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Abstract: We studied the coercivity and error estimate of a modified isoparametric bilinear finite
volume element scheme for anisotropic diffusion problems on quadrilateral meshes, where the scheme
is obtained by employing the trapezoidal rule to approximate the line integrals in classical Q;-finite
volume element method. By an element analysis approach, we propose a new sufficient condition to
ensure the coercivity result of the scheme, which is better than the existing results in [Q. Hong and J.
Wu, Adv. Comput. Math., 44 (2018), 897-922]. Under h*-uniform quadrilateral mesh assumption, we
prove the superconvergence |u; — u;|; = O(h?), where u; is the isoparametric bilinear interpolation of
exact solution u, and u, is the finite volume element solution. As a result, an optimal L? error estimate
of uy, is obtained. Some numerical experiments were carried out to verify the theoretical findings.
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1. Introduction

Since the finite volume element method (FVEM) presents local conservation property and other
advantages, it has become one of the most popular numerical methods to solve partial differential
equations. FVEM is also called a generalized difference method [22] or box method [1]. In the
book [21] and review papers [24,44], the authors summarized the mathematical development of FVEM
and presented some challenging research fronts. The FVEM has been applied to some challenging
problems, e.g., eigenvalue problems [9], fractional equations [14, 19], adaptive algorithms [10],
Cahn-Hilliard equation [36], nonlinear equations [5,43], and Stokes problems [26, 38]. For general
second-order elliptic equations, the element stiffness matrix of linear FVEM can be regarded as a


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2026138

3395

small perturbation of the corresponding linear finite element method on an arbitrary triangular mesh,
leading to the coercivity result [2,35]. As a result, the optimal H' error estimate can be proved by
standard technique. Moreover, the optimal L? error estimate can be found in [11] for general triangular
meshes. A theoretical analysis of higher-order FVEMs on triangular meshes can be found in [6,48,51]
(coercivity) and [32,37] (L? error) for incomplete references.

However, the development of the classical isoparametric bilinear FVEM (Q;-FVEM) on
quadrilateral meshes has not proved satisfactory. To establish the coercivity result, most works require
a quasi-parallelogram mesh assumption, see [23,45]. Recently, for the coercivity of classical Q;-
FVEM, [18] proposed a sufficient condition that covers the traditional quasi-parallelogram mesh but,
regrettably, not the arbitrary trapezoidal mesh. Under the coercivity result and quasi-parallelogram
mesh assumption, by using Aubin-Nitsche technique, [27] proved the L? error estimate for a second-
order elliptic equation with the anisotropic diffusion coefficient. By approximating the line integrals
in classical Q;-FVEM at the geometric center of the quadrilateral, [30] proposed a symmetric Q;-
FVE scheme, in which the global stiffness matrix was symmetric, and the error estimate was proved
over a uniform rectangular mesh. [13, 17, 46] used trapezoidal, midpoint, and edge midpoint rules
to approximate the line integrals, proposing some sufficient conditions to ensure the coercivity result
of the new schemes; these conditions cover the traditional quasi-parallelogram but not the arbitrary
trapezoidal mesh. Recently, by employing a linear combination of trapezoidal and midpoint quadrature
rules (the weights depend on a parameter wg), [47] established the coercivity result of new schemes
on the arbitrary trapezoidal and some general quadrilateral meshes. More studies of FVEM on
quadrilateral meshes can be found in [28] (coercivity), [25,42] (L?* error), and [16] (L™ error) for a non-
exhaustive literature. Recently, the polygonal FVEMs were analyzed in [29] (monotone scheme), [40]
(quadratic scheme), [41] (adaptive algorithm), and [49] (linear scheme).

Based on the coercivity result, one can study the superconvergence of the FVEM solution. On
triangular meshes, by using the barycenters of triangles to construct the dual mesh, [15] proved that
the difference between the linear FEM and FVEM solutions is of second order in energy norm.
On a uniform rectangular mesh, and by Taylor expansion, [30] proved the L? error estimate and
superconvergence. In 2012, on A?-uniform quadrilateral mesh and by employing the geometric centers
of quadrilaterals to construct the dual mesh, [27] showed that the error between the classical Q;-
FVEM solution and the interpolation of the exact solution is also of second order in energy norm.
Further studies of superconvergence were presented in [33] (1D) and [4, 8, 31] (2D). However, the
superconvergence of the modified isoparametric bilinear FVE scheme [17] has not been established.
This work is motivated by the fact that, for the implementation of the program of classical Q;-FVEM,
the trapezoidal rule [17] is widely used to approximate the line integrals.

In this work, we intend to improve the coercivity and establish the superconvergence of the
isoparametric bilinear FVE scheme constructed in [17]. First, unlike the coercivity analysis of [17]
for a 4 X 4 matrix, here the element matrix is transformed into a 3 X 3 matrix, which enables us
to suggest a new sufficient condition to guarantee the coercivity result. Moreover, it is interesting
that this condition is better than that of [17], which is summarized in Theorem 3.2. Second, for the
superconvergence, unlike [27], here the exact solution # and modified bilinear FVEM solution u,, are
subjected to different variational forms. That is, u and u,, satisfy the continuous and discrete Petrov-
Galerkin form, respectively; see Eqs (2.5) and (2.7). To obtain the superconvergence of the difference
between u; and u;, in energy norm, the bilinear form of the FVE scheme is decomposed into two parts.
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The first part is the error between u and u;; then, under the A>-uniform quadrilateral mesh assumption
and the superconvergence of bilinear interpolation on two adjacent quadrilateral elements, this error
can be analyzed by some techniques. The second part is converted to the numerical integration about
u, which can be analyzed on each quadrilateral element. Consequently, we reach the second-order
superconvergence result. As a by-product, u;, converges to u with optimal convergence orders 1 and 2
under H'! and L? norms, and the superconvergence results of u;, at geometric centers, interior vertices,
and edge midpoints are all second order in an average gradient norm. In summary, the novelty of this
paper is the improvement of the coercivity result of [17] and the establishment of the superconvergence.

The rest of this paper is organized as follows: In Section 2, we introduce the construction of the
modified isoparametric bilinear finite volume element scheme for solving the anisotropic diffusion
problems on quadrilateral meshes. A new coercivity result of the scheme is shown in Section 3. The
superconvergence result and some corollaries are given in Section 4. Several numerical examples
are presented in Section 5 to validate the theoretical findings, and in the last section, we provide a
conclusion.

To avoid repetition, “A < B” indicates that A can be bounded by B multiplied by a constant irrelative
to the parameters that A and B may depend on. Analogously, “A > B” implies that B can be bounded
by A, while “A ~ B” stands for both “A < B” and “B < A”.

2. The Q,-FVEM-TR scheme

We consider the following anisotropic diffusion problem

-V - (AVu) = f, in Q, (2.1
u =0, onoQ, (2.2)

where Q C R? is an open bounded connected polygonal domain, f € L*(Q) is the source term, and the
anisotropic diffusion coefficient A(x) is a 2 X 2 symmetric and positive definite matrix; namely, there
exist two positive constants A and A satisfying

AP <vI Ay <Ap|?, Vv eR?: Vx=(xy) €Q

and ||v|| is the Euclidean norm of vector v. To simplify the statements of theoretical analysis, here we
only consider the homogeneous Dirichlet boundary condition.

Suppose that the polygonal domain Q is partitioned into a finite number of non-overlapped and
strictly convex quadrilateral elements that form the so-called primary mesh 7, 1.e., Q = U{K : K € 7},}
with 4 = maxges, hx being the mesh size and hg the diameter of K. Moreover, 7, is assumed to
conform in the sense that the intersection of any two different quadrilateral elements is a common
edge, a common vertex, or empty. 7, is called regular provided that there exists a positive constant C,

independent of 4, such that

h
X<c, VKeT, (2.3)
Pk

where px = min;;«4{diameter of the circle inscribed in Ax;_x;x;;}; here and hereafter, i denotes,
without special mention, a periodic index with period 4. Sometimes, we will use the quasi-regular
assumption of the primary mesh, i.e., there exists a positive constant C,, independent of / such that

K| > Chz, VKET, (2.4)
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One can observe that Eq (2.3) yields Eq (2.4), but not vice versa (see Theorem 2.1 in [7]). Let Nk,
Ek, and Mk be the set of four vertices x;, four edges x;x;,1, and four midpoints y; of K, respectively.
Then, we can denote N, = Uger, Nk, E = Uger, Ex, My, = Uger, Mk, and N7 = N)\0Q, &, = E,\09Q,
M, = M;\0Q as the set of all vertices, edges, midpoints of edges and interior vertices, interior edges,
and midpoints of interior edges of 7, respectively. Moreover, C;, is denoted as the set of all geometric
centers of 77,. Let the reference square element K = Ox,%,%:%; = [~1, 1] on the (£,71) plane, where
X =1L-DI, % =0,-D7, %3 = (1, 1) and x4 = (-1, 1)". For simplicity, here and hereafter, we
will not distinguish between a point and its position vector: they share the same symbol. On K, one
can introduce its four bilinear nodal basis functions as below

- (A-Hd-n = Ad+HU-n) = A+HU+np ~ A-6H0+n)

¢1—f, ¢2—f, ¢3—f, ¢4_f’
which satisfy @Gc\j) = 0;j, where 0;; is the Kronecker delta, namely 6;; = 1if i = j, 6;; = 0if i # j. For
each strictly convex quadrilateral K = Ox;x,x3x4, there exists a unique invertible bilinear mapping Jk
that maps K onto K , satisfying Jx(x;) = x; (i = 1,2, 3,4); see Figure 1. It can be seen that the mapping
Jk 1s given by

Tk(&m) = xk + %(mlf + mo1) + mgén),

where x is the geometric center of K, the vectors m; and m, (resp. my) are related to the midpoints
of opposite edges (resp. diagonals) of K, given by xx = Zle x;/4, and

1 1
my =S+ X3 =Xy = Xy), = S(X5 4 Xy X~ X)), Mg = S0 X5 X~ Xy).
With respect to the primary mesh 77, the trial function space U, is defined as

Un = {un € CQ) : wylx =Ty 0 Ji', Tylg is a bilinear function, ¥ K € T4, uplsn =0}

|

Jk

D3
D3

7~

1 1 &

Figure 1. The bilinear mapping Jk.

Next, we introduce the dual mesh. By connecting the geometric center xx with its four edge
midpoints y;, we partition K into four quadrilateral sub-elements. The contribution from K to the
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control volume 9 is the quadrilateral O; x := Oxky;_;X;y;, and the whole control volume surrounding
x;is defined by D; = Ugs,, D; k. The dual mesh 7, consists of all control volumes 7, = {D; : x; € N, }.
In other words, all sub-elements sharing a common vertex of the primary mesh form a polygonal
element of the dual mesh; see Figure 2 for an example. Based on the dual mesh 7, the test function
space V), is given by

Vi = {v € LA(Q) : vilp, = constant, ¥ D; € T}, vilsn = 0}.

Then, we have dim U, = dim V.

Figure 2. The primary mesh 77, (solid lines) and its associated dual mesh 7" (dotted lines).

By using the Green’s formula, we deduce from Eq (2.1) that

—f (AVu)-nfds:f fdxdy, Vx;eN,,
0D; D;

where n; is the unit outward normal vector along the boundary of O;. Rearranging the above equation,
it is equivalent to

ap(u,vy) = (f,vi), Vv, €V, (2.5)
where

a )= Y vi | (-AVw-mids, (fv)= D v f £ dxdy

xieN; VoD xieN; VD

and v; = vi(x;). In Eq (2.5), replacing u by uj,, one can reach the classical Q;-FVEM to solve Eqgs (2.1)
and (2.2), i.e., find u;, € U}, such that

an (up,vy) = (f,vn), Yy €V

Note that v; = 0 provided that x; € 9Q2, then rewrite the bilinear form of a,(-, -), we obtain

4
an (up, vy) = Z agp (WUn, Vi) s axp (Un, vi) = Z[Vh]xl(y,— (=AVu,) - ny; ds, (2.6)
pay

KeTy, XKYi
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where [Vl y, = Vi1 — Vi 18 the jump across xgy; and

1 0 1
n,, = —R i —XK), R = .
Ki =yl YT ¥R (—1 0)

By employing the trapezoidal rule to approximate the line integrals in Eq (2.6),
. 1
(=AVuy,) - ny;ds ~ E(xK = ¥) R Ax [Vun(xg) + Vur(y)]
XKYi

where Ak denotes the constant restriction of A on K (e.g., Ax = A(xg)), and we reach the so-called
Q:-FVEM-TR scheme, given by

ay (wp,vp) = (fovn), Y, €V, (2.7)
where
ap (up, vy) = Z EK,h (U, Vi), (2.8)
KGTh

| =

4
agp (Up,vy) = Z[Vh]xKyi(xK —y) ' RT Ak [Vun(xg) + Vur(y)] -

i=1

We mention that the Q;-FVEM-TR scheme (2.7) is constructed in [17]. For any u, € U,, we have
Uy = Zle u;¢; in each K € 7,,. Let

I-n
0

9

. 1 0
Y& m) = 1 x (&m , Yaén) = 7 x & n) "

=Ll V) e = ten| °
%03(5’77 - 4 K f’n 0 s ')04 fan _4 K é‘:,n f—l .

It follows that
4

4
Vi = TEM ) uiVhi = Y (i — udpi(,m),
i=1

i=1

where V. = (0/0¢, (9/(917)T and we have used the fact J}l(.f, r))/V\;t;,- = Y1 — ;. LetII; be a linear
mapping that maps u, € U, to u;, := Ilju, € V) satisfying u;(x) = uy(x), Vx € N;. By denoting
O0Uk = (up — uy, uz — uo, g — Uz, Uy — M4)T and x = &, U)T = j,}l(x), we have

agn (up,uy) = SUR AU, (2.9)

where

1 — —
Ag = (aK,ij) ,  agij = 5 (xx —y)T RT Ak [tpj (xx) + (ﬁj(yi)] . (2.10)

4x4

By transforming Ak to a 3 X 3 matrix, in the next section we give a new sufficient condition to ensure
the coercivity result.
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3. New coercivity result

For convenience of exposition, we define the following notations

- m-Rmg) _  mg-(Rmy)
= —" =——= my;= —(Rm,) Ax(Rm;), 3.1
TR T K 17K « (Rm)
2m 2m
My =+ 13, (2= —1_12, M3 = 2_22 ) (3.2)
1 - B 1=k
2
,u3 —2 My Moz = _
— — —_— = + — . 33
& =my — 16 1,31(, $H =my 16/11)/1(’ $=mp 16#],3K7K (3.3)

To present the coercivity result, we introduce the following assumption:
(A1) There exists a positive constant o, independent of K and A, such that {1, — §32 > 0.

Theorem 3.1. Assume that T, consists of strictly convex quadrilaterals, under the assumptions (2.3)
and (A1), we have

ap (up, ) 2 luply, Y uy € Uy, (3.4)
where the hidden constant is independent of h, and | - |, denotes the standard H' semi-norm.
To prove the new coercivity result (3.4), we first present some lemmas.
Lemma 3.1. Assume that K is a strictly convex quadrilateral, then we have
LBK| + |?K| <1, mg=7ym +Lym;. (3.5)

For the m;; defined by Eq (3.1), we have
1
My = Myy,  Myimy — My, = 16 det(AK) (3.6)

Moreover, under the geometric assumption (2.4)

1 Cua 1
4C," 4 4C,,’

Imi,| <

Proof. The proof of this lemma can be found in some papers, e.g., Lemmas 1 and 2 of [18], or
Lemmas 1 and 2 of [47]. O

Lemma 3.2. For the {, and {, defined in Eq (3.3), we have 4, + ¢, > O.

Proof. Noticing u; > 0(i = 1,2,3), and Egs (3.2) and (3.5), it holds that

—2 1
’)/K>4I’I’Z]1+I’I’Z22—H—(1—’y%<) é(l _ﬁK) :§(31m11 +4I’I’l22),

—2
4{1+§224m11—%,8,<+m22 1

16

leads to the desired result. O
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Lemma 3.3. For the Ak defined by Eq (2.10), we have

33—k - Bxmn - My " Bxman
Pormmm— () ——— — My - n—=———
2(1 =) 2(1 =) 2 2(1 =yg)

Yk 3+ Bk Y myy

—_ — My — M — +myy —T
Ay = 2(1 + Bg) 2(1+Bg) 2(1 + Bg) _
myy ﬁKmZZ “m 3+ ?K m ﬁ]{m22 m
I N = < 12 N~ . — ) -, = < 12
2 2(1 +yg) 2(1 +yg) 2(1 +yg)
Yimii mi Ymi 3 - Pk
myp)— ——— - —— —m ——m
2(1 -Bg) 2 2(1 = Bx) 2(1 - Bg)

Proof. A direct calculation yields that xx —y; = y3 —xx = my /2, Xk —y4 =y, — Xx = m;/2 and

T & = [R(my + Emyg), —R(m; + nmy)] .

IKI(1+Bxé +7n)

It follows that

1 1
¥1(xk) = mﬂmz, Ui(y) = (ITK)lKlRmZ,
implying that
ag11 = ?,_—y_szz-
’ 2(1 =7yg)
Similarly, we obtain the remaining entries of Ag and complete the proof. O

Let (5VK = (Mz — Uy, U3 — Uy, Uy — M3)T and

P =

1 0 O
0O 1 0
o o0 1Y
-1 -1 -1
then we have SUx = P6Vk. Denote Bx £ PT AP = Z?:l Bk, where
: 3By + 7k 2 - Bk ! 3Bk~
2 2
- =2 = _ -2 - =2 = _
By = mll 24 Bk —Bx +Bx¥k 4—2Bx 2+ Bx —Bx —BxYk
1 =B 1+ 1+ 8 1+

%(3—51("")_’1() 2 - Bx %(3_31(_')_’1()

3+BK_?K BK BK+7K_1

2(1-yg) 1=-y¢ 2(1-%) -1 -1 0
BK,Z = Ny 0 0 0 , BK’3 = 2m12 -1 0 11.

BK_’yl(_l BK 3+BK+7K

2(1+yg)  1+yg  2(1+7g)
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Lemma 3.4. Let BS (Bx + BY x)/2 be the symmetric part of Bx and T = H \ Ti, where

1o 0 10 =2 1 -tege 0 10 £
Ty=|-1 1 -3], Ta={o 1 o |. Ts=|0 1 0o, T«={0 1 o0
1 0 1 00 1 0 0 1 00 1
Then, we have
00
T'BST=| 0 44 24 |. (3.7)
0 245 &

As a result, B, is positive definite if and only if {1, — &5 > 0.

Proof. Based on the definition of T; (i = 1,2,3,4), we reach Eq (3.7) by some straightforward
calculations. Since y; > 0, we find that BY is positive definite if and only if the characteristic equation

— (44 + &)+ 408 — &) = 0 has positive roots. Recalling Lemma 3.2, we conclude that By, is
positive definite if and only if {;{; — {32 > 0. m|

Lemma 3.5. For the matrix T defined in Lemma 3.4, we have ||T|| < 14, where || - || denotes the spectral
norm of the matrix.

Proof. Noticing that ||T;|| equals to the square root of the maximal eigenvalue of TiTTi, then by some
direct computations, we obtain

7+2+ \/(tf+2)2—4
Tl = 5 <y +2,

i=2,3,4,
where _
t_YK—z o Hithg t4_,1137
2 = , IBa= ) = —Yk-
A 2uy K 4 *
Recalling Eq (3.5), we find that
VAt V33
IToll < ——, [ITsll < V3, [Tyl < —.
4 4
It can be checked that T; = T;;T;,T3, where
1 00 1 0 0 0
Tll = —1 1 O . Tlg = 0 1 0 Tlg - —%
0 01 1 0 1 1
It holds that
9+ V17
Tyl = |IT Tl = A|——.
Tyl = [Tl = 2 1T 5]l 2
Finally, we complete the proof by noticing ||T|| < 1||?JF11||)(1'I;¥:2||T D). ]
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Lemma 3.6. Under the assumptions (2.4) and (A1), we have

C,r
‘ffnvn2 Yy e R, (3.8)

yIBgy >
Proof. It follows from Eq (3.7) that
T
By = (T) (T"BYT)(T™'v) 2 exlT'vIP,

where cx = min{u;, Ax} and A is the minimal root of A% — (44, + H)A + 4L - &) = 0, Le.,

45+ & < 4my; + myy
2 - 2 '

Ag = % [451 +4 - \/(441 + 0= 16(0d2 - §3Z)J :

By Eq (3.5), we have u, > 2my; and uz > 2my;, leading to p; > 2my; + 2my, and

8(51(2 —532) . 4({152 —432) . Ho -8 . 2C,0
40+ & + \/(4{1 +{)? — 16({1{2 - {32) +s i A

CK:/ll(:

Noting Lemma 3.5,

1TVl = —IIVII 2
1Tl 14

and then we reach Eq (3.8). O

Lemma 3.7. If Eq (2.3) holds, then for any u;, € U;,, we have |upl, x ~ ||[0Uk]|.
Proof. The proof can be found in Proposition 1 of [23]. O
The proof of Theorem 3.1. By Egs (2.8), (2.9), and (3.8), we deduce that

— . rQ
G (o) = ) SURARoUx = )" SViBxoVi > S Z 16V

KeTy, KeTy, KeTy,

Thus, by recalling Lemma 3.7 and the fact that ||6Uk|| ~ ||0Vkl|, we get Eq (3.4). O

Next, we discuss the relation of coercivity results between this work and [17]. The following
Theorem 3.2 indicates that (A1) is weaker than that of (H1) in [17]. As a comparison, by using
the notations of this work, (H1) in [17] can be rewritten as follows:

(H1) There exists a positive constant 0", independent of K and h, such that

HW +HW 2 HW
| & Tmp 20
where u s
HW _ 22 HW _ 35
1 =My — 167K’ = my — /51<

Theorem 3.2. Assume that T, consists of strictly convex quadrilaterals, then the condition (H1) of [17]
implies (A1), but not vice versa.
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3404

Proof. A direct calculation yields that

_ — — o _
(66 -3) - ("™ g™ —m},) = e (16Y§<m11 + 16Bxmyy — 32Byyxmiz — Mlﬁz<7§<)~
256/.11

If (H1) holds, then by noticing Eq (32) of [17], we have ¢/ > 0(i = 1,2). As a result

— =2 _ =2 _ —2 =2 _
167m11 + 168mss = (167,88 + 1B7 ) + (168" + iy )

> 32 'E,ﬁ,m/ HW 1

— _ _2_
> 32 LBKVKm12| + ﬂlﬂKV%(»

=2 _5
+ 1iBg Yy

leads to

{152_43 2 HW_m%z-
Thus, (H1) implies (A1), but not vice versa. For example, if BK = 0 and y, # O (i.e., trapezoidal
mesh), then we find that (A1) cannot imply (H1). The proof is complete. O

Here, we give a specific example, such that the assumption (A1) is satisfied, but (H1) fails. Let
the four vertices of K given by (0, 0)7, (10,0)7, (1, 1)7, and (0, 1), and assume that AK is the identity
matrix. Then, by some direct calculations, we have {;{> —4,’% = 0.0119, while ¢ fl W 2 m12 —-0.0957.
To close this section, we employ some special meshes to explore the meaning of (A1), including the
parallelogram and h'*?-parallelogram meshes.

Theorem 3.3. Suppose that T}, consists of parallelograms, then (A1) holds with

> —l—ﬂz.

R
© = min [Edet(AK) T

KeTy,

Proof. If K € T, is a parallelogram, then we obtain mx = 0 and 8, = ¥, = 0. It follows from Eqs (3.3)
and (3.6) that

1
T det(Ag), VK eT,,

implying the desired result. O

2 2
§18 — 45 = mymy —my, =

Theorem 3.4. Assume that T}, consists of h'*-parallelograms, i.e., ||mg|| < h Hy VK € T, where
v > 0 is a constant. Let Eq (2.4) hold. Then, when h is small enough, we have

‘(5152 -3)- 11—6 det (Ag)

As a result, (A1) holds with o = COLIZ, where 0 < Cy < 1/16 is a constant.
Proof. By denoting

<shy, VKeT

ar = 14 BZ @ = — 1 2. a ﬂ2/v‘3B 5
YTl K TP e T T 16y KUK
we obtain
& — {3 = det(AK) + Res, Res = aymy| +ayma + aya — 2azmyy — a%.

Since 77, is an h1+7-parallelogram mesh and Eq (2.4) holds, we deduce that |,Z¥K| < h, ?K| < hy., and
ui < 13 = 2,3). It follows that |a;| < h? (i =1,2,3) and |Res| < h2, completing the proof. m]
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4. Error analysis

In this section, for any adjacent elements K; and K, with a common edge, we assume that ||Ag, —
Ak,|l £ h. The quadrilateral mesh 77, is called h*-uniform (c.f. [12,27]) provided that the relation
[lmk||l < h%{, V K € 7, holds, and for any two adjacent quadrilateral elements K; = Ox;x,x3x4 and
K, = Ox4x3x5X¢ (see Figure 3), they satisfy the h?-parallelogram condition ||2x4 — x; — x| < h°.

Lge

Figure 3. Two adjacent quadrilaterals K; = Ox;x,x3x4 and K, = Ox,4X3X5Xs that have the
common edge x4Xx3.

4.1. Superconvergence

Denote by u; € U, the isoparametric bilinear interpolation of u, such that u;(x;) = u(x;), Vx; € Nj,.
Then, we have the following superconvergence result (4.1).

Lemma 4.1. [20, 39, 50] Let the quadrilateral mesh T, be h*-uniform, then we have
[V = unco|| < lluls e, Ve W), (4.1)

where V is the arithmetic average of the gradient over all neighboring quadrilateral elements for x,
while x is any geometric center in Cy, or any interior vertex in N}, or any interior midpoint in M.

It follows from Eq (3.4) that
lur — uly <@ (g = up, (ug — wy)*) = Jy + o, 4.2)
where
Jv=ap (up —u, (uy —wp)*),  Jo =ay (u — up, (uy — up)’) .
Next, we will analyze the right-hand side of Eq (4.2) term by term.

Lemma 4.2. Letu € Hé (Q) N W3(Q) be the exact solution of Eqs (2.1) and (2.2), and u;, € U, be the
finite volume element solution of Eq (2.7). Assume that the quadrilateral mesh T}, is h*-uniform, then
we have

1l S Bluel3.00lr = uanls. (4.3)
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Proof. Let

ay gxp (U, vi) = Whleey Xk — )T RT AxVuy(xk),

| =
gl

i=1

_ 1 <
ar gp (Up, vi) = 5 Z[Vh]xky,-(xl( - J’i)TRTAKVuh()’i),
i=1

then we have ag, (up, vi,) = aygn (Up, vi) + az.xn (up, vy). In the following, we will estimate the terms
ay xu(-,+) and ap g 4(+, -) one by one. First, by Eq (4.1) and Cauchy-Schwarz inequality,

1 4
[@1kn (= up, (up = up)")| = 5 [tr = ) Ty, (k= 90 RT A Vi1t — up)(xg)
2

KeTy, KeTy | i=1
4
< D0 > = wl a1V G = (el
KeT) i=1
3
< Wllllsee D Ty = wply ko
KeTy,

2
S W \lulls coluty — ulys

where |upli xkn = |0Ukll; also, we have used the fact that the number of elements in 7 is O(h™?).
Second, for any two adjacent quadrilateral elements K, K, € 7, we assume that the common edge of
K, and K, is x;x; € &;; see Figure 4. Moreover, we let y;; be the midpoint of x;x;. It can be checked
that |2y;; — xk, — XK, || < h?. By noticing (u; — us)* = 0 on 9, it follows from Eq (4.1) that

1
Z [Car = wn) Ny, x, 5((361(1 = yi)) R A, Vi, (u = up)(yi))

x,»ijS;’l

D @ (0= g, (g = p)")

KeTy,

+ i = X1) R Ak, Vi (= up)(3i)))

1
= Z [Car = wn) Ny, x, 5((361(1 = yi)) R A, Vi, (u = up)(yi))

x,»ijS;’l

+ (xg, = ¥i)) RT Ak, Vi, (u — up)(yij)

+ 2y — Xk, — sz)TRTAKZVKZ(u - Ml)()’ij))

< Z |ty — wnl1 k0 (h Hﬁ(u - u,)(y,-j)H + 1 ||V1<2(u - UI)()’ij)”)

xiijSZ

3
S Plulbe D lur =t

x,'x_,'ESZ
2
< hllulls colutr — iy,

where V. is the gradient V that restricts on K;, i = 1, 2,

[Cer = un) Ny xx, = (ur — wp)(X) = (ur — up)(x0),
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Ak, Vi = i) + A Vi = u)3ip)]| = |22k, Tt = ) 3i) + (A~ M) Vit = )y
< ”§(u - ul)(y,-j)H + 1 ||V, (= u) (i)

and we have used the fact that ||VK2(u - u,)(y,-.,-)” < hllull3, which can be obtained by Taylor’s
expansion; the proof is similar to [39] and we omit it here. Consequently,

lan (u = up, (ur — up)")| < Z [@1.xn (= up, (up = up)")| +

KeTy,

Z ar g p (u—up, (U — up)*)

KeT),

2
< ho||ull3 colter — uplys

leads to Eq (4.3) and completes the proof. |

€L

Figure 4. Two adjacent quadrilateral elements K; and K, that have a common edge x;x ;.

Lemma 4.3. Assume that u € Hé (Q)NW3(Q) is the exact solution of Egs (2.1) and (2.2), and u;, € U,
is the finite volume element solution of Eq (2.7). Then, we have

1ol < B2 ||ullz olttr — ), 4.4)

Proof. By Eqgs (2.5) and (2.7), we deduce that a, (u,v;) = (f,vy) = a,Wp,vy), Yvy € V,. From
Eqgs (2.6) and (2.8), and using the quadrature error of trapezoidal rule, we have

lan (u — up, (up — up) ") = lay (u, (uy — up)*) — ap (w, (u; — up)*)|

4
- Z Z[(ul — up) legy Exi

KeT;, i=1
4
3
< >0 il = wleallalls oo
KeTy i=1
3
o T S R I
KeTy,

2
< W lull3 oolur — uply,
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where |
Ex; = (—=AxVu) - ny,;ds — E(x,( —¥)'RT Ak [Vu(xg) + Vu(y;)] .

XKYi

The proof is complete. O

Theorem 4.1. Suppose that the quadrilateral mesh Ty, is regular and h*>-uniform. Let u € Hé Q)N
W3(Q) be the exact solution of Eqs (2.1) and (2.2), and uy, € Uy, is the finite volume element solution
of Eq (2.7). Then, we have

ur = uply < 1PNl co- (4.5)

Proof. Combining the results Eqs (4.2)—(4.4), we obtain Eq (4.5). O

4.2. Some corollaries
Corollary 4.1. Under the same assumptions as in Theorem 4.1, we have
| = uply < Allull3 0

and
lu = unllo < H*|utl]3.00- (4.6)

Proof. Recalling the triangle inequality, standard interpolation error estimate, and Eq (4.5),
i = uply < |u—wyly + luy — wnly < hllulls oo
and by Poincaré-Friedrichs inequality,
e = unllo < e = ugllo + ety = wnllo < New = wgllo + lus = uply < 1P llull3 co,
which completes the proof. O

In the above optimal L? error estimate, we do not use the Aubin-Nitsche technique, and Eq (4.6) is
a by-product of the superconvergence result (4.5).

Corollary 4.2. Under the same assumptions as in Theorem 4.1, we have

(% > Hm - uh)(x>H2)2 < Pluls o, 4.7)
xS

where S is the set C, or N, or M;, and #S denotes the cardinality of S .
Proof. It follows from Eq (4.1) that

(% Z;‘ V- u,xx)HZ)z < PPl o (% > 1]2 < WP uls .

xeS

By using the inverse inequality, the fact #S = O(h~?), and Eq (4.5),

1 3 2
[% Z H?(w ) uh)(x)Hz]z < [LS Z B2 |y — Mh||%,1<x]2 < (Z Il — Mhlﬁ,Kx)z
xeS xe§

xeS

2
S lup = uplly < A l|ull3 00,

where K, = Ug/5,{K’} is the union of quadrilateral element K’ that contains x. Thus, we get the desired
result (4.7) by combining the above results. O
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5. Numerical results

Several numerical examples are given in this section to verify the above theoretical results, in which
we use four types of meshes. The first type (Mesh 1) is a uniform rectangular mesh, see Figure 5(a),
where the coordinates of the vertices are given by

hi-1,j-D", 1<i, j<n+1,

and & = 1/n is the mesh size. The second one (Mesh II) is a quadrilateral mesh constructed by
disturbing the vertices of Mesh I and keeping the connections unchanged, see Figure 5(b), where the
coordinates of the vertices are subjected to

1
xij = (0= Dh, yiy = (/= Dh+ o2 sinQah(i = D)sinQrh(j = 1), 1<i j<n+1.

Mesh IV is a uniform trapezoidal mesh also obtained by disturbing some vertices of Mesh I, see
Figure 5(d), where the disturbance of a vertex is /#/4 along y direction. For Meshes I, II, and IV, we
set Q = (0, 1)? in the following numerical examples. The third mesh (Mesh III), see Figure 5(c), is a
refined one where the initial region € is a quadrilateral, and the four coordinates of €, are given as
below

©O,0", (1,07, (©.8, DT, (02,1,

Precisely, Mesh III is obtained by the standard bisection procedure, i.e., by connecting the midpoints
of opposite edges of each quadrilateral; see the thin line segments of Figure 5(c). It can be verified that
Meshes I, I1, and III are all #%-uniform. For convenience, we denote

] L e |

and

1 _ 2|
Eyp = [#Mo o HV(M - Mh)(x)H ]

h xe .

as the errors at geometric centers, interior vertices, and edge midpoints, respectively. Moreover, for the
¢; that appears in Eq (3.3), we define

0= Irg;i}:{évlfz—évg}-

AIMS Mathematics Volume 11, Issue 2, 3394-3424.
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(a) Mesh I (b) Mesh 11
NN ERER
L
(c) Mesh 111 (d) Mesh IV

Figure 5. Mesh types used in the numerical experiments.

Example 5.1. Solve Egs (2.1) and (2.2), and choose the anisotropic diffusion coefficient and right-hand
side function as follows:

A_(l 1) e
- 12 ’ f(x’y)__e .

This problem has the analytic solution u(x,y) = .

The numerical results are reported in Tables 1 and 2, where “Order” indicates the numerical
convergence order computed by log,(E»,/E,), where E,;, and E), are the errors of the corresponding
two successive mesh sizes 75, and 7. One can see that, for the four meshes and diffusion coefficient,
(A1) is satisfied. In particular, for Meshes I, 11, and III, the finite volume element solution u;, converges
to the interpolation u; of u with second-order under H' norm, which conforms the superconvergence
property in Theorem 4.1. The remaining results of these two tables also verify the theoretical findings
in Corollaries 4.1 and 4.2. Note that Mesh IV is not A2-uniform; then, the corresponding finite volume
element solution does not preserve the superconvergence result.

AIMS Mathematics Volume 11, Issue 2, 3394-3424.
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Table 1. Numerical results for Example 5.1 on Meshes I and II.

Mesh  #7, 8x8 16X 16 32x32 64x64 128x 128 256 x 256
0 6.25¢-02 6.25¢-02 6.25¢-02 6.25¢-02 625¢-02 6.25¢-02
lup — uply 5.35¢-03 1.38e-03 3.48e-04 8.73¢-05 2.18e-05  5.46e-06
Order |/ 1.96 1.99 2.00 2.00 2.00
u—uyly  1.63e-01 8.15e-02 4.08¢-02 2.04e-02 1.02e-02  5.09¢-03
Order |/ 1.00 1.00 1.00 1.00 1.00

MeshT |lu—uslly 9.60e-03 2.41e-03 6.03e-04 1.51e-04 3.77e-05  9.42e-06
Order |/ 1.99 2.00 2.00 2.00 2.00
Ec 1.17e-02 2.94e-03 7.36e-04 1.84e-04 4.60e-05 1.15¢-05
Order |/ 1.99 2.00 2.00 2.00 2.00
Ey 2.80e-02 7.07e-03 1.78¢-03 4.46e-04 1.12¢-04  2.79e-05
Order |/ 1.98 1.99 2.00 2.00 2.00
Em 1.98¢-02 4.98¢-03 1.25¢-03 3.13e-04 7.82e-05  1.95¢-05
Order |/ 1.99 2.00 2.00 2.00 2.00
0 6.25¢-02 6.25¢-02 6.25¢-02 6.25¢-02 6.25¢-02  6.25¢-02
up —wpy 1.07e-02 3.11e-03  8.15e-04 2.06e-04 5.18e-05  1.30e-05
Order |/ 1.78 1.93 1.98 1.99 2.00
u—uyly  1.67e-01 8.38e-02 4.19¢-02 2.10e-02 1.05e-02  5.24e-03
Order |/ 1.00 1.00 1.00 1.00 1.00

Mesh I |lu—uslly 9.43e-03 2.37e-03 595¢-04 1.49e-04 3.72e-05  9.30e-06
Order |/ 1.99 2.00 2.00 2.00 2.00
Ec 1.68¢-02 4.44e-03 1.13e-03 2.84e-04 7.12e-05  1.78¢-05
Order |/ 1.92 1.97 1.99 2.00 2.00
Ey 7.85¢-02 2.29e-02 5.99e-03 1.52e-03 3.83e-04  9.60e-05
Order |/ 1.78 1.93 1.98 1.99 2.00
Em 6.90e-02 1.78¢-02 4.46e-03 1.11e-03 2.78¢-04  6.94e-05
Order |/ 1.95 2.00 2.00 2.00 2.00

AIMS Mathematics
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Table 2. Numerical results for Example 5.1 on Meshes III and IV.

Mesh  #7, 8x 8 16x 16 32x32 64x64 128x128 256x 256
0 6.25¢-02 625¢-02 625602 6.25¢-02 625602 6.25¢-02
up —uply 5.51e-04 1.46e-04 3.70e-05 9.31e-06 2.33e-06 5.83e-07
Order | 1.92 1.97 1.99 2.00 2.00
u—u,); 1.16e-01 5.82e-02 2.91e-02 1.46e-02 7.28¢-03  3.64e-03
Order | 1.00 1.00 1.00 1.00 1.00

Mesh Il  |lu — ually 5.49e-03 1.37e-03 3.43e-04 8.58¢-05 2.14e-05  5.36e-06
Order |/ 2.00 2.00 2.00 2.00 2.00
Ec 220e-03 5.54e-04 1.39e-04 3.47e-05 8.68¢-06 2.17¢-06
Order 1.99 2.00 2.00 2.00 2.00
Ey 8.30e-03 2.09¢-03 5.25e¢-04 1.32e-04 3.29e-05 8.23e-06
Order |/ 1.99 1.99 2.00 2.00 2.00
Em 6.21e-03 1.58¢-03 3.97e-04 9.96e-05 2.50e-05  6.25¢-06
Order | 1.98 1.99 1.99 2.00 2.00
0 6.23e-02 6.23¢-02 6.23e-02 623e-02 62302 6.23¢-02
lp —uply  1.04e-02 3.74e-03 1.59¢-03 7.56e-04 3.74e-04  1.86e-04
Order | 1.48 1.23 1.07 1.02 1.00
u—w,; 1.86e-01 9.42e-02 4.74e-02 2.38¢-02 1.19e-02  5.95¢-03
Order | 0.98 0.99 1.00 1.00 1.00

Mesh IV lu—uslly 1.07e-02 2.72e-03 6.86e-04 1.72¢-04 4.32¢-05  1.08¢-05
Order  / 1.97 1.99 1.99 2.00 2.00
Ec 7.14e-02 3.55¢-02 1.77¢-02 8.87e-03 4.43e-03  2.22¢-03
Order |/ 1.01 1.00 1.00 1.00 1.00
Ey 1.55e-01 7.62e-02 3.78¢-02 1.88e-02 9.38¢-03  4.69¢-03
Order | 1.02 1.01 1.01 1.00 1.00
Em 6.99¢-02 3.51e-02 1.76e-02 8.82e-03 4.42¢-03  2.21e-03
Order | 0.99 1.00 1.00 1.00 1.00

Example 5.2. We still consider the problem Egqs (2.1) and (2.2) with the following discontinuous
anisotropic diffusion coefficient:

AIMS Mathematics

Ax,y) =

1.75 0.5
05 1.75 )

[

1
2

x<0.5,

), x> 0.5.
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The exact solution and corresponding right-hand side function are given by

() = 2xe’, x<0.5, Flxy) = -2+3.5x¢e”, x<0.5,
BEYEY 05+ 0e, x>05 7T S@r2ne, x>0

We mention that, in this example, u ¢ W>*(Q), and u is just a continuous function. Moreover,
the first derivative (AVu) - n on the interface x = 0.5 is a continuous vector-valued function. We
can observe from Tables 3 and 4 that the numerical results are similar to the previous example,
except the convergence orders of Eq and E, which are all approximately 1.5 (the corresponding
superconvergence results have not been proved for the discontinuous anisotropic diffusion coefficient),
and a little lower than 2.

Example 5.3. Solve a highly anisotropic diffusion problem that was considered in [3], where the
diffusion coefficient and analytic solution are as follows:

9

sinfé cosé arctan 0.5

cosf sind 1 0 cosfd —sind arctan (0~5 - (x=0.5)* - - 0-5)2)
A= . ,  ulx,y) =
—sinf cosé@ 0 «

respectively. Thus, the right-hand side function is given by

2
2
(1+ £2(x.y)) arctan0.5

flx,y) = ((K + 1) (1+ f2(x.y) + 8k = D)(x = 0.5)(y = 0.5)i(x,y) sin f cos 0

+4fi(x,y) ((x - 0.5 (K sin® @ + cos® 0) +(y—0.5)7 (sin2 6 + k cos’ 0)) ),

with fi(x,y) = x +y — x* —y2. In this example, we employ k = 10° and 6 = r/4.

AIMS Mathematics Volume 11, Issue 2, 3394-3424.
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Table 3. Numerical results for Example 5.2 on Meshes I and I1.

Mesh  #7,, 8x8 16x 16 32x32 64x64 128x 128 256x 256
0 1.76e-01 1.76e-01 1.76e-01 1.76e-01 1.76e-01  1.76e-01
lu; — upl,  8.43e-04 2.14e-04 5.38e¢-05 1.35¢-05 3.37e-06 8.42¢-07
Order | 1.98 1.99 2.00 2.00 2.00
lu—wl; 63202 3.16e-02 1.58¢-02 7.89¢-03 3.95¢-03  1.97¢-03
Order | 1.00 1.00 1.00 1.00 1.00

MeshT llu—ully 2.62¢-03 6.57e-04 1.64e-04 4.11e-05 1.03e-05  2.57e-06
Order |/ 2.00 2.00 2.00 2.00 2.00
Ec 5.80e-03 1.45¢-03 3.63e-04 9.09e-05 2.27e-05  5.68¢-06
Order  / 2.00 2.00 2.00 2.00 2.00
Ey 2.23e-02 7.47e-03 2.56e-03 8.89e-04 3.11e-04  1.10e-04
Order |/ 1.58 1.55 1.53 1.51 1.51
Em 1.74e-02 5.57e-03 1.86e-03 6.38¢e-04 2.22e-04  7.78¢-05
Order | 1.64 1.58 1.54 1.52 1.51
0 1.76e-01 1.76e-01 1.76e-01 1.76e-01 1.76e-01  1.76e-01
lur — upl,  4.86e-03 1.34e-03 3.43e-04 8.61e-05 2.16e-05 5.39¢-06
Order | 1.86 1.97 1.99 2.00 2.00
lu—w,); 6.88e-02 3.46e-02 1.73¢-02 8.66e-03 4.33e-03  2.16e-03
Order |/ 0.99 1.00 1.00 1.00 1.00

Mesh I [lu—uplly 2.74e-03 6.89e-04 1.72e-04 4.31e-05 1.08¢-05  2.70e-06
Order |/ 1.99 2.00 2.00 2.00 2.00
Ec 1.01e-02 2.58¢-03 6.49¢-04 1.63e-04 4.06e-05  1.02¢-05
Order |/ 1.97 1.99 2.00 2.00 2.00
Evy 503e-02 1.53e-02 4.35¢-03 1.26e-03 3.87e-04 1.24e-04
Order | 1.72 1.82 1.78 1.71 1.64
Em 4.17¢-02 1.14e-02 3.12e-03 8.97e-04 2.73¢-04  8.80e-05
Order | 1.87 1.87 1.80 1.71 1.64

AIMS Mathematics
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Table 4. Numerical results for Example 5.2 on Meshes III and IV.

Mesh  #7, 8x 8 16x 16 32x32 64x64 128x128 256x 256
0 1.76e-01 1.76e-01 1.76e-01 1.76e-01 1.76e-01  1.76e-01
;- uply  3.07e-04  7.79¢-05 1.96e-05 4.90e-06 1.22e-06 3.06e-07
Order | 1.98 1.99 2.00 2.00 2.00
u—w,); 5.58e-02 2.79e-02 1.39¢-02 6.97e-03 3.49e-03  1.74e-03
Order | 1.00 1.00 1.00 1.00 1.00

Mesh Il |l — ually 2.24e-03 5.61e-04 1.40e-04 3.51e-05 8.77e-06  2.19¢-06
Order |/ 2.00 2.00 2.00 2.00 2.00
Ec 1.58¢-03 3.97e-04 9.94e-05 2.49e-05 6.22¢-06 1.55¢-06
Order 1.99 2.00 2.00 2.00 2.00
Ey 7.57¢-03 2.61e-03 9.0le-04 3.14e-04 1.10e-04  3.87¢-05
Order |/ 1.54 1.53 1.52 1.51 1.51
Em 6.26e-03 2.00e-03 6.65e-04 227e-04 7.87e-05 2.75¢-05
Order | 1.64 1.59 1.55 1.53 1.51
0 1.75¢-01 1.75e-01 1.75e-01 1.75¢-01 1.75¢-01  1.75¢-01
up — upl,  8.76e-03 4.32¢-03 2.16e-03 1.08e-03 5.43e-04  2.72¢-04
Order | 1.02 1.00 1.00 1.00 1.00
=,  9.88e-02 4.94e-02 2.47e-02 124e-02 6.18¢-03  3.09¢-03
Order |/ 1.00 1.00 1.00 1.00 1.00

Mesh IV lu—ully 3.95e-03 1.01e-03 2.56e-04 6.43e-05 1.61e-05  4.03e-06
Order  / 1.97 1.98 1.99 2.00 2.00
Ec 5.32e-02 2.66e-02 1.33e-02 6.67e-03 3.34e-03  1.67e-03
Order |/ 1.00 1.00 1.00 1.00 1.00
Ey 1.35¢-01  6.56e-02 3.24e-02 1.61e-02 8.02e-03  4.00e-03
Order | 1.04 1.02 1.01 1.00 1.00
Em 6.19¢-02 3.12¢-02 1.57e-02 7.84e-03 3.92¢-03  1.96e-03
Order | 0.99 1.00 1.00 1.00 1.00

The numerical results are shown in Tables 5 and 6, which are consistent with the theoretical findings
of Theorem 4.1, and Corollaries 4.1 and 4.2. One can observe that for Mesh IV, the values of o are
negative. That is, there exists one unique finite volume element solution that converges to an exact
solution with the desired convergence rates under H' and L? norms, even though the assumption (A1)

1s not satisfied.

AIMS Mathematics
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Table 5. Numerical results for Example 5.3 on Meshes I and II.

Mesh  #7,, 8x 8 16x16 32x32 64x64 128x 128 256 x 256
0 6.25¢+01 6.25¢+01 6.25¢+01 6.25e+01 6.25¢+01 6.25¢+01
lup -y 4.34e-03  1.30e-03  3.79e-04 1.06e-04 2.87¢-05  7.50e-06
Order | 1.74 1.78 1.83 1.89 1.93
u—wl; 2.14e-01 1.07e-01 536e-02 2.68¢-02 1.34e-02  6.69¢-03
Order | 1.00 1.00 1.00 1.00 1.00

MeshT llu—uslly 1.19e-02  2.97e-03 7.40e-04 1.85e-04 4.62¢-05 1.16e-05
Order |/ 2.01 2.00 2.00 2.00 2.00
Ec 3.74e-03  1.24e-03 3.70e-04 1.05e-04 2.84e-05 7.42¢-06
Order |/ 1.59 1.74 1.82 1.89 1.93
Ey 1.26e-02  3.29¢-03 8.5le-04 2.19¢-04 5.58¢-05 1.41e-05
Order |/ 1.94 1.95 1.96 1.97 1.98
Em 794e-03  221e-03 5.96e-04 1.58e-04 4.10e-05  1.05e-05
Order | 1.85 1.89 1.92 1.94 1.97
0 5.53e+01 6.02e+01 6.19e+01 6.23e+01 6.25¢+01  6.25¢+01
lur — wply  2.64e-02  9.79e-03  2.92e-03 7.94e-04 2.05¢-04  5.19¢-05
Order | 1.43 1.74 1.88 1.95 1.98
u—w; 220e-01 1.10e-01 5.49e-02 2.74e-02 1.37¢-02  6.85¢-03
Order |/ 1.00 1.00 1.00 1.00 1.00

MeshII [lu—uplly 1.26e-02  3.25¢-03 8.28e-04 2.08¢-04 5.22e-05 1.31e-05
Order |/ 1.95 1.97 1.99 2.00 2.00
Ec 3.11e-02  1.10e-02  3.20e-03 8.56e-04 2.20e-04  5.56e-05
Order |/ 1.50 1.78 1.90 1.96 1.99
Ey 4.95e-02 1.72¢-02 4.87e-03 1.28¢-03 3.24e-04  8.15¢-05
Order | 1.52 1.82 1.93 1.98 1.99
Em 4.45¢-02 147e-02 4.13e-03 1.08e-03 2.76e-04  6.95¢-05
Order | 1.59 1.83 1.93 1.97 1.99
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Table 6. Numerical results for Example 5.3 on Meshes III and IV.

Mesh  #7, 8 %8 16x16  32x32  64x64  128x 128 256x256
0 6.18¢+01  6.23e+01  6.25e+01 6.25¢+01  6.25¢+01  6.25¢+01
luy —upl,  3.83e-03  1.08¢-03  2.97e-04  8.00e-05 2.11e-05  5.43e-06
Order | 1.83 1.86 1.89 1.93 1.95
u—ul, 1.75e-01  8.76e-02  4.38¢-02 2.19e-02  1.09e-02  5.47e-03
Order | 1.00 1.00 1.00 1.00 1.00

Mesh IIT |ju—wlly, 9.07e-03  2.26e-03  5.65¢-04 1.41e-04 3.53e-05  8.82¢-06
Order | 2.00 2.00 2.00 2.00 2.00
Ec 6.45¢-03  1.71e-03  4.49e-04 1.17e-04  3.00e-05  7.63e-06
Order |/ 1.91 1.93 1.94 1.96 1.97
Ey 1.60e-02  4.08¢-03  1.03e-03  2.59-04 6.51e-05  1.63e-05
Order |/ 1.98 1.99 1.99 1.99 1.99
Em 1.14e-02  2.92¢-03  7.44e-04  1.89e-04 4.77e-05  1.20e-05
Order  / 1.96 1.97 1.98 1.98 1.99
0 1.39e+01 -1.39e+01 -1.39e+01 -1.39e+01 -1.39e+01 -1.39e+01
lu —uyl, 8.71e-03  3.90e-03  1.88¢-03  9.29¢-04  4.64e-04  2.32e-04
Order  / 1.16 1.06 1.02 1.00 1.00
lu—wl,  229e-01  1.15e-01  5.73e-02 2.87e-02  1.43e-02  7.17e-03
Order |/ 1.00 1.00 1.00 1.00 1.00

Mesh IV |lu—wlly 1.33e-02  3.30e-03  8.24e-04  2.06e-04  5.15e-05  1.29¢-05
Order |/ 2.01 2.00 2.00 2.00 2.00
Ec 6.42¢-02  3.22¢-02  1.61e-02  8.04e-03  4.02¢-03  2.01e-03
Order |/ 1.00 1.00 1.00 1.00 1.00
Ey 6.61e-02  3.31e-02  1.66e-02  8.32e-03  4.17e-03  2.08e-03
Order | 1.00 1.00 1.00 1.00 1.00
Em 1.17e-02  4.72¢-03  2.14e-03  1.03e-03  5.12¢-04  2.55¢-04
Order | 1.31 1.14 1.05 1.01 1.00

Example 5.4. Solve Egs (2.1) and (2.2) and choose the strongly anisotropic diffusion coefficient and
exact solution as follows (see [34]):

1 kx> +y* (k= 1Dxy
Ax,y) = 57— ,u(x,y) = sin(zx)sin(ry),
Y k=Dxy 2 +K)?

where k characterizes the level of anisotropy. The right-hand side function is determined by

1 —
153) = 20+ 0+ D 0f + xf + 2y

with
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S1(x, y) = sin(zwx)sin(ry),
f3(x,y) = cos(nx)sin(my),

In this example, we employ k = 1073,

f(x,y) = sin(nx)cos(my),
fa(x,y) = cos(mx)cos(my).

Note that here, A is a variable diffusion coefficient, thus in our numerical experiments, we let A be
a piecewise constant with respect to 7, such that Ay = A(xg). Tables 7 and 8 report the numerical
results, and we find that the performance is similar to the previous Examples 5.1 and 5.3. Moreover,
Examples 5.3 and 5.4 all show that (A1) is just a sufficient condition to guarantee coercivity.

Table 7. Numerical results for Example 5.4 on Meshes I and II.

Mesh #T 8x8 I6x16 32x32 64x64 128x128 256X 256
0 6.25e-05 6.25e-05 6.25e-05 6.25e-05 6.25¢-05  6.25e-05
luy —upl;  6.53e-02  1.75e-02 4.65e-03 1.22e-03 3.19e-04  8.25e-05
Order / 1.90 1.91 1.93 1.94 1.95
| —uyly  2.58e-01 1.27e-01 6.31e-02 3.15e-02 1.57e-02  7.87e-03
Order / 1.02 1.01 1.00 1.00 1.00

Mesh1 |l —uyllp 8.04e-03 2.10e-03 5.41e-04 1.37e-04 3.46e-05  8.67e-06
Order / 1.94 1.96 1.98 1.99 2.00
E¢ 5.59e-02 1.57e-02 4.27e-03 1.14e-03 2.99e-04  7.78e-05
Order / 1.83 1.88 1.91 1.93 1.94
Evy 1.11e-01 2.94e-02 7.61e-03 1.95¢-03 4.97e-04  1.26e-04
Order / 1.92 1.95 1.96 1.97 1.98
Em 7.70e-02  2.08e-02 5.48e-03 1.43e-03 3.70e-04  9.49e-05
Order / 1.89 1.92 1.94 1.95 1.96
0 1.30e-05 4.54e-05 5.79e-05 6.13e-05 6.22e-05  6.24e-05
|l —upl;  8.29e-02  3.04e-02 1.01e-02 2.93e-03 7.83e-04  2.01e-04
Order / 1.45 1.59 1.78 1.90 1.96
lu—uply  2.71e-01 1.34e-01 6.61e-02 3.28e-02 1.64e-02  8.18e-03
Order / 1.02 1.02 1.01 1.00 1.00

Mesh I |lu —upllp 1.07e-02 3.47e-03 1.02e-03 2.77e-04 7.14e-05  1.80e-05
Order / 1.63 1.76 1.89 1.96 1.99
E¢ 8.36e-02 3.17e-02 1.04e-02 2.99e-03 7.95e-04  2.03e-04
Order / 1.40 1.61 1.80 1.91 1.97
Evy 1.45e-01 4.87e-02 1.46e-02 3.99¢-03 1.04e-03  2.62e-04
Order / 1.57 1.74 1.87 1.95 1.98
Em 1.10e-01 3.91e-02 1.22e-02 3.42e-03 8.98e-04  2.28e-04
Order / 1.50 1.68 1.84 1.93 1.97
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Table 8. Numerical results for Example 5.4 on Meshes III and IV.

Mesh  #7, 8% 8 16x 16 32x32 64x64  128x 128 256 x 256
0 577¢-05 6.13¢-05 6.22¢-05 624¢-05 625605 6.25¢-05
- uply  4.48¢-02  1.16e-02  3.00e-03 7.75¢-04 2.00e-04  5.12¢-05
Order | 1.95 1.95 1.95 1.96 1.96
=i 23401 1.16e-01 5.78e-02 2.89e-02 1.44e-02  7.22¢-03
Order | 1.01 1.00 1.00 1.00 1.00
Mesh IIT  |ju—wlly 7.18e-03  1.79e-03  4.49e-04 1.12¢-04 2.81e-05  7.03e-06
Order |/ 2.00 2.00 2.00 2.00 2.00
Ec 425¢-02 1.13e-02 2.98e-03 7.74e-04 2.00e-04  5.15e-05
Order |/ 1.91 1.93 1.94 1.95 1.96
Ey 9.23¢-02  2.42e-02 6.17e-03 1.57e-03 3.96e-04  9.98¢-05
Order |/ 1.93 1.97 1.98 1.98 1.99
En 6.42¢-02 1.68¢-02 4.33e-03 1.11e-03 2.82e-04  7.16e-05
Order | 1.93 1.96 1.97 1.97 1.98
0 3.87e-04 -4.05e-04 -4.05¢-04 -4.05¢-04 -4.05e-04 -4.05e-04
up—wply 7.72e-02  2.66e-02  1.17e-02  5.77¢-03  2.85¢-03  1.39¢-03
Order | 1.53 1.18 1.02 1.02 1.04
—u);  3.0le01 1.49e-01 7.43e-02 3.72¢-02 1.86e-02  9.28¢-03
Order | 1.01 1.00 1.00 1.00 1.00
Mesh IV llu—uplly 1.07e-02  2.85¢-03 7.41e-04 1.88¢-04 4.74e-05  1.19¢-05
Order |/ 1.90 1.94 1.97 1.99 2.00
Ec 1.28¢-01  6.00e-02 2.96e-02 1.48¢-02 7.38¢-03  3.68-03
Order |/ 1.10 1.02 1.00 1.00 1.01
Ey 233e-01  1.17e-01 5.82e-02 2.90e-02 1.45¢-02  7.24e-03
Order | 1.00 1.00 1.00 1.00 1.00
Em 1.29¢-01  5.88¢-02 2.87e-02 1.43e-02 7.12e-03  3.55¢-03
Order | 1.14 1.04 1.01 1.00 1.00

6. Conclusions

We improved the coercivity and established the superconvergence of the isoparametric bilinear finite
volume element scheme that was constructed in [17]; namely, the scheme is obtained by using the
trapezoidal rule to approximate the line integrals in classical Q;-FVEM. A new sufficient condition is
proposed to guarantee the coercivity result of this scheme, which improved the coercivity resultin [17];
see Theorem 3.2. We mention that the weaker condition (A1) is a basis for various error estimates.
Assume that the quadrilateral mesh is A?-uniform, and we reach the superconvergence property |u; —
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upi = O(h?). As a by-product, we prove that u;, converges to u with optimal convergence order 1
(resp. 2) under H' (resp. L?) norm. Moreover, the superconvergence results of u;, at geometric centers,
interior vertices, and edge midpoints are also obtained in an average gradient norm. The numerical
results in Examples 5.3 and 5.4 imply that, there exists one unique finite volume element solution
that converges to the exact solution with the desired convergence orders under H' and L? norms, even
though (A1) is violated. In summary, (A1) is just a sufficient condition to guarantee coercivity.

To obtain the superconvergence result, previous works required a strong mesh condition, e.g.,
rectangular mesh or h2-uniform quadrilateral mesh [4, 27, 30, 31,46]. Thus, the weakening of h3-
uniform quadrilateral mesh condition is not easy. Moreover, if we slightly violate the h*-uniform
quadrilateral mesh (e.g., Mesh IV, uniform trapezoidal mesh in Section 5), the superconvergence result
is not valid. In the future, we expect that the presented analysis can be applied to biquadratic finite
volume element schemes over quadrilateral meshes. For this purpose, there are some difficulties
that need to be overcome. First, how to appropriately express the 9 X 9 element stiffness matrix.
Second, the spectral analysis of element stiffness matrix is not easy, and how to derive a sufficient
condition (with analytic expression) to guarantee the coercivity remains unknown. Third, to establish
the superconvergence, the difference between finite element and finite volume element bilinear forms
needs to be carefully investigated.
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