We studied the coercivity and error estimate of a modified isoparametric bilinear finite volume element scheme for anisotropic diffusion problems on quadrilateral meshes, where the scheme is obtained by employing the trapezoidal rule to approximate the line integrals in classical $ Q_1 $-finite volume element method. By an element analysis approach, we propose a new sufficient condition to ensure the coercivity result of the scheme, which is better than the existing results in [Q. Hong and J. Wu, Adv. Comput. Math., 44 (2018), 897-922]. Under $ h^2 $-uniform quadrilateral mesh assumption, we prove the superconvergence $ |u_I-u_{h}|_{1} = \mathcal{O}(h^2) $, where $ u_I $ is the isoparametric bilinear interpolation of exact solution $ u $, and $ u_h $ is the finite volume element solution. As a result, an optimal $ L^2 $ error estimate of $ u_h $ is obtained. Some numerical experiments were carried out to verify the theoretical findings.
Citation: Shengying Mu, Yanhui Zhou. A new analysis of isoparametric bilinear finite volume element scheme based on trapezoidal rule for anisotropic diffusion problems[J]. AIMS Mathematics, 2026, 11(2): 3394-3424. doi: 10.3934/math.2026138
We studied the coercivity and error estimate of a modified isoparametric bilinear finite volume element scheme for anisotropic diffusion problems on quadrilateral meshes, where the scheme is obtained by employing the trapezoidal rule to approximate the line integrals in classical $ Q_1 $-finite volume element method. By an element analysis approach, we propose a new sufficient condition to ensure the coercivity result of the scheme, which is better than the existing results in [Q. Hong and J. Wu, Adv. Comput. Math., 44 (2018), 897-922]. Under $ h^2 $-uniform quadrilateral mesh assumption, we prove the superconvergence $ |u_I-u_{h}|_{1} = \mathcal{O}(h^2) $, where $ u_I $ is the isoparametric bilinear interpolation of exact solution $ u $, and $ u_h $ is the finite volume element solution. As a result, an optimal $ L^2 $ error estimate of $ u_h $ is obtained. Some numerical experiments were carried out to verify the theoretical findings.
| [1] | R. E. Bank, D. J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal., 24 (1987), 777–787. |
| [2] |
Z. Cai, On the finite volume element method, Numer. Math., 58 (1990), 713–735. https://doi.org/10.1007/BF01385651 doi: 10.1007/BF01385651
|
| [3] |
J. S. Camier, F. Hermeline, A monotone nonlinear finite volume method for approximating diffusion operators on general meshes, Int. J. Numer. Meth. Engng., 107 (2016), 496–519. https://doi.org/10.1002/nme.5184 doi: 10.1002/nme.5184
|
| [4] | W. Cao, Z. Zhang, Q. Zou, Is $2k$-Conjecture valid for finite volume methods? SIAM J. Numer. Anal., 53 (2015), 942–962. |
| [5] |
G. Chen, J. Lv, X. Zhang, Finite volume element method for nonlinear elliptic equations on quadrilateral meshes, Comput. Math. Appl., 140 (2023), 154–168. https://doi.org/10.1016/j.camwa.2023.04.010 doi: 10.1016/j.camwa.2023.04.010
|
| [6] |
Z. Chen, J. Wu, Y. Xu, Higher-order finite volume methods for elliptic boundary value problems, Adv. Comput. Math., 37 (2012), 191–253. https://doi.org/10.1007/s10444-011-9201-8 doi: 10.1007/s10444-011-9201-8
|
| [7] |
S. Chou, S. He, On the regularity and uniformness conditions on quadrilateral grids, Comput. Methods Appl. Mech. Engrg., 191 (2002), 5149–5158. https://doi.org/10.1016/S0045-7825(02)00357-2 doi: 10.1016/S0045-7825(02)00357-2
|
| [8] |
S. Chou, X. Ye, Superconvergence of finite volume methods for the second order elliptic problem, Comput. Methods Appl. Mech. Eng., 196 (2007), 3706–3712. https://doi.org/10.1016/j.cma.2006.10.025 doi: 10.1016/j.cma.2006.10.025
|
| [9] |
X. Dai, Z. Yang, A. Zhou, Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions, Sci. China Ser. A-Math., 51 (2008), 1401–1414. https://doi.org/10.1007/s11425-008-0102-3 doi: 10.1007/s11425-008-0102-3
|
| [10] |
C. Erath, D. Praetorius, Adaptive vertex-centered finite volume methods for general second-order linear elliptic partial differential equations, IMA J. Numer. Anal., 39 (2019), 983–1008. https://doi.org/10.1093/imanum/dry006 doi: 10.1093/imanum/dry006
|
| [11] | R. E. Ewing, T. Lin, Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal., 39 (2002), 1865–1888. |
| [12] |
R. E. Ewing, M. M. Liu, J. Wang, Superconvergence of mixed finite element approximations over quadrilaterals, SIAM J. Numer. Anal., 36 (1999), 772–787. https://doi.org/10.1137/S0036142997322801 doi: 10.1137/S0036142997322801
|
| [13] |
F. Fang, Q. Hong, J. Wu, Analysis of a special $Q_{1}$-finite volume element scheme for anisotropic diffusion problems, Numer. Math. Theor. Meth. Appl., 12 (2019), 1141–1167. https://doi.org/10.4208/nmtma.OA-2018-0080 doi: 10.4208/nmtma.OA-2018-0080
|
| [14] |
Z. Fang, J. Zhao, H. Li, Y. Liu, Finite volume element methods for two-dimensional time fractional reaction-diffusion equations on triangular grids, Appl. Anal., 102 (2023), 2248–2270. https://doi.org/10.1080/00036811.2022.2027374 doi: 10.1080/00036811.2022.2027374
|
| [15] |
W. Hackbusch, On first and second order box schemes, Computing, 41 (1989), 277–296. https://doi.org/10.1007/BF02241218 doi: 10.1007/BF02241218
|
| [16] |
W. He, Z. Zhang, Q. Zou, Maximum-norms error estimates for high-order finite volume schemes over quadrilateral meshes, Numer. Math., 138 (2018), 473–500. https://doi.org/10.1007/s00211-017-0912-8 doi: 10.1007/s00211-017-0912-8
|
| [17] |
Q. Hong, J. Wu, Coercivity results of a modified $Q_{1}$-finite volume element scheme for anisotropic diffusion problems, Adv. Comput. Math., 44 (2018), 897–922. https://doi.org/10.1007/s10444-017-9567-3 doi: 10.1007/s10444-017-9567-3
|
| [18] |
Q. Hong, J. Wu, A $Q_1$-finite volume element scheme for anisotropic diffusion problems on general convex quadrilateral mesh, J. Comput. Appl. Math., 372 (2020), 112732. https://doi.org/10.1016/j.cam.2020.112732 doi: 10.1016/j.cam.2020.112732
|
| [19] |
S. Karaa, K. Mustapha, A. K. Pani, Finite volume element method for two-dimensional fractional subdiffusion problems, IMA J. Numer. Anal., 37 (2017), 945–964. https://doi.org/10.1093/imanum/drw010 doi: 10.1093/imanum/drw010
|
| [20] | P. Lesaint, M. Zlámal, Superconvergence of the gradient of finite element solutions, RAIRO Anal. Numér., 13 (1979), 139–166. |
| [21] | R. Li, Z. Chen, W. Wu, Generalized difference methods for differential equations: Numerical analysis of finite volume methods, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482270211 |
| [22] |
R. Li, P. Zhu, Generalized difference methods for second order elliptic partial differential equations (Ⅰ)-triangle grids, (in chinese), Numer. Math. J. Chin. Univ., 16 (1982), 140–152. https://doi.org/10.1016/0898-1221(88)90144-7 doi: 10.1016/0898-1221(88)90144-7
|
| [23] | Y. Li, R. Li, Generalized difference methods on arbitrary quadrilateral networks, J. Comput. Math., 17 (1999), 653–672. |
| [24] | Y. Lin, J. Liu, M. Yang, Finite volume element methods: An overview on recent developments, Int. J. Numer. Anal. Model., 4 (2013), 14–34. |
| [25] |
Y. Lin, M. Yang, Q. Zou, $L^2$ error estimates for a class of any order finite volume schemes over quadrilateral meshes, SIAM J. Numer. Anal., 53 (2015), 2030–2050. https://doi.org/10.1137/140963121 doi: 10.1137/140963121
|
| [26] |
Y. Lou, X. Guo, H. Rui, X. Feng, Quadratic discontinuous finite volume element schemes for Stokes-Darcy problems, J. Comput. Phys., 530 (2025), 113898. https://doi.org/10.1016/j.jcp.2025.113898 doi: 10.1016/j.jcp.2025.113898
|
| [27] |
J. Lv, Y. Li, $L^2$ error estimates and superconvergence of the finite volume element methods on quadrilateral meshes, Adv. Comput. Math., 37 (2012), 393–416. https://doi.org/10.1007/s10444-011-9215-2 doi: 10.1007/s10444-011-9215-2
|
| [28] |
S. Mu, Y. Zhou, An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes, AIMS Mathematics, 8 (2023), 22507–22537. https://doi.org/10.3934/math.20231147 doi: 10.3934/math.20231147
|
| [29] |
C. Nie, J. Fang, S. Shu, A monotone finite volume element scheme for diffusion equations on arbitrary polygonal grids, Comput. Math. Appl., 153 (2024), 225–236. https://doi.org/10.1016/j.camwa.2023.11.030 doi: 10.1016/j.camwa.2023.11.030
|
| [30] | S. Shu, H. Yu, Y. Huang, C. Nie, A symmetric finite volume element scheme on quadrilateral grids and superconvergence, Int. J. Numer. Anal. Mod., 3 (2006), 348–360. |
| [31] | T. Wang, Y. Gu, Superconvergent biquadratic finite volume element method for two-dimensional Poisson's equations, J. Comput. Appl. Math., 234 (2010), 447–460. |
| [32] | X. Wang, Y. Li, $L^2$ error estimates for high order finite volume methods on triangular meshes, SIAM J. Numer. Anal., 54 (2016), 2729–2749. |
| [33] |
X. Wang, Y. Zhang, Z. Zhang, Flexible ultra-convergence structures for the finite volume element method, J. Sci. Comput., 101 (2024), 15. https://doi.org/10.1007/s10915-024-02654-7 doi: 10.1007/s10915-024-02654-7
|
| [34] |
J. Wu, Z. Gao, Z. Dai, A vertex-centered linearity-preserving discretization of diffusion problems on polygonal meshes, Internat. J. Numer. Methods Fluids, 81 (2016), 131–150. https://doi.org/10.1002/fld.4178 doi: 10.1002/fld.4178
|
| [35] |
J. Xu, Q. Zou, Analysis of linear and quadratic simplicial finite volume methods for elliptic equations, Numer. Math., 111 (2009), 469–492. https://doi.org/10.1007/s00211-008-0189-z doi: 10.1007/s00211-008-0189-z
|
| [36] |
W. Xu, L. Ge, Two-grid finite volume element methods for solving Cahn-Hilliard equation, Bull. Iran. Math. Soc., 49 (2023), 28. https://doi.org/10.1007/s41980-023-00774-8 doi: 10.1007/s41980-023-00774-8
|
| [37] |
J. Zhang, Z. Chen, $L^2$ error estimates for a family of cubic finite volume methods on triangular meshes, Comput. Math. Appl., 143 (2023), 189–223. https://doi.org/10.1016/j.camwa.2023.04.038 doi: 10.1016/j.camwa.2023.04.038
|
| [38] |
J. Zhang, Tetrahedral quadratic finite volume method schemes for the Stokes equation, J. Comput. Appl. Math., 463 (2025), 116472. https://doi.org/10.1016/j.cam.2024.116472 doi: 10.1016/j.cam.2024.116472
|
| [39] | L. Zhang, L. Li, On superconvergence of isoparametric bilinear finite elements, Comm. Numer. Methods Engrg., 12 (1996), 849–862. |
| [40] |
Y. Zhang, A quadratic serendipity finite volume element method on arbitrary convex polygonal meshes, Commun. Comput. Phys., 34 (2023), 116–131. https://doi.org/10.4208/cicp.OA-2022-0307 doi: 10.4208/cicp.OA-2022-0307
|
| [41] |
Y. Zhang, J. Wu, An adaptive polygonal finite volume element method based on the mean value coordinates for anisotropic diffusion problems, Commun. Comput. Phys., 37 (2025), 783–809. https://doi.org/10.4208/cicp.OA-2023-0213 doi: 10.4208/cicp.OA-2023-0213
|
| [42] |
Y. Zhang, X. Wang, Unified construction and $L^2$ analysis for the finite volume element method over tensorial meshes, Adv. Comput. Math., 49 (2023), 2. https://doi.org/10.1007/s10444-022-10004-0 doi: 10.1007/s10444-022-10004-0
|
| [43] |
Y. Zhang, C. Chen, C. Bi, A quadratic finite volume method for nonlinear elliptic problems, Adv. Comput. Math., 47 (2021), 32. https://doi.org/10.1007/s10444-021-09853-y doi: 10.1007/s10444-021-09853-y
|
| [44] |
Z. Zhang, Q. Zou, Some recent advances on vertex centered finite volume element methods for elliptic equations, Sci. China Math., 56 (2013), 2507–2522. https://doi.org/10.1007/s11425-013-4740-8 doi: 10.1007/s11425-013-4740-8
|
| [45] |
Z. Zhang, Q. Zou, Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems, Numer. Math., 130 (2015), 363–393. https://doi.org/10.1007/s00211-014-0664-7 doi: 10.1007/s00211-014-0664-7
|
| [46] |
Y. Zhou, Stability and superconvergence of a special $Q_1$-finite volume element scheme over quadrilateral meshes, Int. J. Numer. Anal. Mod., 22 (2025), 556–584. https://doi.org/10.4208/ijnam2025-1024 doi: 10.4208/ijnam2025-1024
|
| [47] |
Y. Zhou, S. Su, A novel family of $Q_1$-finite volume element schemes on quadrilateral meshes, Comput. Math. Appl., 172 (2024), 216–240. https://doi.org/10.1016/j.camwa.2024.08.019 doi: 10.1016/j.camwa.2024.08.019
|
| [48] |
Y. Zhou, J. Wu, A unified analysis of a class of quadratic finite volume element schemes on triangular meshes, Adv. Comput. Math., 46 (2020), 71. https://doi.org/10.1007/s10444-020-09809-8 doi: 10.1007/s10444-020-09809-8
|
| [49] |
Y. Zhou, Y. Zhang, J. Wu, A polygonal finite volume element method for anisotropic diffusion problems, Comput. Math. Appl., 140 (2023), 225–236. https://doi.org/10.1016/j.camwa.2023.04.025 doi: 10.1016/j.camwa.2023.04.025
|
| [50] | Q. D. Zhu, Q. Lin, Superconvergence theory of the finite element method, (in Chinese), Hunan: Hunan Science Press, 1989. |
| [51] |
Q. Zou, An unconditionally stable quadratic finite volume scheme over triangular meshes for elliptic equations, J. Sci. Comput., 70 (2017), 112–124. https://doi.org/10.1007/s10915-016-0244-3 doi: 10.1007/s10915-016-0244-3
|