Research article

Pullback attractors and statistical solutions for the lattice Zakharov equations on time-dependent spaces

  • Published: 04 February 2026
  • MSC : 34D35, 35B41, 76D06

  • In this paper, the authors investigate the probability distribution of solutions within the time-dependent phase spaces for the lattice Zakharov equations with varying coefficients via the pullback attractors and the notion of generalized Banach limits. They firstly show that the addressed initial value problem is globally well-posed and prove that the related evolution process has a time-dependent pullback attractor on the time-dependent phase spaces. Then they construct a family of invariant Borel probability measures with supports contained in the pullback attractor. Furthermore, they prove that the constructed family of invariant measures is a statistical solution for the addressed lattice Zakharov equations and that Liouville's theorem holds true.

    Citation: Anran Li, Caidi Zhao, Tomás Caraballo. Pullback attractors and statistical solutions for the lattice Zakharov equations on time-dependent spaces[J]. AIMS Mathematics, 2026, 11(2): 3367-3393. doi: 10.3934/math.2026137

    Related Papers:

  • In this paper, the authors investigate the probability distribution of solutions within the time-dependent phase spaces for the lattice Zakharov equations with varying coefficients via the pullback attractors and the notion of generalized Banach limits. They firstly show that the addressed initial value problem is globally well-posed and prove that the related evolution process has a time-dependent pullback attractor on the time-dependent phase spaces. Then they construct a family of invariant Borel probability measures with supports contained in the pullback attractor. Furthermore, they prove that the constructed family of invariant measures is a statistical solution for the addressed lattice Zakharov equations and that Liouville's theorem holds true.



    加载中


    [1] C. Zhao, R. Zhuang, Statistical solutions and Liouville theorem for the second order lattice systems with varying coefficients, J. Differential Equations, 372 (2023), 194–234. http://dx.doi.org/10.1016/j.jde.2023.06.040 doi: 10.1016/j.jde.2023.06.040
    [2] M. D. Chekroun, N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems: Abstract results and applications, Commun. Math. Phys., 316 (2012), 723–761. http://dx.doi.org/10.1007/s00220-012-1515-y doi: 10.1007/s00220-012-1515-y
    [3] M. Conti, V. Pata, R. Temam, Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differential Equations, 255 (2013), 1254–1277. http://dx.doi.org/10.1016/j.jde.2013.05.013 doi: 10.1016/j.jde.2013.05.013
    [4] F. Flandoli, B. Schmalfuss, Random attractors for the 3d stochastic navier-stokes equation with multiplicative white noise, Stochastics Stoch. Rep., 59 (1996), 21–45. http://dx.doi.org/10.1080/17442509608834083 doi: 10.1080/17442509608834083
    [5] G. Łukaszewicz, J. C. Robinson, Invariant measures for non-autonomous dissipative dynamical systems, Discrete Cont. Dyn. Syst., 34 (2014), 4211–4222. http://dx.doi.org/10.3934/dcds.2014.34.4211 doi: 10.3934/dcds.2014.34.4211
    [6] C. Zhao, R. Zhuang, T. Caraballo, Pullback asymptotic behavior and statistical solutions for lattice Klein-Gordon-Schrödinger equations with varying coefficient, Commun. Pure Appl. Anal., 24 (2025), 1469–1497. http://dx.doi.org/10.3934/cpaa.2025045 doi: 10.3934/cpaa.2025045
    [7] C. Guo, S. Fang, B. Guo, Long time behavior of the solutions for the dissipative modified Zakharov equations for plasmas with a quantum correction, J. Math. Anal. Appl., 403 (2013), 183–192. http://dx.doi.org/10.1016/j.jmaa.2013.01.058 doi: 10.1016/j.jmaa.2013.01.058
    [8] S. Fang, L. Jin, B. Guo, Existence of weak solution for quantum Zakharov equations for plasmas model, Appl. Math. Mech., 32 (2011), 1339–1344. http://dx.doi.org/10.1007/s10483-011-1504-7 doi: 10.1007/s10483-011-1504-7
    [9] S. Fang, C. Guo, B. Guo, Exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction, Acta Math. Sci., 32 (2012), 1073–1082. http://dx.doi.org/10.1016/S0252-9602(12)60080-0 doi: 10.1016/S0252-9602(12)60080-0
    [10] Y. Liang, Z. Guo, Y. Ying, C. Zhao, Finite dimensionality and upper semi-continuity of kernel sections for the discrete Zakharov equations, Bull. Malays. Math. Sci. Soc., 40 (2017), 135–161. http://dx.doi.org/10.1007/s40840-016-0314-6 doi: 10.1007/s40840-016-0314-6
    [11] X. Liao, C. Zhao, S. Zhou, Compact uniform attractors for dissipative non-autonomous lattice dynamical systems, Comm. Pure Appl. Anal., 6 (2007), 1087–1111. http://dx.doi.org/10.3934/cpaa.2007.6.1087 doi: 10.3934/cpaa.2007.6.1087
    [12] H. Yang, X. Han, C. Zhao, Pullback dynamics and statistical solutions for dissipative non-autonomous Zakharov equations, J. Differential Equations, 390 (2024), 1–57. http://dx.doi.org/10.1016/j.jde.2024.01.034 doi: 10.1016/j.jde.2024.01.034
    [13] F. Yin, S. Zhou, Z. Ouyang, C. Xiao, Attractor for lattice system of dissipative Zakharov equation, Acta Math. Sinica, 25 (2009), 321–342. http://dx.doi.org/10.1007/s10114-008-5595-8 doi: 10.1007/s10114-008-5595-8
    [14] Z. Zhu, Y. Sang, C. Zhao, Pullback attractors and invariant measures for the discrete Zakharov equations, J. Appl. Anal. Comput., 9 (2019), 2333–2357. http://dx.doi.org/10.11948/20190091 doi: 10.11948/20190091
    [15] C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes equations and turbulence, Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511546754
    [16] C. Foias, R. Rosa, R. Temam, Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations, J. Dyn. Differential Equations, 31 (2019), 1689–1741. http://dx.doi.org/10.1007/s10884-018-9719-2 doi: 10.1007/s10884-018-9719-2
    [17] A. C. Bronzi, C. F. Mondaini, R. M. S. Rosa, Abstract framework for the theory of statistical solutions, J. Differential Equations, 260 (2016), 8428–8484. http://dx.doi.org/10.1016/j.jde.2016.02.027 doi: 10.1016/j.jde.2016.02.027
    [18] C. Zhao, Y. Li, T. Caraballo, Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications, J. Differential Equations, 269 (2020), 467–494. http://dx.doi.org/10.1016/j.jde.2019.12.011 doi: 10.1016/j.jde.2019.12.011
    [19] C. Zhao, Absorbing estimate implies trajectory statistical solutions for nonlinear elliptic equations in half-cylindrical domains, Math. Ann., 391 (2025), 1711–1730. http://dx.doi.org/10.1007/s00208-024-02965-y doi: 10.1007/s00208-024-02965-y
    [20] J. Li, Z. Fu, Y. Gu, L. Zhang, Rapid calculation of large-scale acoustic scattering from complex targets by a dual-level fast direct solver, Comput. Math. Appl., 130 (2023), 1–9. http://dx.doi.org/10.1016/j.camwa.2022.11.007 doi: 10.1016/j.camwa.2022.11.007
    [21] M. Conti, V. Pata, Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Anal. Real World Appl., 19 (2014), 1–10. http://dx.doi.org/10.1016/j.nonrwa.2014.02.002 doi: 10.1016/j.nonrwa.2014.02.002
    [22] T. Caraballo, M. Herrera-Cobos, P. Marín-Rubio, Time-dependent attractors for non-autonomous non-local reaction-diffusion equations, Proc. Roy. Soc. Edinburgh Sect. A, 148 (2018), 957–981. http://dx.doi.org/10.1017/S0308210517000348 doi: 10.1017/S0308210517000348
    [23] Y. Li, Z. Yang, Continuity of the attractors in time-dependent spaces and applications, J. Math. Anal. Appl., 524 (2023), 127081. http://dx.doi.org/10.1016/j.jmaa.2023.127081 doi: 10.1016/j.jmaa.2023.127081
    [24] F. Meng, M. Yang, C. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete Cont. Dyn. Syst.-B, 21 (2016), 205–225. http://dx.doi.org/10.3934/dcdsb.2016.21.205 doi: 10.3934/dcdsb.2016.21.205
    [25] F. Meng, C. Liu, Necessary and sufficient conditions for the existence of time-dependent global attractor and application, J. Math. Phys., 58 (2017), 032702. http://dx.doi.org/10.1063/1.4978329 doi: 10.1063/1.4978329
    [26] Y. Qin, B. Yang, Existence and regularity of time-dependent pullback attractors for the non-autonomous nonclassical diffusion equations, Proc. Roy. Soc. Edinburgh Sect. A, 152 (2022), 1533–1550. http://dx.doi.org/10.1017/prm.2021.65 doi: 10.1017/prm.2021.65
    [27] C. Zhao, G. Xue, G. Łukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Cont. Dyn. Syst.-B, 23 (2018), 4021–4044. http://dx.doi.org/10.3934/dcdsb.2018122 doi: 10.3934/dcdsb.2018122
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(60) PDF downloads(7) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog