxide, and harmful smoke. On the other hand, when there is no wind or the wind speed is relatively 
low, pollutants tend to stay in the same place, which can have serious effects on public health. This 
phenomenon happens a lot in big cities with a lot of pollution sources, like Bangkok and Chiang Mai, 
where the air is often still and the winds are weak in the winter. Wind speed is very important for 
making energy and controlling pollution, so many academics have looked at the properties of wind 
speed data, especially the statistical distributions that can accurately characterize how wind speed 
changes over time. These kinds of studies are helpful for making wind energy planning more accurate. 
For instance, Mohammadi, Alavi, and McGowan [1] performed a study and discovered that the 
Birnbaum-Saunders (BS) distribution is one of the most effective statistical models for wind speed 
data. However, although the BS distribution can adequately describe the characteristics of wind speed 
data, it has a significant limitation in that it cannot analyze data with zero values. At certain times, 
wind speed may decrease to nearly zero. As a result, the BS model does not properly show what the 
data resembles. Consequently, when wind speed data encompasses positive and zero values, 
researchers have formulated a novel model termed the zero-inflated Birnbaum-Saunders (ZIBS) 
distribution. Many researchers have studied ZIBS distribution by constructing confidence intervals for 
various parameters. For example, Ratasukharom, Niwitpong, and Niwitpong [2] developed confidence 
intervals for the mean of the ZIBS distribution. In the same year, they also investigated methods for 
constructing confidence intervals for the variance [3]. Subsequently, Janthasuwan Niwitpong, and 
Niwitpong [4] proposed a method for constructing confidence intervals for the coefficient of variation. 
More recently, Thangjai et al. [5] examined the use of functions of percentiles to construct confidence 
intervals for ZIBS distribution.  

In cases where wind speed data from multiple areas or regions need to be analyzed simultaneously, 
for example, comparing wind speeds in Thailand's northern, northeastern, and southern regions, 
analyzing each region separately may not be sufficient to draw comprehensive conclusions or to reveal 
statistically significant differences. Because of such circumstances, one must apply a statistical 
procedure called Simultaneous Confidence Intervals (SCIs). The use of SCIs enables the simultaneous 
comparison of wind speed parameters across regions. As a result, many researchers have investigated 
SCIs for all pairwise differences between parameters in various distributions. For instance, Li, Song, 
and Shi [6] suggested a parametric bootstrap method to create SCIs for the mean differences among 
several pairs of two-parameter exponential distributions. Subsequently, Thangjai Niwitpong and 
Niwitpong [7] introduced methods for estimating SCIs for the differences in means across several 
normal populations when the coefficients of variation are unknown. Their proposed techniques 
included the generalized confidence interval (GCI) and the method of variance estimates recovery 
(MOVER). Later, Malekzadeh and Kharrati-Kopaei [8] applied GCI, fiducial GCI (FGCI), and 
parametric bootstrap methods to construct SCIs for quantile differences among multiple two-parameter 
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exponential distributions under a progressive Type II censoring scheme. Puggard Niwitpong and 
Niwitpong [9] presented estimation methods for SCIs that consider all potential pairwise differences 
between the coefficients of variation in BS distributions. These techniques involve the use of the highest 
posterior density interval, Bayesian credible intervals, the percentile bootstrap, the GCI, the MOVER 
based on the asymptotic confidence interval, and the MOVER based on the GCI. Furthermore, Ren, Liu, 
and Pu [10] developed three fiducial methods, one exact and two approximate, for constructing SCIs for 
differences in the means of multiple delta-gamma distributions.  

One parameter of importance in statistical data analysis that has not been examined in relation to 
the generation of simultaneous confidence intervals for the ZIBS distribution is the coefficient of 
variation (CV). The CV is a statistical measure of how datasets are distributed in relation to each other. 
The CV is the standard deviation divided by the mean. A higher CV means that the data is more variable 
compared to other data, whereas a lower CV means that the data is less variable compared to other 
data. The CV is important because it has no units of measurement, which makes it easy to compare 
variability between datasets with various units of measurement. In many real-world situations, the 
coefficient of variation serves as a useful tool. For instance, environmental scientists utilize the 
coefficient of variation to study the variability in environmental data, such as rainfall patterns, 
temperature fluctuations, or pollutant levels [11–13]. Moreover, the difference in the coefficient of 
variation, which is a useful method for comparing the level of relative dispersion between data sets, 
enables us to assess and compare the consistency or volatility of data quantitatively with greater clarity. 
This is applicable in various scenarios, such as comparing the consistency of different processes, 
evaluating the impact of changes on data volatility, or identifying significant differences between 
groups. This information can be effectively used for practical decision-making. 

Based on a comprehensive review of the literature, it has been found that no prior research has 
utilized the coefficients of variation of the ZIBS distributions for constructing simultaneous confidence 
intervals. Therefore, we propose seven statistical methods: The generalized confidence interval (GCI), 
the bootstrap confidence interval (BCI), the method of variance estimates recovery (MOVER), the 
MOVER based on GCI (MG), the MOVER based on BCI (MB), the Bayesian credible interval (BAY), 
and the highest posterior density (HPD). These methods will be employed to construct simultaneous 
confidence intervals for the differences in the coefficients of variation in the ZIBS distributions. Finally, 
the proposed approaches will be applied to wind speed data in Thailand. 

2. Properties of the ZIBS distribution 

Let 𝑌 = (𝑌ଵ, 𝑌ଶ, … , 𝑌௡)  be a random sample drawn from the ZIBS distribution with the 
probability of zero 𝛿 , shape parameter 𝛼 , and scale parameter 𝛽 , denoted by 𝑍𝐼𝐵𝑆(𝛼, 𝛽, 𝛿) . The 
probability density function of the ZIBS distribution can be defined as 

𝑓(𝑦; 𝛼, 𝛽, 𝛿) = 𝛿Ι଴[𝑦] + (1 − 𝛿)
ଵ
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where 𝛼, 𝛽 > 0,   is an indicator function, in which Ι଴[𝑦] takes the value 1 when 𝑦 = 0 and 0 
when 𝑦 > 0  and Ι(଴,ஶ)[𝑦]  takes the value 0  when 𝑦 = 0  and 1  when 𝑦 > 0 . The cumulative 
distribution function (CDF) of 𝑌 is  

𝐺(𝑦; 𝛼, 𝛽, 𝛿) = ൜
𝛿 ; 𝑦 = 0

𝛿 + (1 − 𝛿)𝐹(𝑦; 𝛼, 𝛽) ; 𝑦 > 0
 ,     (2) 

where 𝐹(𝑦; 𝛼, 𝛽) is the CDF of the Birnbaum-Saunders distribution. For 𝑌 = 0, the number of zero 
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observations is distributed according to the binomial distribution denoted by 𝑛(଴)~𝐵𝑖𝑛(𝑛, 𝛿). Given 
𝑛 = 𝑛(ଵ) + 𝑛(଴), where 𝑛(ଵ) and 𝑛(଴) represent the numbers of positive and zero values, respectively, 
the maximum likelihood estimate of 𝛿 is 𝛿መ = 𝑛(0) 𝑛⁄ . According to the Aitchison [14] concept, the 
population mean, variance, and coefficient of variation can be calculated as follows:  
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In this study, we are interested in all pairwise differences between the CVs of ZIBS populations, as 
follows: 𝜛௜௥ = 𝜐௜ − 𝜐௥, where 𝑖, 𝑟 = 1,2,3, … , 𝑘 and 𝑖 ≠ 𝑟. Assume that 𝛼ො௜ and 𝛿መ௜ are independent, 
then the maximum likelihood estimator of 𝜛௜௥ can be determined as  

𝜛ෝ௜௥ = 𝜐ො௜ − 𝜐ො௥ =
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 is the modified moment estimator of 𝛼௜ proposed by 

Ng, Kundu, and Balakrishnan [15]. According to Janthasuwan, Niwitpong, and Niwitpong [4], the 
asymptotic variance of 𝜐ො௜, derived using the Taylor series in the delta method, is given by  
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Therefore, the estimated variance of 𝜛ෝ௜௥ can be written as  

𝑉෠(𝜛ෝ௜௥) = 𝑉෠(𝜐ො௜ − 𝜐ො௥) = 𝑉෠(𝜐ො௜) + 𝑉෠(𝜐ො௥), 

where 𝑖, 𝑟 = 1,2,3, … , 𝑘, 𝑖 ≠ 𝑟, and 𝐶𝑂𝑉(𝜐ො௜, 𝜐ො௥) = 0.  

3. Interval estimation 

The concept of the method to construct simultaneous confidence intervals for 𝜛௜௥ is explained 
in detail as follows: 

3.1. The generalized confidence interval (GCI) 

The GCI method, which is predicated on the idea of a generalized pivotal quantity (GPQ), was 
suggested by Weerahandi [16] for creating confidence intervals. The generalized pivotal quantities for 
the parameters 𝛽௜, 𝛼௜, and 𝛿௜ are obtained to construct the simultaneous confidence interval for 𝜛௜௥ 
using GCI. According to Sun [17], the GPQ of 𝛽௜ can be defined as 
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𝑄ఉ೔
൫𝑦௜௝; 𝛬௜൯ = ൜

𝑚𝑎𝑥(𝛽௜ଵ, 𝛽௜ଶ) ; 𝛬௜ ≤ 0;

𝑚𝑖𝑛(𝛽௜ଵ, 𝛽௜ଶ) ; 𝛬௜ > 0,
      (5) 

where 𝛬௜  follows the t-distribution with 𝑛௜(ଵ) − 1 degrees of freedom, and 𝛽௜ଵ and 𝛽௜ଶ are the two 
solutions of the following quadratic equation: 

Δ௜ଵ𝛽௜
ଶ − 2Δ௜ଶ𝛽௜ + ൫𝑛௜(ଵ) − 1൯𝐶௜

ଶ − ൫1 𝑛௜(ଵ)⁄ ൯𝐷௜𝛬௜
ଶ = 0, 

where Δ௜ଵ = ൤൫𝑛௜(ଵ) − 1൯𝐴௜
ଶ −

ଵ

௡೔(భ)
𝐵௜𝛬௜

ଶ൨,  Δ௜ଶ = ൫𝑛௜(ଵ) − 1൯𝐴௜𝐶௜ − (1 − 𝐴௜𝐶௜)𝛬௜
ଶ,  

𝐴௜ =
ଵ

௡೔(భ)
∑

ଵ

ඥ௒೔ೕ

௡೔(భ)

௝ୀଵ
, 𝐵௜ = ∑ ൬

ଵ

ඥ௒೔ೕ
− 𝐴௜൰

௡೔(భ)

௝ୀଵ

ଶ

, 𝐶௜ =
ଵ

௡೔(భ)
∑ ඥ𝑌௜௝

௡೔(భ)

௝ୀଵ
, and 𝐷௜ = ∑ ൫ඥ𝑌௜௝ − 𝐶௜൯

ଶ௡೔(భ)

௝ୀଵ
. 

Then, according to Wang [18], the GPQ of 𝛼௜ is derived as 

𝑄ఈ೔
൫𝑦௜௝; 𝐻௜, 𝛬௜൯ = ቊ

∑ ௒೔ೕ

೙೔(భ)
ೕసభ

ାቄ∑ ൣ௒೔ೕ൧
షభ೙೔(భ)

ೕసభ
ቅீഁ೔

మ ൫௬೔ೕ;௸೔൯ିଶ௡೔(భ)ொഁ೔
൫௬೔ೕ;௸೔൯

ொഁ೔
൫௬೔ೕ;௸೔൯ு೔

ቋ

భ

మ

,   (6) 

where 𝐻௜ follows the Chi-squared distribution with 𝑛௜(ଵ) degrees of freedom. Note that 𝛬௜  and 𝐻௜ 
denote the generalized pivotal quantities for the scale and shape parameters, respectively, of the 
Birnbaum–Saunders component in the i-th ZIBS population. Both quantities are constructed as 
functions of the observed data and auxiliary random variables, and their distributions are free of 
unknown parameters. They are used as intermediate components in deriving the GPQ of the coefficient 
of variation. 

For the GPQ of 𝛿௜, we use variance stabilized transformation (VST). According to Wu and Hsieh [19], 
the GPQ of 𝛿௜ is defined as 

𝑄ఋ೔
= sinଶ ቈarcsin ට𝛿መ௜ −

ஂ೔

ଶඥ௡೔
቉,       (7) 

where 𝐾௜ = 2ඥ𝑛௜ ቆarcsin ට𝛿መ௜ − arcsin ඥ𝛿௜ቇ ~𝑁(0,1). The GPQs for 𝛽௜, 𝛼௜, and 𝛿௜, defined in 

Eqs (5)–(7), can be used to calculate the GPQ for 𝜐௜ as  
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Now, the GPQ for 𝜛௜௥  as 𝑄ధ೔ೝ
= 𝑄జ೔

− 𝑄జೝ
 , where 𝑖, 𝑟 = 1,2,3, … , 𝑘  and 𝑖 ≠ 𝑟 . The (1 −

𝜌)100% SCI for 𝜛௜௥ using the GCI is given by 

𝐶𝐼ீ஼ூ:ధ೔ೝ
= ൣ𝐿ீ஼ூ:ధ೔ೝ
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where 𝑄ధ೔ೝ
(𝜌 2⁄ ) and 𝑄ధ೔ೝ

(1 − 𝜌 2⁄ ) denote the 100(𝜌 2⁄ )𝑡ℎ and 100(1 − 𝜌 2⁄ )𝑡ℎ percentiles 
of 𝑄ధ೔ೝ

, respectively. The procedure for constructing SCIs for 𝜛௜௥ based on the GCI method is 

presented in Algorithm 1 in the Appendix. 
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3.2. The bootstrap confidence interval (BCI) 

The bootstrap technique, introduced by Efron [20], is a resampling method that involves 
repeatedly drawing samples with replacement from the original dataset to approximate the sampling 
distribution of a statistic. Lemonte, Simas, and Cribari-Neto [21] found that the constant-bias-
correcting parametric bootstrap is the most effective approach for bias reduction. Therefore, this 
method was employed to construct the confidence interval for 𝜛௜௥. Given that 𝐵 bootstrap samples 
are obtained, the corresponding 𝛼ො௜  series for these samples can be derived and represented as 
𝛼ො௜ଵ

# , 𝛼ො௜ଶ
# , . . . , 𝛼ො௜஻

# . In this context, 𝛼ො௜௟
# refers to the sequence of bootstrap maximum likelihood estimates 

(MLEs) of 𝛼௜௟ , where 𝑖 = 1,2, . . . , 𝑘  and 𝑙 = 1,2, . . . , 𝐵 . The estimation of the MLE for 𝛼௜௟  is 
carried out using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton method, a widely 
used algorithm for solving nonlinear optimization problems. Accordingly, the bias of the estimator 𝛼௜ 
can be expressed as 𝐵(𝛼ො௜, 𝛼௜) = 𝐸(𝛼ො௜) − 𝛼௜. The bootstrap expectation 𝐸(𝛼ො௜) is estimated using the 
average 𝛼ො௜

/
= (1 𝐵⁄ ) ∑ 𝛼ො௜௟

#஻
௟ୀଵ . Thus, the bootstrap-based bias estimate for 𝐵 replications of 𝛼ො௜  is 

derived as 𝐵෠(𝛼ො௜, 𝛼௜) = 𝛼ො௜
/

− 𝛼௜. According to Mackinnon and Smith [22], the bias-corrected estimate 
of 𝛼ො௜

# is obtained by incorporating the bootstrap bias estimate, resulting in 
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DasGupta [23], 𝛿መ௜
∗~𝐵𝑒𝑡𝑎൫𝑛௜𝛿መ௜

# + 0.5, 𝑛௜൫1 − 𝛿መ௜
#൯ + 0.5൯ is the bootstrap estimator of 𝛿௜. Hence, 

the bootstrap estimators of 𝜛௜௥ can be defined as 

𝜛ෝ௜௥
∗ =

ଵ

ଶା൫ఈෝ೔
∗൯

మ ൝
൫ఈෝ೔

∗൯
మ

ቂସାହ൫ఈෝ೔
∗൯

మ
ቃାఋ෡೔

∗ቂଶା൫ఈෝ೔
∗൯

మ
ቃ

మ

ଵିఋ෡೔
∗ ൡ

భ

మ

−
ଵ

ଶା(ఈෝೝ
∗)మ

൜
(ఈෝೝ

∗)మൣସାହ(ఈෝೝ
∗)మ൧ାఋ෡ೝ

∗ൣଶା(ఈෝೝ
∗)మ൧

మ

ଵିఋ෡ೝ
∗ ൠ

భ

మ

.  (11) 

Consequently, the (1 − 𝜌)100% SCI for 𝜛௜௥ using the BCI method is provided by  

𝐶𝐼஻஼ூ:ధ೔ೝ
= ൣ𝐿஻஼ூ:ధ೔ೝ

, 𝑈஻஼ூ:ధ೔ೝ
൧ = [𝜛ෝ௜௥

∗ (𝜌 2⁄ ), 𝜛ෝ௜௥
∗ (1 − 𝜌 2⁄ )],     (12) 

where 𝜛ෝ௜௥
∗ (𝜌 2⁄ ) and 𝜛ෝ௜௥

∗ (1 − 𝜌 2⁄ ) denote the 100(𝜌 2⁄ )𝑡ℎ and 100(1 − 𝜌 2⁄ )𝑡ℎ percentiles of 
𝜛ෝ௜௥

∗ , respectively. The procedure for constructing SCIs for 𝜛௜௥ based on the BCI method is presented 
in Algorithm 2 in the Appendix. 

3.3. The method of variance estimates recovery (MOVER) 

The MOVER method was used to derive a closed-form approximation for the confidence intervals 
of parameter differences 𝜃௜ − 𝜃௥ (for 𝑖, 𝑟 = 1,2,3, … , 𝑘 and 𝑖 ≠ 𝑟). The confidence intervals of 𝜃௜ −

𝜃௥  rely on the confidence intervals of the individual parameters. Let [𝑙௜, 𝑢௜]  represent the 
(1 − 𝜌)100% confidence interval for 𝜃௜. As proposed by Zou and Donner [24], the confidence interval 
for the difference between parameters can be expressed as follows: The lower limit for 𝜃௜ − 𝜃௥ is 

𝐿௜௥ = ൫𝜃෠௜ − 𝜃෠௥൯ − ට൫𝜃෠௜ − 𝑙௜൯
ଶ

+ ൫𝑢௥ − 𝜃෠௥൯
ଶ
 

and the upper limit for 𝜃௜ − 𝜃௥  is  

𝑈௜௥ = ൫𝜃෠௜ − 𝜃෠௥൯ + ට൫𝑢௜ − 𝜃෠௜൯
ଶ

+ ൫𝜃෠௥ − 𝑙௥൯
ଶ

, 
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where 𝑖, 𝑟 = 1,2,3, … , 𝑘 and 𝑖 ≠ 𝑟. 

To begin, we consider the asymptotic confidence interval for the CV under the ZIBS distribution, 
which can be computed as  

[𝑙௜, 𝑢௜] = ቂ𝜐ො௜ − 𝑧ଵିఘ ଶ⁄ ඥ𝑉෠(𝜐ො௜), 𝜐ො௜ + 𝑧ଵିఘ ଶ⁄ ඥ𝑉෠(𝜐ො௜)ቃ,      (13) 

where 𝜐ො௜ = (2 + 𝛼ො௜
ଶ)ିଵ ቄ൫1 − 𝛿መ௜൯

ିଵ
ൣ𝛼ො௜

ଶ(4 + 5𝛼ො௜
ଶ) + 𝛿መ௜(2 + 𝛼ො௜

ଶ)ଶ൧ቅ

భ

మ, and 𝑉෠(𝜐ො௜) is calculated based 

on Eq (4). Therefore, the (1 − 𝜌)100% SCI for 𝜛௜௥ using the MOVER method can be expressed as  

𝐶𝐼ெை௏ாோ:ధ೔ೝ
= ൣ𝐿ெை௏ாோ:ధ೔ೝ

, 𝑈ெை௏ாோ:ధ೔ೝ
൧,     (14) 

where 𝐿ெை௏ாோ:ధ೔ೝ
= (𝜐ො௜ − 𝜐ො௥) − ඥ(𝜐ො௜ − 𝑙௜)

ଶ + (𝑢௥ − 𝜐ො௥)ଶ, 

 𝑈ெை௏ாோ:ధ೔ೝ
= (𝜐ො௜ − 𝜐ො௥) + ඥ(𝑢௜ − 𝜐ො௜)

ଶ + (𝜐ො௥ − 𝑙௥)ଶ, 𝑖, 𝑟 = 1,2,3, … , 𝑘, and 𝑖 ≠ 𝑟. 

3.4. The MOVER based on GCI (MG) 

Based on Eq (8), the lower and upper limits of 𝜐௜ can be derived using the GCI method, expressed as 

ൣ𝑙ீ஼ூ:జ೔
, 𝑢ீ஼ூ:జ೔

൧ = ൣ𝑄జ೔
(𝜌 2⁄ ), 𝑄జ೔

(1 − 𝜌 2⁄ )൧,      (15) 

where 𝑄జ೔
(𝜌 2⁄ ) and 𝑄జ೔

(1 − 𝜌 2⁄ ) denote the 100(𝜌 2⁄ )𝑡ℎ and 100(1 − 𝜌 2⁄ )𝑡ℎ percentiles of 
𝑄జ೔

, respectively. Hence, the (1 − 𝜌)100%  SCI for 𝜛௜௥ can be obtained using the MG method, as 

shown in Eq (16), which is  

𝐶𝐼ெீ:ధ೔ೝ
= ൣ𝐿ெீ:ధ೔ೝ

, 𝑈ெீ:ధ೔ೝ
൧,       (16) 

where 𝐿ெீ:ధ೔ೝ
= (𝜐ො௜ − 𝜐ො௥) − ට൫𝜐ො௜ − 𝑙ீ஼ூ:జ೔

൯
ଶ

+ ൫𝑢ீ஼ூ:జೝ
− 𝜐ො௥൯

ଶ
, 

𝑈ெீ:ధ೔ೝ
= (𝜐ො௜ − 𝜐ො௥) + ට൫𝑢ீ஼ூ:జ೔

− 𝜐ො௜൯
ଶ

+ ൫𝜐ො௥ − 𝑙ீ஼ூ:జೝ
൯

ଶ

, 𝑖, 𝑟 = 1,2,3, … , 𝑘 and 𝑖 ≠ 𝑟. 

3.5. The MOVER based on BCI (MB) 

The bootstrap estimators for 𝜐௜ can be expressed as  

𝜐ො௜
∗ =

ଵ

ଶା൫ఈෝ೔
∗൯

మ ൝
൫ఈෝ೔

∗൯
మ

ቂସାହ൫ఈෝ೔
∗൯

మ
ቃାఋ෡೔

∗ቂଶା൫ఈෝ೔
∗൯

మ
ቃ

మ

ଵିఋ෡೔
∗ ൡ

భ

మ

. 

The lower and upper limits of 𝜐௜ can be obtained using the BCI method, given by  

ൣ𝑙஻஼ூ:జ೔
, 𝑢஻஼ூ:జ೔

൧ = [𝜐ො௜
∗(𝜌 2⁄ ), 𝜐ො௜

∗(1 − 𝜌 2⁄ )],       (17) 

where 𝜐ො௜
∗(𝜌 2⁄ ) and 𝜐ො௜

∗(1 − 𝜌 2⁄ ) denote the 100(𝜌 2⁄ )𝑡ℎ and 100(1 − 𝜌 2⁄ )𝑡ℎ percentiles of 𝜐ො௜
∗, 

respectively. Consequently, the (1 − 𝜌)100% SCI for 𝜛௜௥ using the BCI method is provided by  

𝐶𝐼ெ஻:ధ೔ೝ
= ൣ𝐿ெ஻:ధ೔ೝ

, 𝑈ெ஻:ధ೔ೝ
൧,       (18) 
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where 𝐿ெ஻:ధ೔ೝ
= (𝜐ො௜ − 𝜐ො௥) − ට൫𝜐ො௜ − 𝑙஻஼ூ:జ೔

൯
ଶ

+ ൫𝑢஻஼ூ:జೝ
− 𝜐ො௥൯

ଶ
, 

𝑈ெ஻:ధ೔ೝ
= (𝜐ො௜ − 𝜐ො௥) + ට൫𝑢஻஼ூ:జ೔

− 𝜐ො௜൯
ଶ

+ ൫𝜐ො௥ − 𝑙஻஼ூ:జೝ
൯

ଶ

, 𝑖, 𝑟 = 1,2,3, … , 𝑘 and 𝑖 ≠ 𝑟. 

The procedure for constructing SCIs for 𝜛௜௥  based on the MOVER, MG, and MB methods is 
presented in Algorithm 3 in the Appendix. 

3.6. The Bayesian credible interval (BAY) 

Bayes’ theorem, which is sometimes referred to as Bayes’ rule, is a method for updating 
probability estimates when new information becomes available. It is vital to realize that Bayes’ 
theorem applies to sequences of events, where fresh information from a later event is used to modify 
the probability of an earlier occurrence. Markov chain Monte Carlo (MCMC) sampling techniques can 
be used when the posterior distribution is difficult to compute and complicated. These samples are then 
used to compute Bayesian estimates and to construct consistent credible intervals for the parameter of 
interest. In the case of the ZIBS distributions, represented as 𝑌௜௝~𝑍𝐼𝐵𝑆(𝛼௜, 𝛽௜, 𝛿௜) , where 𝑖 =

1,2, . . . , 𝑘 and 𝑗 = 1,2, . . . , 𝑛௜. The joint likelihood function of 𝑘 independent ZIBS distributions is  

𝐿൫𝑦௜௝; 𝛼௜, 𝛽௜, 𝛿௜൯ ∝ ∏ ൝𝛿
௜

௡೔(బ)(1 − 𝛿௜)
௡೔(భ)

ଵ

(ఈ೔ఉ೔)
೙೔(భ)

∏ ൥൬
ఉ೔

௬೔ೕ
൰

భ

మ
+ ൬

ఉ೔

௬೔ೕ
൰

య

మ
൩

௡೔(భ)

௝ୀଵ
௞
௜ୀଵ   

      × 𝑒𝑥𝑝 ൤− ∑
ଵ

ଶఈ೔
మ ൬

௬೔ೕ

ఉ೔
+

ఉ೔

௬೔ೕ
− 2൰

௡೔(భ)

௝ୀଵ
൨ൠ. 

Wang, Sun, and Park [25] recommended the use of proper priors with known hyperparameters when 
constructing confidence intervals for the parameters of the Birnbaum-Saunders distribution using 
Bayesian inference. Parameter 𝛽௜  is assumed to follow an inverse gamma distribution with 
parameters 𝑝௜ and 𝑞௜, denoted 𝐼𝐺(𝑝௜, 𝑞௜), and similarly, 𝛼௜

ଶ is modeled as 𝐼𝐺(𝑡௜, 𝑠௜). Furthermore, 
under the assumption that 𝛿௜  follows a binomial distribution, the Jeffrey's prior for the binomial 

parameter is given by 𝑃(𝛿௜) ∝ 𝛿௜
ିଵ ଶ⁄ (1 − 𝛿௜)

ିଵ ଶ⁄ , which corresponds to a Beta distribution, denoted 
as 𝐵𝑒𝑡𝑎(1 2⁄ , 1 2⁄ ). As a result, the joint posterior density function for 𝛼௜

ଶ, 𝛽௜, and 𝛿௜ is expressed 
as follows: 

𝐻൫𝛼௜
ଶ, 𝛽௜, 𝛿௜ห𝑦௜௝൯ ∝ ∏ ൝𝛿

௜

௡೔(బ)ିଵ ଶ⁄
(1 − 𝛿௜)

௡೔(భ)ିଵ ଶ⁄ ଵ

൫ఈ೔
మ൯

೙೔(భ) మ⁄
ఉ

೔

೙೔(భ)
∏ ൥൬

ఉ೔

௬೔ೕ
൰

భ

మ
+ ൬

ఉ೔

௬೔ೕ
൰

య

మ
൩

௡೔(భ)

௝ୀଵ
௞
௜ୀଵ   

    × 𝑒𝑥𝑝 ൤− ∑
ଵ

ଶఈ೔
మ ൬

௬೔ೕ

ఉ೔
+

ఉ೔

௬೔ೕ
− 2൰

௡೔(భ)

௝ୀଵ
൨ (𝛼௜

ଶ)ି௧೔ିଵ𝑒𝑥𝑝 ቀ−
௦೔

ఉ೔
ቁ 𝛽௜

ି௣೔ିଵ
𝑒𝑥𝑝 ቀ−

௤೔

ఉ೔
ቁൠ. 

The marginal posterior distribution of 𝛽௜ห𝑦௜௝ can be obtained by integrating the joint posterior 
density function with respect to 𝛼௜, resulting in  

𝑃൫𝛽௜ห𝑦௜௝൯ ∝ 𝛽
௜

ି൫௡೔(భ)ା௣೔ାଵ൯
𝑒𝑥𝑝 ቀ−

௤೔

ఉ೔
ቁ ∏ ൥൬

ఉ೔

௬೔ೕ
൰

భ

మ
+ ൬

ఉ೔

௬೔ೕ
൰

య

మ
൩

௡೔(భ)

௝ୀଵ
     

  × ൤∑
ଵ

ଶ
൬

௬೔ೕ

ఉ೔
+

ఉ೔

௬೔ೕ
− 2൰ + 𝑠௜

௡೔(భ)

௝ୀଵ
൨

ି
೙೔(భ)శభ

మష೟೔  ,      (19) 
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while the conditional posterior distribution of 𝛼௜
ଶห𝛽௜, 𝑦௜௝ is  

𝛼௜
ଶห൫𝛽௜, 𝑦௜௝൯~𝐼𝐺 ൬

௡೔(భ)

ଶ
+ 𝑡௜, ∑

ଵ

ଶ
൬

௬೔ೕ

ఉ೔
+

ఉ೔

௬೔ೕ
− 2൰ + 𝑠௜

௡೔(భ)

௝ୀଵ
൰.    (20) 

Additionally, the marginal posterior distribution of 𝛿௜ห𝑦௜௝ is given by 

𝛿௜ห𝑦௜௝~𝐵𝑒𝑡𝑎 ቀ𝑛௜(଴) +
ଵ

ଶ
, 𝑛௜(ଵ) +

ଵ

ଶ
ቁ.      (21) 

The posterior samples of 𝛼௜
ଶ and 𝛿௜ can be readily obtained using the LearnBayes package in 

R software. Parameter 𝛼௜ is then computed as the square root of 𝛼௜
ଶ. Moreover, Eq (19) cannot be 

expressed in closed form and are analytically intractable; it is not possible to generate posterior samples 
of 𝛽௜ using conventional methods. Therefore, the generalized ratio-of-uniforms method, as proposed 
by Wakefield, Gelfand, and Smith [26], is utilized for the posterior sampling of 𝛽௜. The following 
details describe the procedure for the sampling algorithm based on the generalized ratio-of-uniforms 
method.  

Let (𝑎௜, 𝑏௜) be a pair of random variables uniformly distributed over the set 

𝑊(𝑐௜) = ൝(𝑎௜, 𝑏௜): 0 < 𝑎௜ ≤ ൤𝑃 ൬
௕೔

௔
೔

೎೔
ห𝑦௜௝൰൨

భ

೎೔శభ
ൡ,     (22) 

where 𝑐௜ ≥ 0 is a constant and 𝑃൫∙ ห𝑦௜௝൯ is defined in Eq (19). Define 𝛽௜ = 𝑏௜ 𝑎௜
௖೔⁄ . It follows that  

𝛽௜ has a probability density function of the form  

𝑓ఉ೔
൫𝛽௜ห𝑦௜௝൯ =

𝑃൫𝛽௜ห𝑦௜௝൯

∫ 𝑃൫𝛽௜ห𝑦௜௝൯𝑑𝛽௜

. 

Random samples uniformly distributed over 𝑊(𝑐௜)  are generated via the accept-reject method, 
employing a suitably chosen one-dimensional enclosing rectangle [0, 𝑝(𝑐௜)] × [𝑞ି(𝑐௜), 𝑞ା(𝑐௜)], with 

all bounds 𝑝(𝑐௜) = sup
ఉ೔வ଴

൜ൣ𝑃൫𝛽௜ห𝑦௜௝൯൧
భ

೎೔శభൠ , 𝑞ି(𝑐௜) = inf
ఉ೔வ଴

൜ൣ𝑃൫𝛽௜ห𝑦௜௝൯൧
೎೔

೎೔శభൠ , and 𝑞ା(𝑐௜) =

sup
ఉ೔வ଴

൜ൣ𝑃൫𝛽௜ห𝑦௜௝൯൧
೎೔

೎೔శభൠ, assumed finite. An appropriate value for 𝑐௜ occurs when 𝑞ି(𝑐௜) = 0, while 

𝑝(𝑐௜) and 𝑞ା(𝑐௜) are finite, as proposed by Wang, Sun, and Park [25].  In the generalized ratio-of-
uniforms method, the computation proceeds as follows: First, compute 𝑝(𝑐௜)  and 𝑞ା(𝑐௜) . Next, 
generate 𝑎௜  from  𝑈𝑛𝑖൫0, 𝑝(𝑐௜)൯ , 𝑏௜  from 𝑈𝑛𝑖൫0, 𝑞ା(𝑐௜)൯ , and compute 𝜗௜ = 𝑏௜ 𝑎௜

௖೔⁄  . If the 

condition 𝑎௜ ≤ ൣ𝑃൫𝛽௜ห𝑦௜௝൯൧
భ

೎೔శభ is satisfied, it is accepted; otherwise, the process is repeated.  

Note that the posterior samples of 𝛼௜, 𝛽௜, and 𝛿௜ are denoted by 𝛼௜
ᇱ, 𝛽௜

ᇱ, and 𝛿௜
ᇱ, respectively. 

Accordingly, the Bayesian estimate of 𝜛௜௥ is given by  

𝜛௜௥
ᇱ =

ଵ

ଶା൫ఈ೔
ᇲ൯

మ ൝
൫ఈ೔

ᇲ൯
మ

ቂସାହ൫ఈ೔
ᇲ൯

మ
ቃାఋ೔

ᇲቂଶା൫ఈ೔
ᇲ൯

మ
ቃ

మ

ଵିఋ೔
ᇲ ൡ

భ

మ

−
ଵ

ଶା൫ఈೝ
ᇲ ൯

మ ൝
൫ఈೝ

ᇲ ൯
మ

ቂସାହ൫ఈೝ
ᇲ ൯

మ
ቃାఋೝ

ᇲ ቂଶା൫ఈೝ
ᇲ ൯

మ
ቃ

మ

ଵିఋೝ
ᇲ ൡ

భ

మ

,   (23) 

where 𝑖, 𝑟 = 1,2,3, … , 𝑘 and 𝑖 ≠ 𝑟. Now, the (1 − 𝜌)100% SCI for 𝜛௜௥ using the BAY method is 
provided by  

𝐶𝐼஻஺௒:ధ೔ೝ
= ൣ𝐿஻஺௒:ధ೔ೝ

, 𝑈஻஺௒:ధ೔ೝ
൧ = [𝜛௜௥

ᇱ (𝜌 2⁄ ), 𝜛௜௥
ᇱ (1 − 𝜌 2⁄ )],     (24) 
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where 𝜛௜௥
ᇱ (𝜌 2⁄ ) and 𝜛௜௥

ᇱ (1 − 𝜌 2⁄ ) denote the 100(𝜌 2⁄ )𝑡ℎ and 100(1 − 𝜌 2⁄ )𝑡ℎ percentiles of 
𝜛௜௥

ᇱ , respectively. 

3.7. The highest posterior density (HPD) 

The HPD interval in Bayesian statistics is a credible interval that shows the narrowest range that 
includes a certain probability mass from the posterior distribution. For constructing the HPD interval 
under the ZIBS distribution, the posterior distribution of 𝜛௜௥ in Eq (23) is considered. Accordingly, 
the (1 − 𝜌)100% SCI for 𝜛௜௥ using the HPD method is given by 

𝐶𝐼ு௉஽:ధ೔ೝ
= ൣ𝐿ு௉஽:ధ೔ೝ

, 𝑈ு௉஽:ధ೔ೝ
൧,       (25) 

where 𝐿ு௉஽:ధ೔ೝ
 and 𝑈ு௉஽:ధ೔ೝ

 are computed using the hdi function in the HDInterval package of the 

R statistical software. The procedure for constructing SCIs for 𝜛௜௥  based on the BAY and HPD 
methods is presented in Algorithm 4 in the Appendix. 

4. Simulation studies 

To assess the performance of each method, we conducted an extensive Monte Carlo simulation 
study using R software. Random samples were drawn from the ZIBS model under different sample sizes 
and parameters, thereby enabling an evaluation of each method’s performance across scenarios. The 
sample sizes and parameter settings were specified as shown in Table 1. Parameter 𝛽௜ was set to 1. A 
total of 3,000 replications were conducted, with 3,000 iterations for the GCI method, 500 iterations for 
the BCI method, and 1,000 iterations for the BAY and HPD methods. For the simulation procedures of 
the BAY and HPD methods, we set 𝑐௜ = 2. The hyperparameters were chosen as 𝑝௜ = 𝑞௜ = 𝑡௜ = 𝑠௜ =

10ିସ, which are values close to zero, as recommended by Congdon [27]. These weakly informative 
priors were adopted to reflect limited prior information and to enable the data to primarily drive the 
inference. A qualitative sensitivity assessment indicated that moderate variations in these 
hyperparameters do not materially affect the coverage probabilities and average widths of the BAY 
and HPD methods. Two major criteria were used for performance evaluation: The coverage 
probabilities (CPs) equal to or greater than the nominal confidence level of 0.95, together with the 
narrowest average width (AW). In simulations, let 𝐶௦ = 1  if the parameter values fall within the 
confidence interval range, else 𝐶௦ = 0. The coverage probability and average width can be calculated 
by  

𝐶𝑃 =
ଵ

ெ
∑ 𝐶௦

ெ
௦ୀଵ            (I) 

and  

𝐴𝑊 =
ଵ

ெ
∑ (𝑈௦ − 𝐿௦)ெ

௦ୀଵ ,        (II) 

where 𝐿௦ and 𝑈௦ are the lower and upper bounds of the confidence interval for loop 𝑠, respectively, 
and 𝑀 represents the total number of simulations runs. The computational procedure for estimating the 
coverage probability and the average width of all methods is outlined in Algorithm 5 in the Appendix. 

For the case of k=3 (Table 2 and Figure 1), the simulation results revealed that, with respect to 
CPs, nearly all methods achieved values close to or greater than the nominal level of 0.95. In particular, 
the GCI method consistently maintained CPs at or above the nominal threshold while producing the 
narrowest AWs in nearly all scenarios. For instance, when the sample sizes were equal (S=1), GCI 
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attained a CP of 0.952 with an AW of 0.391, which was markedly narrower than those obtained from 
the competing methods. In some cases, such as S=12, the MG method yielded narrower AWs while 
preserving CPs above the nominal level. Nevertheless, GCI remained the most efficient method overall. 
In contrast, the MB method consistently produced the widest intervals among the approaches considered.  

Table 1. Parameter settings for k = 3, 5, 10. 

Scenarios (S) (𝑛ଵ, 𝑛ଶ, … , 𝑛௞) (𝛼ଵ, 𝛼ଶ, … , 𝛼௞) (𝛿ଵ, 𝛿ଶ, … , 𝛿௞) 

k=3 

1-8 (303) (0.53), (1.03) (0.13), (0.33), (0.1,0.3,0.5), (0.53) 

9-16 (30,50,100) (0.53), (1.03) (0.13), (0.33), (0.1,0.3,0.5), (0.53) 

17-24 (503) (0.53), (1.03) (0.13), (0.33), (0.1,0.3,0.5), (0.53) 

25-32 (1003) (0.53), (1.03) (0.13), (0.33), (0.1,0.3,0.5), (0.53) 

k=5 

33-42 (303,502) (0.55), (1.05) (0.15), (0.35), (0.12,0.32,0.5), (0.1,0.32,0.52), (0.55) 

43-52 (302,50,1002) (0.55), (1.05) (0.15), (0.35), (0.12,0.32,0.5), (0.1,0.32,0.52), (0.55) 

53-62 (505) (0.55), (1.05) (0.15), (0.35), (0.12,0.32,0.5), (0.1,0.32,0.52), (0.55) 

63-72 (502,1003) (0.55), (1.05) (0.15), (0.35), (0.12,0.32,0.5), (0.1,0.32,0.52), (0.55) 

73-82 (1005) (0.55), (1.05) (0.15), (0.35), (0.12,0.32,0.5), (0.1,0.32,0.52), (0.55) 

k=10 

83-92 (305,505) (0.510), (1.010) (0.110), (0.15,0.35), (0.310), (0.35,0.55), (0.510) 

93-102 (305,503,1002) (0.510), (1.010) (0.110), (0.15,0.35), (0.310), (0.35,0.55), (0.510) 

103-112 (505 ,1005) (0.510), (1.010) (0.110), (0.15,0.35), (0.310), (0.35,0.55), (0.510) 

Notes: 𝑛௞ = 𝑛ଵ, 𝑛ଶ, … , 𝑛௞ 

 

Figure 1. Comparison of the performance of the proposed methods for k = 3 in terms of 
CP with respect to (A) sample size and (C) proportion of zeros, and in terms of AW with 
respect to (B) sample size and (D) proportion of zeros. 
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Table 2. The CPs and AWs for the 95% SCIs of 𝜛௜௥ : k = 3. 

S 
Coverage probabilities Average widths 

GCI BCI MOVER MG MB BAY HPD GCI BCI MOVER MG GB BAY HPD 

1 0.952 0.951 0.962 0.993 0.992 0.958 0.963 0.391 0.521 0.523 0.574 0.690 0.553 0.547 

2 0.952 0.945 0.970 0.994 0.989 0.948 0.956 0.434 0.794 0.803 0.495 0.916 0.828 0.820 

3 0.952 0.946 0.967 0.992 0.944 0.951 0.957 0.474 0.880 0.881 0.625 1.308 0.920 0.906 

4 0.947 0.945 0.978 0.993 0.988 0.949 0.961 0.588 1.224 1.220 0.668 1.565 1.291 1.275 

5 0.948 0.938 0.943 0.993 0.991 0.949 0.947 0.704 0.740 0.741 0.907 1.132 0.795 0.788 

6 0.947 0.939 0.953 0.991 0.989 0.948 0.952 0.852 1.062 1.053 0.930 1.148 1.139 1.128 

7 0.947 0.934 0.946 0.993 0.988 0.944 0.949 0.918 1.181 1.161 0.967 1.284 1.272 1.252 

8 0.948 0.937 0.963 0.992 0.957 0.946 0.954 1.165 1.634 1.590 1.321 1.974 1.778 1.756 

9 0.952 0.948 0.955 0.991 0.992 0.955 0.957 0.299 0.409 0.414 0.337 0.454 0.427 0.421 

10 0.949 0.948 0.964 0.991 0.991 0.951 0.953 0.324 0.615 0.630 0.357 0.678 0.635 0.627 

11 0.952 0.948 0.964 0.992 0.992 0.951 0.954 0.323 0.586 0.599 0.364 0.719 0.602 0.596 

12 0.952 0.947 0.970 0.992 0.992 0.949 0.955 0.422 0.936 0.950 0.399 1.167 0.972 0.958 

13 0.951 0.946 0.946 0.991 0.991 0.955 0.953 0.549 0.586 0.589 0.675 0.781 0.619 0.612 

14 0.946 0.942 0.947 0.991 0.990 0.949 0.951 0.661 0.837 0.834 0.710 0.876 0.882 0.872 

15 0.950 0.946 0.953 0.992 0.990 0.950 0.950 0.647 0.810 0.809 0.739 0.962 0.847 0.840 

16 0.953 0.943 0.956 0.991 0.988 0.949 0.954 0.888 1.265 1.248 1.073 1.547 1.350 1.330 

17 0.953 0.952 0.963 0.993 0.993 0.956 0.957 0.290 0.401 0.407 0.393 0.476 0.414 0.411 

18 0.949 0.948 0.965 0.992 0.991 0.949 0.949 0.312 0.603 0.618 0.347 0.641 0.616 0.610 

19 0.953 0.946 0.964 0.992 0.989 0.948 0.953 0.336 0.662 0.675 0.343 0.695 0.677 0.669 

20 0.951 0.943 0.969 0.992 0.990 0.945 0.950 0.402 0.916 0.932 0.511 1.119 0.939 0.930 

21 0.951 0.943 0.947 0.963 0.931 0.950 0.949 0.536 0.578 0.579 0.638 0.659 0.602 0.597 

22 0.946 0.943 0.953 0.992 0.991 0.946 0.947 0.643 0.821 0.818 0.736 0.902 0.856 0.848 

23 0.951 0.948 0.955 0.993 0.991 0.953 0.955 0.687 0.909 0.901 0.791 1.055 0.948 0.937 

24 0.947 0.945 0.960 0.991 0.990 0.951 0.957 0.859 1.235 1.219 0.954 1.382 1.300 1.287 

25 0.950 0.952 0.961 0.990 0.962 0.954 0.953 0.198 0.282 0.289 0.264 0.365 0.286 0.284 

26 0.950 0.945 0.962 0.992 0.986 0.947 0.947 0.208 0.420 0.435 0.243 0.459 0.423 0.420 

27 0.945 0.947 0.962 0.991 0.990 0.949 0.949 0.222 0.460 0.475 0.302 0.601 0.464 0.459 

28 0.953 0.951 0.970 0.991 0.992 0.949 0.950 0.259 0.630 0.651 0.299 0.718 0.636 0.630 

29 0.957 0.952 0.954 0.992 0.991 0.954 0.952 0.374 0.410 0.411 0.470 0.540 0.418 0.415 

30 0.950 0.945 0.950 0.992 0.990 0.946 0.947 0.445 0.579 0.578 0.512 0.681 0.591 0.586 

31 0.945 0.948 0.954 0.992 0.990 0.952 0.951 0.474 0.637 0.635 0.569 0.685 0.650 0.643 

32 0.947 0.948 0.957 0.991 0.992 0.949 0.952 0.587 0.864 0.859 0.646 1.017 0.884 0.877 

Note: Bold values indicate coverage probabilities ≥0.95, and bold italic values indicate the optimal average widths for each scenario. 

For the case of k=5 (Table 3 and Figure 2), the overall pattern remains consistent with the results 
for k=3. The GCI maintained CPs that were nearly 0.95 while resulting in AWs that were narrower than 
those of the other approaches. Although the MG method generally yielded relatively high CPs and 
occasionally provided narrower intervals than GCI, several scenarios showed CPs falling below 0.95, 
preventing it from consistently meeting the evaluation criteria. Other methods, the MOVER, MB, BAY, 
and HPD, maintained CPs above 0.95 more reliably; however, they produced noticeably wider AWs. 
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Table 3. The CPs and AWs for the 95% SCIs of 𝜛௜௥ : k = 5. 

S 
Coverage probabilities Average widths 

GCI BCI MOVER MG MB BAY HPD GCI BCI MOVER MG GB BAY HPD 

33 0.950 0.949 0.957 0.984 0.974 0.955 0.958 0.352 0.475 0.527 0.371 0.545 0.499 0.494 

34 0.954 0.946 0.965 0.981 0.996 0.948 0.953 0.389 0.719 0.758 0.386 0.781 0.747 0.739 

35 0.948 0.948 0.966 0.979 0.971 0.952 0.956 0.387 0.681 0.716 0.520 0.777 0.707 0.699 

36 0.951 0.947 0.968 0.975 0.968 0.950 0.955 0.414 0.796 0.817 0.400 0.961 0.823 0.815 

37 0.945 0.944 0.975 0.984 0.996 0.946 0.957 0.517 1.108 1.102 0.552 1.289 1.159 1.144 

38 0.951 0.941 0.945 0.987 0.996 0.950 0.950 0.640 0.677 0.707 0.721 0.756 0.721 0.715 

39 0.949 0.940 0.952 0.977 0.982 0.948 0.951 0.771 0.967 0.964 0.883 1.208 1.030 1.020 

40 0.950 0.942 0.953 0.985 0.996 0.951 0.953 0.755 0.931 0.925 0.827 1.011 0.987 0.976 

41 0.949 0.944 0.957 0.985 0.997 0.951 0.953 0.825 1.075 1.047 0.888 1.175 1.141 1.129 

42 0.948 0.942 0.962 0.985 0.997 0.950 0.959 1.044 1.473 1.398 1.257 1.613 1.587 1.568 

43 0.950 0.949 0.952 0.982 0.992 0.953 0.954 0.300 0.410 0.475 0.319 0.484 0.428 0.423 

44 0.948 0.945 0.962 0.985 0.997 0.948 0.952 0.327 0.618 0.676 0.386 0.681 0.638 0.631 

45 0.950 0.946 0.960 0.985 0.987 0.949 0.951 0.317 0.543 0.597 0.480 0.902 0.560 0.555 

46 0.949 0.947 0.964 0.983 0.997 0.949 0.952 0.334 0.638 0.685 0.394 0.809 0.656 0.650 

47 0.951 0.944 0.967 0.985 0.989 0.946 0.953 0.425 0.940 0.969 0.438 1.048 0.977 0.962 

48 0.947 0.939 0.939 0.983 0.991 0.949 0.947 0.549 0.586 0.632 0.635 0.687 0.619 0.612 

49 0.949 0.944 0.950 0.985 0.998 0.950 0.952 0.661 0.836 0.856 0.761 0.941 0.881 0.871 

50 0.951 0.947 0.952 0.983 0.993 0.952 0.953 0.620 0.751 0.775 0.692 0.962 0.787 0.779 

51 0.951 0.947 0.954 0.972 0.985 0.951 0.952 0.678 0.871 0.879 0.655 0.961 0.913 0.904 

52 0.947 0.942 0.953 0.979 0.987 0.948 0.953 0.889 1.265 1.236 1.181 1.619 1.350 1.331 

53 0.949 0.948 0.958 0.977 0.995 0.952 0.954 0.290 0.402 0.462 0.378 0.513 0.415 0.411 

54 0.951 0.947 0.967 0.984 0.995 0.950 0.953 0.313 0.604 0.655 0.353 0.738 0.617 0.612 

55 0.947 0.949 0.965 0.983 0.956 0.951 0.954 0.323 0.601 0.647 0.361 0.824 0.616 0.609 

56 0.950 0.945 0.964 0.986 0.988 0.946 0.950 0.344 0.704 0.736 0.394 0.819 0.721 0.712 

57 0.953 0.949 0.974 0.986 0.968 0.950 0.957 0.402 0.912 0.933 0.399 1.092 0.936 0.927 

58 0.951 0.945 0.950 0.980 0.997 0.953 0.952 0.535 0.577 0.615 0.604 0.708 0.602 0.597 

59 0.948 0.946 0.955 0.983 0.996 0.950 0.952 0.641 0.818 0.829 0.685 0.951 0.853 0.846 

60 0.948 0.941 0.948 0.965 0.936 0.946 0.948 0.648 0.826 0.833 0.705 1.120 0.861 0.852 

61 0.950 0.945 0.953 0.986 0.958 0.950 0.953 0.714 0.960 0.942 0.718 1.074 1.002 0.991 

62 0.952 0.945 0.962 0.984 0.997 0.951 0.957 0.859 1.236 1.194 0.979 1.438 1.301 1.288 

63 0.949 0.949 0.957 0.985 0.997 0.952 0.953 0.237 0.332 0.406 0.264 0.373 0.340 0.337 

64 0.950 0.944 0.959 0.984 0.992 0.946 0.947 0.253 0.498 0.567 0.262 0.571 0.506 0.501 

65 0.950 0.950 0.963 0.986 0.998 0.952 0.952 0.252 0.460 0.526 0.267 0.527 0.467 0.463 

66 0.947 0.945 0.962 0.985 0.992 0.946 0.947 0.266 0.543 0.600 0.291 0.691 0.551 0.545 

67 0.948 0.945 0.965 0.983 0.997 0.945 0.949 0.319 0.750 0.802 0.371 0.828 0.765 0.756 

68 0.950 0.943 0.945 0.964 0.951 0.948 0.947 0.442 0.481 0.536 0.578 0.636 0.497 0.492 

69 0.950 0.947 0.952 0.971 0.957 0.950 0.950 0.529 0.681 0.717 0.751 0.972 0.703 0.696 

70 0.949 0.945 0.951 0.985 0.986 0.949 0.950 0.512 0.641 0.678 0.561 0.725 0.660 0.654 

71 0.948 0.946 0.954 0.985 0.986 0.949 0.950 0.562 0.749 0.768 0.580 0.861 0.771 0.764 

72 0.950 0.941 0.952 0.982 0.997 0.946 0.948 0.702 1.020 1.021 0.833 1.187 1.060 1.049 

73 0.953 0.949 0.959 0.963 0.996 0.952 0.951 0.198 0.282 0.356 0.219 0.319 0.286 0.283 
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S 
Coverage probabilities Average widths 

GCI BCI MOVER MG MB BAY HPD GCI BCI MOVER MG GB BAY HPD 

74 0.948 0.947 0.963 0.984 0.989 0.949 0.949 0.208 0.420 0.488 0.251 0.521 0.424 0.420 

75 0.948 0.947 0.962 0.985 0.998 0.949 0.949 0.215 0.418 0.484 0.256 0.485 0.421 0.417 

76 0.952 0.950 0.964 0.986 0.998 0.950 0.950 0.227 0.489 0.546 0.226 0.529 0.492 0.488 

77 0.947 0.950 0.968 0.982 0.996 0.951 0.952 0.259 0.628 0.682 0.332 0.768 0.634 0.629 

78 0.950 0.945 0.948 0.985 0.997 0.949 0.947 0.374 0.410 0.465 0.413 0.471 0.418 0.415 

79 0.951 0.947 0.953 0.965 0.983 0.951 0.949 0.445 0.579 0.616 0.475 0.679 0.590 0.585 

80 0.952 0.948 0.952 0.971 0.981 0.950 0.950 0.448 0.582 0.618 0.503 0.770 0.593 0.588 

81 0.947 0.945 0.951 0.985 0.997 0.948 0.948 0.491 0.674 0.694 0.484 0.770 0.687 0.681 

82 0.949 0.944 0.954 0.985 0.996 0.946 0.948 0.587 0.865 0.870 0.687 1.013 0.885 0.877 

Note: Bold values indicate coverage probabilities ≥0.95, and bold italic values indicate the optimal average widths for each scenario. 

 

Figure 2. Comparison of the performance of the proposed methods for k = 5 in terms of 
CP with respect to (E) sample size and (G) proportion of zeros, and in terms of AW with 
respect to (F) sample size and (H) proportion of zeros (a=(303,502), b=(302,50,1002), 
c=(505), d=(502,1003), e=(1005), f=(0.15), g=(0.35), h=(0.12,0.32,0.5), i=(0.1,0.32,0.52), and 
j=(0.55)). 
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For the case of k=10 (Table 4 and Figure 3), the results became more complex. The GCI method 
began to show limitations, as its CP dropped below 0.95 in several scenarios (e.g., S=96 and S=101), 
thereby failing to meet the first evaluation criteria. Nevertheless, in scenarios where GCI maintained 
CPs above 0.95, it continued to produce the narrowest AWs compared with the other methods. In 
contrast, the MG method, which consistently achieved CPs greater than 0.95, emerged as the more 
suitable choice in many cases where GCI failed, as it provided narrower AWs than BAY or MOVER. 
For instance, at S=96, the MG method achieved a CP of 0.995 with an AW of 0.477, which was 
substantially smaller than those obtained from the competing methods. 

The simulation results in Figures 1–3 reveal a distinct pattern concerning the effects of the sample 
size and the proportion of zeros on the methods' performance. As the sample size increased, the 
efficiency of all methods tended to improve, as evidenced by a noticeable reduction in AWs. In contrast, 
as the proportion of zeros in the data increased, the performance of all methods deteriorated markedly. 
This indicated that a higher proportion of zeros inflates the variability of the estimators. 

Table 4. The CPs and AWs for the 95% SCIs of 𝜛௜௥ : k = 10. 

S 
Coverage probabilities Average widths 

GCI BCI MOVER MG MB BAY HPD GCI BCI MOVER MG GB BAY HPD 

83 0.950 0.949 0.977 0.996 0.999 0.955 0.957 0.342 0.463 0.525 0.435 0.598 0.486 0.481 

84 0.950 0.945 0.980 0.996 0.994 0.950 0.953 0.353 0.563 0.659 0.376 0.700 0.585 0.580 

85 0.948 0.947 0.983 0.991 0.997 0.950 0.955 0.374 0.700 0.801 0.400 0.796 0.725 0.717 

86 0.949 0.944 0.985 0.994 0.995 0.948 0.954 0.417 0.855 1.001 0.462 0.951 0.884 0.874 

87 0.950 0.944 0.988 0.986 0.994 0.946 0.956 0.497 1.073 1.211 0.517 1.373 1.119 1.104 

88 0.951 0.940 0.967 0.994 0.998 0.949 0.949 0.622 0.660 0.744 0.732 0.780 0.701 0.695 

89 0.949 0.942 0.968 0.993 0.994 0.950 0.951 0.674 0.781 0.869 0.793 0.926 0.825 0.818 

90 0.947 0.941 0.971 0.991 0.985 0.948 0.951 0.751 0.944 1.054 0.865 1.187 1.002 0.992 

91 0.950 0.943 0.974 0.989 0.985 0.949 0.954 0.856 1.151 1.274 1.047 1.424 1.221 1.209 

92 0.949 0.942 0.978 0.992 0.998 0.948 0.956 1.015 1.436 1.579 1.149 1.594 1.542 1.524 

93 0.951 0.947 0.982 0.984 0.984 0.952 0.954 0.316 0.430 0.526 0.366 0.522 0.451 0.445 

94 0.952 0.947 0.986 0.997 0.991 0.950 0.953 0.324 0.517 0.659 0.400 0.616 0.537 0.530 

95 0.949 0.946 0.988 0.996 0.987 0.948 0.952 0.345 0.651 0.802 0.360 0.726 0.674 0.665 

96 0.945 0.950 0.991 0.995 0.998 0.951 0.957 0.379 0.780 0.997 0.477 0.959 0.806 0.796 

97 0.949 0.948 0.993 0.992 0.991 0.950 0.958 0.450 0.986 1.202 0.531 1.111 1.029 1.011 

98 0.950 0.940 0.974 0.990 0.990 0.948 0.948 0.577 0.615 0.746 0.755 0.773 0.652 0.645 

99 0.950 0.944 0.978 0.991 0.997 0.951 0.951 0.621 0.718 0.869 0.711 0.824 0.758 0.749 

100 0.952 0.942 0.980 0.988 0.969 0.950 0.951 0.694 0.876 1.055 0.865 1.201 0.928 0.916 

101 0.946 0.941 0.981 0.996 0.999 0.947 0.952 0.782 1.051 1.268 0.883 1.184 1.112 1.098 

102 0.950 0.940 0.984 0.995 0.998 0.947 0.953 0.934 1.324 1.571 1.096 1.536 1.419 1.396 

103 0.950 0.948 0.979 0.970 0.953 0.951 0.952 0.246 0.344 0.408 0.311 0.439 0.353 0.350 

104 0.950 0.949 0.985 0.994 0.999 0.951 0.953 0.251 0.411 0.510 0.290 0.497 0.419 0.415 

105 0.948 0.945 0.983 0.996 0.986 0.947 0.949 0.263 0.515 0.618 0.308 0.609 0.525 0.520 

106 0.949 0.944 0.986 0.991 0.995 0.946 0.948 0.286 0.617 0.769 0.367 0.757 0.626 0.621 

107 0.951 0.947 0.987 0.997 0.999 0.949 0.953 0.334 0.777 0.927 0.369 0.897 0.794 0.786 

108 0.949 0.943 0.973 0.944 0.953 0.949 0.947 0.458 0.497 0.580 0.576 0.633 0.514 0.510 

109 0.947 0.944 0.973 0.981 0.977 0.949 0.948 0.491 0.579 0.676 0.612 0.710 0.597 0.592 
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S 
Coverage probabilities Average widths 

GCI BCI MOVER MG MB BAY HPD GCI BCI MOVER MG GB BAY HPD 

110 0.948 0.947 0.977 0.989 0.991 0.950 0.951 0.548 0.705 0.819 0.628 0.848 0.730 0.723 

111 0.949 0.942 0.976 0.995 0.995 0.945 0.946 0.615 0.842 0.983 0.757 1.039 0.869 0.861 

112 0.951 0.944 0.978 0.996 0.990 0.947 0.951 0.731 1.062 1.222 0.819 1.239 1.106 1.095 

Note: Bold values indicate coverage probabilities ≥0.95, and bold italic values indicate the optimal average widths for each scenario. 

Figure 3. Comparison of the performance of the proposed methods for k = 10 in terms of 
CP with respect to (I) sample size and (K) proportion of zeros, and in terms of AW with 
respect to (J) sample size and (L) proportion of zeros (k=(305,505), l=(305,505,1002), 
m=(50,51005), n=(0.110), o=(0.15,0.35), p=(0.310), q=(0.35,0.55), and r=(0.510)). 

5. An empirical application 

The empirical application in this study uses wind speed data, a key variable that influences 
multiple domains, including the environment, energy, and public health. Wind speed also plays a 
significant role in transportation and aviation, particularly with respect to flight safety and punctuality. 
For this reason, wind speed data from the Phuket Airport Weather Observing Station were selected as 
a case study for constructing SCIs for the coefficients of variation under zero-inflated Birnbaum–
Saunders distributions. The dataset consists of wind speed observations from all directions, collected 
between January 1 and 7 of the years 2021 to 2025. Since the data were collected from different years, 
the corresponding estimators were considered approximately independent with respect to wind 
direction, reflecting year-to-year variability in prevailing wind patterns. Although wind speed 
components from different directions may exhibit dependence at a given time due to the influence of 
the same atmospheric system, such directional dependence was mitigated in this study by aggregating 
the data into daily representative values. Moreover, as all observations originated from a single 
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monitoring station, spatial directional dependence was not present. These data were obtained from the 
Thai Meteorological Department’s Automatic Weather System (http://www.aws-observation.tmd.go.th 
/main/main) and are presented in Table 5. The dataset included positive and zero wind speed values. 
To illustrate the distribution of the data, histograms of wind speed for all five years are plotted in Figure 4. 
In addition, Table 6 presents the summary statistics of wind speed for each year. For the positive 
observations, the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) 
were employed to assess the goodness of fitness of the distributions. The criterion was calculated as  

𝐴𝐼𝐶 = 2 ln(𝐿) + 2𝑝 and 𝐵𝐼𝐶 = 2 ln(𝐿) + 2𝑝𝑙𝑛(𝑟), 

where p is the number of parameters estimated, r is the number of observations, and L is the likelihood 
function. The Birnbaum–Saunders distribution exhibited the lowest AIC and BIC values among the 
other candidate distributions, as illustrated in Table 7. This suggested that it is the most suitable model 
for the positive wind speed data. Furthermore, to validate that the positive wind speed data follow the 
Birnbaum–Saunders distribution, we plotted the cumulative distribution function (CDF) derived from 
the observed positive wind speed data alongside the fitted CDF of the Birnbaum–Saunders distribution, 
as shown in Figure 5. The close agreement between the two curves indicated a satisfactory fit. Hence, 
the wind speed data consisted of positive and zero values and could be appropriately modeled using 
the zero-inflated Birnbaum–Saunders distribution. This distribution was employed to construct 
simultaneous confidence intervals for all pairwise differences in the coefficients of variation in the 
wind speed data. Table 8 presents the 95% simultaneous confidence intervals for all pairwise 
differences in the coefficients of variation in wind speed data across the five years, obtained using the 
GCI, BCI, MOVER, MG, MB, BAY, and HPD methods. The results indicated that the GCI method 
provided an interval of [0.2054, 0.55654], with a width of 0.3510, which was the narrowest among all 
methods. This suggested that GCI is the most suitable method for analyzing the wind speed data. 
Moreover, these findings are consistent with the simulation results reported in Table 3, Scenario 80, 
which most closely resembles the empirical dataset.  

Table 5. Wind speed data (knots) from the Phuket Airport Weather Observing Station for 
each year from 2021 to 2025. 

Wind Speed (knots)   

In 2021   

0.0 0.0 0.0 0.0 1.3 0.1 0.7 0.0 0.0 0.0 0.0 

0.1 0.1 0.1 0.1 1.7 0.4 1.0 0.0 0.0 0.1 0.0 

9.2 6.2 7.2 2.4 9.6 5.5 10.1 0.0 0.0 0.1 0.0 

76.8 48.3 62.6 22.5 38.3 33.1 32.5 0.0 0.0 0.0 0.0 

12.2 9.7 12.0 12.4 3.8 12.4 11.6 5.8 0.6 3.3 0.0 

0.1 0.1 0.5 4.5 0.1 4.0 2.9 0.1 0.0 0.5 0.0 

0.0 0.0 0.0 0.1 0.0 0.3 0.1 0.3 0.6 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 

0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0          
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Wind Speed (knots)   

In 2022   

0.1 0.1 1.3 1.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 

1.8 0.8 1.6 0.8 0.8 0.0 0.1 0.0 0.0 0.0 0.0 

22.3 23.1 18.8 11.5 5.8 16.7 9.0 2.9 2.4 0.0 0.1 

67.1 65.1 44.0 34.5 28.0 66.7 30.1 1.8 3.0 0.0 0.2 

8.7 9.0 11.2 17.7 18.3 16.7 22.2 6.1 1.6 11.7 0.1 

0.1 1.7 3.1 7.9 7.3 0.0 5.3 0.0 0.0 1.3 0.0 

0.0 0.2 1.4 1.8 2.7 0.0 0.2 0.0 0.0 0.0 0.0 

0.0 0.0 0.3 0.5 1.1 0.0 0.0 0.0 0.0 0.0 0.1 

0.0 0.0 0.8 1.1 0.8 0.0 0.0 0.0 0.0 0.2 0.5 

0.0 0.0 0.2 2.0 0.4 0.0 0.0 0.2 1.4 0.0 0.1 

0.0 0.0          

In 2023   

0.6 0.0 1.3 0.8 0.1 1.3 0.9 6.5 1.5 0.0 0.0 

0.8 0.6 2.3 3.3 0.8 4.4 2.9 0.0 0.0 0.0 0.0 

8.8 9.6 17.2 14.9 14.0 12.8 13.4 3.1 1.3 9.2 7.8 

56.3 74.3 47.4 50.4 33.5 24.9 42.6 6.7 2.1 0.6 0.8 

14.8 15.3 13.8 9.6 15.9 15.6 25.8 4.1 0.3 8.6 0.0 

1.1 0.0 1.8 0.6 7.1 8.1 6.0 7.1 0.8 2.3 0.2 

0.0 0.0 0.1 0.1 1.4 2.1 1.3 0.1 0.2 0.0 1.6 

0.0 0.0 0.0 0.1 1.0 0.6 0.3 1.0 7.6 0.7 0.0 

0.0 0.0 0.1 0.1 1.0 0.5 0.0 0.0 0.0 0.6 0.0 

0.0 0.0 0.1 0.0 1.0 0.2 0.0 0.3 4.5 0.1 0.1 

0.0 0.0          

In 2024           

1.5 1.7 1.0 3.1 0.8 0.5 0.1 4.7 6.0 0.0 0.1 

1.0 1.5 1.8 1.4 0.9 0.9 0.6 8.5 4.2 0.0 0.1 

4.5 8.6 6.8 11.6 14.0 7.2 10.7 2.0 1.3 0.9 0.3 

21.0 23.6 22.6 27.5 27.9 25.7 21.3 2.3 7.8 0.4 0.3 

22.3 16.3 34.2 21.9 21.9 12.6 31.5 3.8 2.1 2.8 0.1 

14.5 6.2 14.4 11.9 6.2 6.9 15.9 7.0 1.9 0.6 0.0 

2.3 0.9 1.8 0.6 0.5 2.2 2.5 0.0 0.1 0.0 0.0 

0.3 0.1 0.3 0.0 0.0 1.0 0.4 0.1 0.8 0.1 0.0 

0.2 0.0 0.0 0.0 0.1 0.2 0.1 0.9 7.0 0.0 0.0 

0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.3 3.3 0.0 0.1 

0.2 0.0          
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Wind Speed (knots)   

In 2025   

0.1 0.5 0.6 0.3 0.6 0.5 2.2 0.0 0.0 0.5 0.1 

0.5 1.3 1.3 0.6 0.9 2.4 0.7 7.8 2.6 0.0 0.1 

7.5 12.7 7.6 11.8 9.6 12.0 7.2 8.3 2.2 0.0 0.0 

32.2 38.8 43.3 55.6 67.5 54.2 51.5 6.7 1.2 0.0 0.1 

24.4 17.0 20.3 9.7 12.9 28.0 19.8 2.0 0.4 1.7 8.6 

8.1 5.8 3.0 1.3 1.5 1.9 6.1 0.0 0.0 0.9 1.5 

1.4 0.6 0.2 0.1 0.1 0.2 0.3 2.9 3.0 0.1 0.0 

0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.5 0.3 0.4 

0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 5.8 0.2 0.0 

0.0 0.0          

Table 6. Summary statistics for the wind speed data. 

Statistics 
Wind speed (knots) 

2021 2022 2023 2024 2025 
𝑛௜ 112 112 112 112 112 

𝑛௜(ଵ) 52 69 84 94 78 
𝑛௜(଴) 60 43 28 18 34 

𝛿መ௜ 0.535 0.383 0.250 0.161 0.304 
𝛼ො௜ 2.960 2.579 2.414 2.376 2.571 
𝛽መ௜ 1.675 2.106 2.024 1.611 1.931 
𝜐ො௜ 2.991 2.449 2.130 1.975 2.276 

 

Figure 4. Histograms of wind speed data from the Phuket Airport Weather Observing 
Station for each year from 2021 to 2025. 
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Figure 5. The CDF of the positive wind speed data compared with the estimated CDF from 
the Birnbaum–Saunders distribution. 

Table 7. The AIC and BIC values of each distribution for wind speed data. 

Distributions Criterion 
Wind speed (knots) 

2021 2022 2023 2024 2025 

Normal AIC 440.260 576.834 681.145 671.851 641.617 

BIC 444.162 581.302 686.006 676.937 646.330 

Lognormal AIC 278.837 391.842 463.951 488.307 423.804 

BIC 282.739 396.310 468.813 493.394 428.517 

Exponential AIC 334.622 444.896 517.713 531.721 488.353 

BIC 336.574 447.130 520.144 534.264 490.709 

Gamma AIC 286.136 402.284 476.613 492.343 437.676 

BIC 290.039 406.753 481.475 497.429 442.390 

Logistic AIC 420.256 553.834 646.027 661.769 614.515 

BIC 424.158 558.302 650.888 666.856 619.229 

Cauchy AIC 371.745 485.059 571.346 618.019 532.519 

BIC 375.648 489.527 576.208 623.106 537.233 

Weibull AIC 282.298 397.006 470.048 489.824 430.833 

BIC 286.201 401.474 474.909 494.911 435.547 

Birnbaum-

Saunders 

AIC 264.940 383.066 457.083 469.653 413.405 

BIC 270.794 389.768 464.375 477.283 420.475 

Notes: The bold number indicates the lowest AIC and BIC of distribution. 
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Table 8. The SCIs of all pairwise differences between the CVs for the wind speed data. 

Methods 
Confidence interval for 𝜛௜௥ 

Length of intervals 
Lower Upper 

GCI 0.2054 0.5565 0.3510 
BCI 0.1609 0.6006 0.4397 
MOVER 0.0528 0.7478 0.6951 
MG 0.2030 0.5663 0.3633 
MB 0.0354 0.7277 0.6924 
BAY 0.0643 0.7527 0.6883 
HPD 0.0533 0.7343 0.6810 

6. Conclusions 

Our objective of this investigation was to evaluate the construction of simultaneous confidence 
intervals for all pairwise differences in the coefficients of variation under zero-inflated Birnbaum–
Saunders distributions using two critical criteria: Coverage probability and average width. The 
simulation results demonstrated that the GCI method performed most effectively when the number of 
samples was small to moderate (k = 3, 5), as it consistently maintained coverage probability close to 
the nominal level and produced the narrowest intervals. However, the GCI method demonstrated 
under-coverage in certain scenarios when the number of samples became large (k = 10). Although it 
yielded the shortest confidence intervals, its coverage probability fell below the nominal level in 
certain scenarios. This performance deterioration can be attributed to the accumulation of sampling 
errors associated with the estimation of nuisance parameters across groups. As 𝑘  increased, the 
compounded variability inherent in GPQ construction led to less precise interval estimation. As a result, 
the MG was a more appropriate alternative in certain scenarios, as it consistently maintained a coverage 
probability above 0.95 and provided relatively narrow intervals. In contrast, the MOVER and MB 
methods, while conservative in maintaining coverage probability above the nominal level, produced 
excessively wide intervals. The BCI often failed to achieve adequate coverage, with coverage 
probability values often below 0.95, thus raising concerns regarding its reliability. The BAY and the 
HPD usually generated coverage probability values that were nearly 0.95; nevertheless, their AWs 
were wider than those of the GCI and the MG. Overall, the findings suggested that GCI is the most 
appropriate method when the number of samples is small and sample sizes are sufficient, whereas MG 
is preferable in scenarios with a large number of samples or a high proportion of zeros. Moreover, the 
application of all proposed methods to empirical wind speed data from Thailand demonstrated their 
practical applicability. The results of this real-data analysis corroborated the simulation results, further 
confirming the reliability of the suggested methods. 
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Appendix 

The procedure for constructing simultaneous confidence intervals for 𝜛௜௥  based on the GCI 
method is as follows:  

Algorithm 1. 
1) Compute 𝐴௜, 𝐵௜, 𝐶௜ , and 𝐷௜ 
2) At the 𝑔 step 

i. Generate 𝛬௜~𝑡൫௡೔(భ)ିଵ൯ and then compute 𝑄ఉ೔
൫𝑦௜௝; 𝛬௜൯ from Eq (5). 

ii. If 𝑄ఉ೔
൫𝑦௜௝; 𝛬௜൯ < 0 regenerate 𝛬௜~𝑡൫௡೔(భ)ିଵ൯. 

iii. Compute 𝑄ఈ೔
൫𝑦௜௝; 𝐻௜, 𝛬௜൯ and 𝑄ఋ೔

 from Eqs (6) and (7), respectively. 

iv. Compute 𝑄జ೔
 from Eq (8). 

3) Repeat step 2), a total G=3000 times. 
4) Compute 𝐶𝐼ீ஼ூ:ధ೔ೝ

 from Eq (9). 

The procedure for constructing simultaneous confidence intervals for 𝜛௜௥ based on the BCI method 

is as follows:  

Algorithm 2. 
1) At the 𝑏 step 

i.  Generate 𝑦௜௝
∗ , with replacement from 𝑦௜௝ where 𝑖 = 1,2, . . . , 𝑘 and 𝑗 = 1,2, . . . , 𝑛௜ . 

ii. Compute 𝛼ො௜
/
 and 𝐵෠(𝛼ො௜, 𝛼௜). 

iii. Compute 𝛼ො௜
∗ from Eq (10). 

iv. Generate 𝛿መ௜
∗ and compute 𝜛ෝ௜௥

∗  from Eq (11). 

2) Repeat step 1), a total B=500 times. 
3) Compute 𝐶𝐼஻஼ூ:ధ೔ೝ

 from Eq (12). 

The procedure for constructing simultaneous confidence intervals for 𝜛௜௥  based on the MOVER, 
MG, and MB methods is as follows:  

Algorithm 3. 
1) Compute 𝛼ො௜ and 𝛿መ௜. 
2) Compute 𝜐ො௜ and 𝑉෠(𝜐ො௜). 

For MOVER: 
i. Compute [𝑙௜, 𝑢௜] from Eq (13). 
ii. Compute 𝐶𝐼ெை௏ாோ:ధ೔ೝ

 from Eq (14). 

For MG: 
i. Compute ൣ𝑙ீ஼ூ:జ೔

, 𝑢ீ஼ூ:జ೔
൧ from Eq (15). 

ii. Compute 𝐶𝐼ெீ:ధ೔ೝ
 from Eq (16). 

For MB: 
i. Compute 𝜐ො௜

∗. 
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ii. Compute ൣ𝑙஻஼ூ:జ೔
, 𝑢஻஼ூ:జ೔

൧ from Eq (17). 
iii. Compute 𝐶𝐼ெ஻:ధ೔ೝ

 from Eq (18). 

The procedure for constructing simultaneous confidence intervals for 𝜛௜௥ based on the BAY and HPD 
methods is as follows:  

Algorithm 4. 
1) Set 𝑝௜, 𝑞௜, 𝑡௜ , and 𝑠௜. 
2) Compute 𝑝(𝑐௜) and 𝑞ା(𝑐௜) 
3) At the 𝑙 step, 

i.  Generate 𝑎௜~𝑈𝑛𝑖൫0, 𝑝(𝑐௜)൯ and 𝑏௜~𝑈𝑛𝑖൫0, 𝑞ା(𝑐௜)൯, and compute 𝜗௜ = 𝑏௜ 𝑎௜
௖೔⁄ ; 

if 𝑎௜ ≤ ൣ𝑃൫𝛽௜ห𝑦௜௝൯൧
భ

೎೔శభ then 𝛽௜
(௞)

= 𝜗௜;  
else  
    Go back to ; end  

ii. Generate 𝛼௜
ଶ~𝐼𝐺 ൬

௡೔(భ)

ଶ
+ 𝑡௜, ∑

ଵ

ଶ
൬

௬೔ೕ

ఉ
೔
(ೖ) +

ఉ೔
(ೖ)

௬೔ೕ
− 2൰ + 𝑠௜

௡೔(భ)

௝ୀଵ
൰ and set 𝛼௜

(௞)
= ට𝛼௜

ଶ. 

iii. Generate 𝛿௜ห𝑦௜௝ from Eq (21). 
iv. Compute 𝜛௜௥

ᇱ  from Eq (23). 
4) Repeat step 3), a total L=1000 times. 
5) Compute 𝐶𝐼஻஺௒:ధ೔ೝ

 and 𝐶𝐼ு௉஽:ధ೔ೝ
 from Eqs (24) and (25). 

The computational procedure for estimating the coverage probability and the average width of all 
methods is outlined as follows: 

Algorithm 5. 
Define 𝑛௜ , 𝛼௜, 𝛽௜, and 𝛿௜. 
For 𝑚 = 1 to 𝑀; 

1) Generate sample from the ZIBS distributions with parameters 𝛼௜, 𝛽௜, and 𝛿௜. 
2) Compute 𝛼ො௜ and 𝛿መ௜. 
3) Compute the (1 − 𝜌)100%  SCI for 𝜛௜௥ based on the GCI, BCI, MOVER, MG, MB, 

BAY, and HPD methods, as implemented in Algorithms 1–4. 
4) If  s ir sL U  , set 𝐶௦ = 1; else set 𝐶௦ = 0; 

End 𝑚  loop 
5) Compute the coverage probability and average width from Eqs (I) and (II). 
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