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Abstract: We studied the coercivity and error estimate of a modified isoparametric bilinear finite
volume element scheme for anisotropic diffusion problems on quadrilateral meshes, where the scheme
is obtained by employing the trapezoidal rule to approximate the line integrals in classical Q1-finite
volume element method. By an element analysis approach, we propose a new sufficient condition to
ensure the coercivity result of the scheme, which is better than the existing results in [Q. Hong and J.
Wu, Adv. Comput. Math., 44 (2018), 897–922]. Under h2-uniform quadrilateral mesh assumption, we
prove the superconvergence |uI − uh|1 = O(h2), where uI is the isoparametric bilinear interpolation of
exact solution u, and uh is the finite volume element solution. As a result, an optimal L2 error estimate
of uh is obtained. Some numerical experiments were carried out to verify the theoretical findings.
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1. Introduction

Since the finite volume element method (FVEM) presents local conservation property and other
advantages, it has become one of the most popular numerical methods to solve partial differential
equations. FVEM is also called a generalized difference method [22] or box method [1]. In the
book [21] and review papers [24,44], the authors summarized the mathematical development of FVEM
and presented some challenging research fronts. The FVEM has been applied to some challenging
problems, e.g., eigenvalue problems [9], fractional equations [14, 19], adaptive algorithms [10],
Cahn-Hilliard equation [36], nonlinear equations [5, 43], and Stokes problems [26, 38]. For general
second-order elliptic equations, the element stiffness matrix of linear FVEM can be regarded as a
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small perturbation of the corresponding linear finite element method on an arbitrary triangular mesh,
leading to the coercivity result [2, 35]. As a result, the optimal H1 error estimate can be proved by
standard technique. Moreover, the optimal L2 error estimate can be found in [11] for general triangular
meshes. A theoretical analysis of higher-order FVEMs on triangular meshes can be found in [6,48,51]
(coercivity) and [32, 37] (L2 error) for incomplete references.

However, the development of the classical isoparametric bilinear FVEM (Q1-FVEM) on
quadrilateral meshes has not proved satisfactory. To establish the coercivity result, most works require
a quasi-parallelogram mesh assumption, see [23, 45]. Recently, for the coercivity of classical Q1-
FVEM, [18] proposed a sufficient condition that covers the traditional quasi-parallelogram mesh but,
regrettably, not the arbitrary trapezoidal mesh. Under the coercivity result and quasi-parallelogram
mesh assumption, by using Aubin-Nitsche technique, [27] proved the L2 error estimate for a second-
order elliptic equation with the anisotropic diffusion coefficient. By approximating the line integrals
in classical Q1-FVEM at the geometric center of the quadrilateral, [30] proposed a symmetric Q1-
FVE scheme, in which the global stiffness matrix was symmetric, and the error estimate was proved
over a uniform rectangular mesh. [13, 17, 46] used trapezoidal, midpoint, and edge midpoint rules
to approximate the line integrals, proposing some sufficient conditions to ensure the coercivity result
of the new schemes; these conditions cover the traditional quasi-parallelogram but not the arbitrary
trapezoidal mesh. Recently, by employing a linear combination of trapezoidal and midpoint quadrature
rules (the weights depend on a parameter ωK), [47] established the coercivity result of new schemes
on the arbitrary trapezoidal and some general quadrilateral meshes. More studies of FVEM on
quadrilateral meshes can be found in [28] (coercivity), [25,42] (L2 error), and [16] (L∞ error) for a non-
exhaustive literature. Recently, the polygonal FVEMs were analyzed in [29] (monotone scheme), [40]
(quadratic scheme), [41] (adaptive algorithm), and [49] (linear scheme).

Based on the coercivity result, one can study the superconvergence of the FVEM solution. On
triangular meshes, by using the barycenters of triangles to construct the dual mesh, [15] proved that
the difference between the linear FEM and FVEM solutions is of second order in energy norm.
On a uniform rectangular mesh, and by Taylor expansion, [30] proved the L2 error estimate and
superconvergence. In 2012, on h2-uniform quadrilateral mesh and by employing the geometric centers
of quadrilaterals to construct the dual mesh, [27] showed that the error between the classical Q1-
FVEM solution and the interpolation of the exact solution is also of second order in energy norm.
Further studies of superconvergence were presented in [33] (1D) and [4, 8, 31] (2D). However, the
superconvergence of the modified isoparametric bilinear FVE scheme [17] has not been established.
This work is motivated by the fact that, for the implementation of the program of classical Q1-FVEM,
the trapezoidal rule [17] is widely used to approximate the line integrals.

In this work, we intend to improve the coercivity and establish the superconvergence of the
isoparametric bilinear FVE scheme constructed in [17]. First, unlike the coercivity analysis of [17]
for a 4 × 4 matrix, here the element matrix is transformed into a 3 × 3 matrix, which enables us
to suggest a new sufficient condition to guarantee the coercivity result. Moreover, it is interesting
that this condition is better than that of [17], which is summarized in Theorem 3.2. Second, for the
superconvergence, unlike [27], here the exact solution u and modified bilinear FVEM solution uh are
subjected to different variational forms. That is, u and uh satisfy the continuous and discrete Petrov-
Galerkin form, respectively; see Eqs (2.5) and (2.7). To obtain the superconvergence of the difference
between uI and uh in energy norm, the bilinear form of the FVE scheme is decomposed into two parts.
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The first part is the error between u and uI; then, under the h2-uniform quadrilateral mesh assumption
and the superconvergence of bilinear interpolation on two adjacent quadrilateral elements, this error
can be analyzed by some techniques. The second part is converted to the numerical integration about
u, which can be analyzed on each quadrilateral element. Consequently, we reach the second-order
superconvergence result. As a by-product, uh converges to u with optimal convergence orders 1 and 2
under H1 and L2 norms, and the superconvergence results of uh at geometric centers, interior vertices,
and edge midpoints are all second order in an average gradient norm. In summary, the novelty of this
paper is the improvement of the coercivity result of [17] and the establishment of the superconvergence.

The rest of this paper is organized as follows: In Section 2, we introduce the construction of the
modified isoparametric bilinear finite volume element scheme for solving the anisotropic diffusion
problems on quadrilateral meshes. A new coercivity result of the scheme is shown in Section 3. The
superconvergence result and some corollaries are given in Section 4. Several numerical examples
are presented in Section 5 to validate the theoretical findings, and in the last section, we provide a
conclusion.

To avoid repetition, “A . B” indicates that A can be bounded by B multiplied by a constant irrelative
to the parameters that A and B may depend on. Analogously, “A & B” implies that B can be bounded
by A, while “A ∼ B” stands for both “A . B” and “B . A”.

2. The Q1-FVEM-TR scheme

We consider the following anisotropic diffusion problem

−∇ · (Λ∇u) = f , in Ω, (2.1)
u = 0, on ∂Ω, (2.2)

where Ω ⊂ R2 is an open bounded connected polygonal domain, f ∈ L2(Ω) is the source term, and the
anisotropic diffusion coefficient Λ(x) is a 2 × 2 symmetric and positive definite matrix; namely, there
exist two positive constants λ and λ satisfying

λ‖v‖2 ≤ vT Λv ≤ λ‖v‖2, ∀ v ∈ R2, ∀ x = (x, y)T ∈ Ω,

and ‖v‖ is the Euclidean norm of vector v. To simplify the statements of theoretical analysis, here we
only consider the homogeneous Dirichlet boundary condition.

Suppose that the polygonal domain Ω is partitioned into a finite number of non-overlapped and
strictly convex quadrilateral elements that form the so-called primary mesh Th, i.e., Ω = ∪{K : K ∈ Th}

with h = maxK∈Th hK being the mesh size and hK the diameter of K. Moreover, Th is assumed to
conform in the sense that the intersection of any two different quadrilateral elements is a common
edge, a common vertex, or empty. Th is called regular provided that there exists a positive constant Cr

independent of h, such that
hK

ρK
≤ Cr, ∀K ∈ Th, (2.3)

where ρK = min1≤i≤4{diameter of the circle inscribed in 4xi−1xixi+1}; here and hereafter, i denotes,
without special mention, a periodic index with period 4. Sometimes, we will use the quasi-regular
assumption of the primary mesh, i.e., there exists a positive constant Cqr independent of h such that

|K| ≥ Cqrh2
K , ∀K ∈ Th. (2.4)
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One can observe that Eq (2.3) yields Eq (2.4), but not vice versa (see Theorem 2.1 in [7]). Let NK ,
EK , andMK be the set of four vertices xi, four edges xixi+1, and four midpoints yi of K, respectively.
Then, we can denoteNh = ∪K∈ThNK , Eh = ∪K∈ThEK ,Mh = ∪K∈ThMK , andN◦h = Nh\∂Ω, E◦h = Eh\∂Ω,
M◦

h =Mh\∂Ω as the set of all vertices, edges, midpoints of edges and interior vertices, interior edges,
and midpoints of interior edges of Th, respectively. Moreover, Ch is denoted as the set of all geometric
centers of Th. Let the reference square element K̂ = �x̂1 x̂2 x̂3 x̂4 = [−1, 1]2 on the (ξ, η) plane, where
x̂1 = (−1,−1)T , x̂2 = (1,−1)T , x̂3 = (1, 1)T and x̂4 = (−1, 1)T . For simplicity, here and hereafter, we
will not distinguish between a point and its position vector: they share the same symbol. On K̂, one
can introduce its four bilinear nodal basis functions as below

φ̂1 =
(1 − ξ)(1 − η)

4
, φ̂2 =

(1 + ξ)(1 − η)
4

, φ̂3 =
(1 + ξ)(1 + η)

4
, φ̂4 =

(1 − ξ)(1 + η)
4

,

which satisfy φ̂i(x̂ j) = δi j, where δi j is the Kronecker delta, namely δi j = 1 if i = j, δi j = 0 if i , j. For
each strictly convex quadrilateral K = �x1x2x3x4, there exists a unique invertible bilinear mappingJK

that maps K̂ onto K, satisfyingJK(x̂i) = xi (i = 1, 2, 3, 4); see Figure 1. It can be seen that the mapping
JK is given by

JK(ξ, η) = xK +
1
2

(m1ξ + m2η + mKξη),

where xK is the geometric center of K, the vectors m1 and m2 (resp. mK) are related to the midpoints
of opposite edges (resp. diagonals) of K, given by xK =

∑4
i=1 xi/4, and

m1 =
1
2

(x2 + x3 − x1 − x4), m2 =
1
2

(x3 + x4 − x1 − x2), mK =
1
2

(x1 + x3 − x2 − x4).

With respect to the primary mesh Th, the trial function space Uh is defined as

Uh =
{
uh ∈ C(Ω) : uh|K = ûh ◦ J

−1
K , ûh|K̂ is a bilinear function, ∀K ∈ Th, uh|∂Ω = 0

}
.

x̂1 x̂2

x̂3x̂4

−1

1

1

−1 ξ

η

K̂

x1

x2

x3

x4

m1

m2

mK

K

JK

Figure 1. The bilinear mapping JK .

Next, we introduce the dual mesh. By connecting the geometric center xK with its four edge
midpoints yi, we partition K into four quadrilateral sub-elements. The contribution from K to the
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control volumeDi is the quadrilateralDi,K := �xK yi−1xiyi, and the whole control volume surrounding
xi is defined byDi = ∪K3xiDi,K . The dual mesh T ∗h consists of all control volumes T ∗h = {Di : xi ∈ Nh}.
In other words, all sub-elements sharing a common vertex of the primary mesh form a polygonal
element of the dual mesh; see Figure 2 for an example. Based on the dual mesh T ∗h , the test function
space Vh is given by

Vh =
{
vh ∈ L2(Ω) : vh|Di = constant, ∀Di ∈ T

∗
h , vh|∂Ω = 0

}
.

Then, we have dim Uh = dim Vh.

x1 x2

x3
x4

y1

y2

y3

y4
xK

D1

K

D2

Figure 2. The primary mesh Th (solid lines) and its associated dual mesh T ∗h (dotted lines).

By using the Green’s formula, we deduce from Eq (2.1) that

−

∫
∂Di

(Λ∇u) · n∗i ds =

∫
Di

f dxdy, ∀ xi ∈ N
◦
h ,

where n∗i is the unit outward normal vector along the boundary ofDi. Rearranging the above equation,
it is equivalent to

ah (u, vh) = ( f , vh) , ∀ vh ∈ Vh, (2.5)

where
ah (u, vh) =

∑
xi∈N

◦
h

vi

∫
∂Di

(−Λ∇u) · n∗i ds, ( f , vh) =
∑

xi∈N
◦
h

vi

∫
Di

f dxdy

and vi = vh(xi). In Eq (2.5), replacing u by uh, one can reach the classical Q1-FVEM to solve Eqs (2.1)
and (2.2), i.e., find uh ∈ Uh such that

ah (uh, vh) = ( f , vh) , ∀ vh ∈ Vh.

Note that vi = 0 provided that xi ∈ ∂Ω, then rewrite the bilinear form of ah(·, ·), we obtain

ah (uh, vh) =
∑
K∈Th

aK,h (uh, vh) , aK,h (uh, vh) =

4∑
i=1

[vh]xK yi

∫
xK yi

(−Λ∇uh) · n∗K,i ds, (2.6)
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where [vh]xK yi = vi+1 − vi is the jump across xK yi and

n∗K,i =
1

‖yi − xK‖
R (yi − xK) , R =

(
0 1
−1 0

)
.

By employing the trapezoidal rule to approximate the line integrals in Eq (2.6),∫
xK yi

(−Λ∇uh) · n∗K,i ds ≈
1
2

(xK − yi)TRT ΛK
[
∇uh(xK) + ∇uh(yi)

]
,

where ΛK denotes the constant restriction of Λ on K (e.g., ΛK = Λ(xK)), and we reach the so-called
Q1-FVEM-TR scheme, given by

ãh (uh, vh) = ( f , vh) , ∀ vh ∈ Vh, (2.7)

where
ãh (uh, vh) =

∑
K∈Th

ãK,h (uh, vh) , (2.8)

ãK,h (uh, vh) =
1
2

4∑
i=1

[vh]xK yi(xK − yi)TRT ΛK
[
∇uh(xK) + ∇uh(yi)

]
.

We mention that the Q1-FVEM-TR scheme (2.7) is constructed in [17]. For any uh ∈ Uh, we have
uh =

∑4
i=1 uiφ̂i in each K ∈ Th. Let

ψ1(ξ, η) =
1
4
J−1

K (ξ, η)
 1 − η

0

 , ψ2(ξ, η) =
1
4
J−1

K (ξ, η)
 0

1 + ξ

 ,
ψ3(ξ, η) = −

1
4
J−1

K (ξ, η)
 1 + η

0

 , ψ4(ξ, η) =
1
4
J−1

K (ξ, η)
 0
ξ − 1

 .
It follows that

∇uh = J−1
K (ξ, η)

4∑
i=1

ui∇̂φ̂i =

4∑
i=1

(ui+1 − ui)ψi(ξ, η),

where ∇̂ = (∂/∂ξ, ∂/∂η)T and we have used the fact J−1
K (ξ, η)∇̂φ̂i = ψi−1 − ψi. Let Π∗h be a linear

mapping that maps uh ∈ Uh to u∗h := Π∗huh ∈ Vh satisfying u∗h(x) = uh(x), ∀ x ∈ N◦h . By denoting
δUK = (u2 − u1, u3 − u2, u4 − u3, u1 − u4)T and x̂ = (ξ, η)T = J−1

K (x), we have

ãK,h
(
uh, u∗h

)
= δUT

KAKδUK , (2.9)

where

AK =
(
aK,i j

)
4×4

, aK,i j =
1
2

(xK − yi)T
RT ΛK

[
ψ j

(
x̂K

)
+ ψ j(ŷi)

]
. (2.10)

By transforming AK to a 3 × 3 matrix, in the next section we give a new sufficient condition to ensure
the coercivity result.
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3. New coercivity result

For convenience of exposition, we define the following notations

βK =
m1 · (RmK)
|K|

, γK =
mK · (Rm2)
|K|

, mi j =
1

4|K|
(Rmi)T ΛK

(
Rmj

)
, (3.1)

µ1 = µ2 + µ3, µ2 =
2m11

1 − β
2
K

, µ3 =
2m22

1 − γ2
K

, (3.2)

ζ1 = m11 −
µ2

3

16µ1
β

2
K , ζ2 = m22 −

µ2
2

16µ1
γ2

K , ζ3 = m12 +
µ2µ3

16µ1
βKγK . (3.3)

To present the coercivity result, we introduce the following assumption:
(A1) There exists a positive constant %, independent of K and h, such that ζ1ζ2 − ζ

2
3 ≥ %.

Theorem 3.1. Assume that Th consists of strictly convex quadrilaterals, under the assumptions (2.3)
and (A1), we have

ãh
(
uh, u∗h

)
& |uh|

2
1, ∀ uh ∈ Uh, (3.4)

where the hidden constant is independent of h, and | · |1 denotes the standard H1 semi-norm.

To prove the new coercivity result (3.4), we first present some lemmas.

Lemma 3.1. Assume that K is a strictly convex quadrilateral, then we have∣∣∣βK

∣∣∣ +
∣∣∣γK

∣∣∣ < 1, mK = γK m1 + βK m2. (3.5)

For the mi j defined by Eq (3.1), we have

m12 = m21, m11m22 − m2
12 =

1
16

det(ΛK). (3.6)

Moreover, under the geometric assumption (2.4)

|m12| <
λ

4Cqr
,

Cqrλ

4
< mii <

λ

4Cqr
, i = 1, 2.

Proof. The proof of this lemma can be found in some papers, e.g., Lemmas 1 and 2 of [18], or
Lemmas 1 and 2 of [47]. �

Lemma 3.2. For the ζ1 and ζ2 defined in Eq (3.3), we have 4ζ1 + ζ2 > 0.

Proof. Noticing µi > 0 (i = 1, 2, 3), and Eqs (3.2) and (3.5), it holds that

4ζ1 + ζ2 ≥ 4m11 −
µ3

4
β

2
K + m22 −

µ2

16
γ2

K > 4m11 + m22 −
µ3

4

(
1 − γ2

K

)
−
µ2

16

(
1 − β

2
K

)
=

1
8

(31m11 + 4m22),

leads to the desired result. �
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Lemma 3.3. For the AK defined by Eq (2.10), we have

AK =



3 − γK

2(1 − γK)
m22

βKm22

2(1 − γK)
− m12 −

m22

2
m12 −

βKm22

2(1 − γK)

−
γKm11

2(1 + βK)
− m12

3 + βK

2(1 + βK)
m11

γKm11

2(1 + βK)
+ m12 −

m11

2

−
m22

2
βKm22

2(1 + γK)
+ m12

3 + γK

2(1 + γK)
m22 −

βKm22

2(1 + γK)
− m12

m12 −
γKm11

2(1 − βK)
−

m11

2
γKm11

2(1 − βK)
− m12

3 − βK

2(1 − βK)
m11


.

Proof. A direct calculation yields that xK − y1 = y3 − xK = m2/2, xK − y4 = y2 − xK = m1/2 and

J−1
K (ξ, η) =

2

|K|
(
1 + βKξ + γKη

) [
R(m2 + ξmK),−R(m1 + ηmK)

]
.

It follows that
ψ1(x̂K) =

1
2|K|
Rm2, ψ1(̂y1) =

1(
1 − γK

)
|K|
Rm2,

implying that

aK,11 =
3 − γK

2(1 − γK)
m22.

Similarly, we obtain the remaining entries of AK and complete the proof. �

Let δVK = (u2 − u1, u3 − u2, u4 − u3)T and

P =


1 0 0
0 1 0
0 0 1
−1 −1 −1

 ,
then we have δUK = PδVK . Denote BK , P

TAKP =
∑3

i=1 BK,i, where

BK,1 =
m11

1 − βK



1
2

(
3 − βK + γK

)
2 − βK

1
2

(
3 − βK − γK

)
2 + βK − β

2
K + βKγK

1 + βK

4 − 2β
2
K

1 + βK

2 + βK − β
2
K − βKγK

1 + βK
1
2

(
3 − βK + γK

)
2 − βK

1
2

(
3 − βK − γK

)


,

BK,2 = m22



3 + βK − γK

2
(
1 − γK

) βK

1 − γK

βK + γK − 1
2
(
1 − γK

)
0 0 0

βK − γK − 1
2
(
1 + γK

) βK

1 + γK

3 + βK + γK

2
(
1 + γK

)


, BK,3 = 2m12


−1 −1 0
−1 0 1

0 1 1

 .
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Lemma 3.4. Let BS
K = (BK + BT

K)/2 be the symmetric part of BK and T = Π4
i=1Ti, where

T1 =


1 0 0
−1 1 −1

2

1 0 1

 , T2 =


1 0 γK−2

4

0 1 0
0 0 1

 , T3 =


1 −

µ1+µ2
2µ1

βK 0
0 1 0
0 0 1

 , T4 =


1 0 µ3

4µ1
γK

0 1 0
0 0 1

 .
Then, we have

TTBS
KT =


µ1 0 0
0 4ζ1 2ζ3

0 2ζ3 ζ2

 . (3.7)

As a result, BS
K is positive definite if and only if ζ1ζ2 − ζ

2
3 > 0.

Proof. Based on the definition of Ti (i = 1, 2, 3, 4), we reach Eq (3.7) by some straightforward
calculations. Since µ1 > 0 , we find that BS

K is positive definite if and only if the characteristic equation
λ2 − (4ζ1 + ζ2)λ + 4(ζ1ζ2 − ζ

2
3 ) = 0 has positive roots. Recalling Lemma 3.2, we conclude that BS

K is
positive definite if and only if ζ1ζ2 − ζ

2
3 > 0. �

Lemma 3.5. For the matrix T defined in Lemma 3.4, we have ‖T‖ < 14, where ‖ · ‖ denotes the spectral
norm of the matrix.

Proof. Noticing that ‖Ti‖ equals to the square root of the maximal eigenvalue of TT
i Ti, then by some

direct computations, we obtain

‖Ti‖ =

√√
t2
i + 2 +

√(
t2
i + 2

)2
− 4

2
<

√
t2
i + 2, i = 2, 3, 4,

where

t2 =
γK − 2

4
, t3 = −

µ1 + µ2

2µ1
βK , t4 =

µ3

4µ1
γK .

Recalling Eq (3.5), we find that

‖T2‖ <

√
41
4

, ‖T3‖ <
√

3, ‖T4‖ <

√
33
4

.

It can be checked that T1 = T11T12T13, where

T11 =


1 0 0
−1 1 0

0 0 1

 , T12 =


1 0 0
0 1 0
1 0 1

 , T13 =


1 0 0
0 1 −1

2

0 0 1

 .
It holds that

‖T11‖ = ‖T12‖ =

√
3 +
√

5
2

, ‖T13‖ =

√
9 +
√

17
8

.

Finally, we complete the proof by noticing ‖T‖ ≤ (Π3
i=1‖T1i‖)(Π4

j=2‖T j‖). �
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Lemma 3.6. Under the assumptions (2.4) and (A1), we have

vTBKv ≥
Cqr%

98λ
‖v‖2, ∀ v ∈ R3. (3.8)

Proof. It follows from Eq (3.7) that

vTBKv =
(
T−1v

)T (
TTBS

KT
) (
T−1v

)
≥ cK‖T

−1v‖2,

where cK = min{µ1, λK} and λK is the minimal root of λ2 − (4ζ1 + ζ2)λ + 4(ζ1ζ2 − ζ
2
3 ) = 0, i.e.,

λK =
1
2

[
4ζ1 + ζ2 −

√
(4ζ1 + ζ2)2 − 16

(
ζ1ζ2 − ζ

2
3

)]
≤

4ζ1 + ζ2

2
≤

4m11 + m22

2
.

By Eq (3.5), we have µ2 ≥ 2m11 and µ3 ≥ 2m22, leading to µ1 ≥ 2m11 + 2m22 and

cK = λK =
8
(
ζ1ζ2 − ζ

2
3

)
4ζ1 + ζ2 +

√
(4ζ1 + ζ2)2 − 16

(
ζ1ζ2 − ζ

2
3

) ≥ 4
(
ζ1ζ2 − ζ

2
3

)
4ζ1 + ζ2

≥
ζ1ζ2 − ζ

2
3

m11 + m22
≥

2Cqr%

λ
.

Noting Lemma 3.5,

‖T−1v‖ ≥
1
‖T‖
‖v‖ ≥

1
14
‖v‖,

and then we reach Eq (3.8). �

Lemma 3.7. If Eq (2.3) holds, then for any uh ∈ Uh, we have |uh|1,K ∼ ‖δUK‖.

Proof. The proof can be found in Proposition 1 of [23]. �

The proof of Theorem 3.1. By Eqs (2.8), (2.9), and (3.8), we deduce that

ãh
(
uh, u∗h

)
=

∑
K∈Th

δUT
KAKδUK =

∑
K∈Th

δVT
KBKδVK ≥

Cqr%

98λ

∑
K∈Th

‖δVK‖
2.

Thus, by recalling Lemma 3.7 and the fact that ‖δUK‖ ∼ ‖δVK‖, we get Eq (3.4). �

Next, we discuss the relation of coercivity results between this work and [17]. The following
Theorem 3.2 indicates that (A1) is weaker than that of (H1) in [17]. As a comparison, by using
the notations of this work, (H1) in [17] can be rewritten as follows:

(H1) There exists a positive constant %HW , independent of K and h, such that

ζHW
1 ζHW

2 − m2
12 ≥ %

HW ,

where
ζHW

1 = m22 −
µ2

16
γ2

K , ζHW
2 = m11 −

µ3

16
β

2
K .

Theorem 3.2. Assume thatTh consists of strictly convex quadrilaterals, then the condition (H1) of [17]
implies (A1), but not vice versa.
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Proof. A direct calculation yields that(
ζ1ζ2 − ζ

2
3

)
−

(
ζHW

1 ζHW
2 − m2

12

)
=

µ2µ3

256µ1

(
16γ2

Km11 + 16β
2
Km22 − 32βKγKm12 − µ1β

2
Kγ

2
K

)
.

If (H1) holds, then by noticing Eq (32) of [17], we have ζHW
i > 0 (i = 1, 2). As a result

16γ2
Km11 + 16β

2
Km22 =

(
16γ2

Kζ
HW
2 + µ3β

2
Kγ

2
K

)
+

(
16β

2
Kζ

HW
1 + µ2β

2
Kγ

2
K

)
≥ 32

∣∣∣∣∣βKγK

√
ζHW

1 ζHW
2

∣∣∣∣∣ + µ1β
2
Kγ

2
K

≥ 32
∣∣∣βKγKm12

∣∣∣ + µ1β
2
Kγ

2
K ,

leads to
ζ1ζ2 − ζ

2
3 ≥ ζ

HW
1 ζHW

2 − m2
12.

Thus, (H1) implies (A1), but not vice versa. For example, if βK = 0 and γK , 0 (i.e., trapezoidal
mesh), then we find that (A1) cannot imply (H1). The proof is complete. �

Here, we give a specific example, such that the assumption (A1) is satisfied, but (H1) fails. Let
the four vertices of K given by (0, 0)T , (10, 0)T , (1, 1)T , and (0, 1)T , and assume that ΛK is the identity
matrix. Then, by some direct calculations, we have ζ1ζ2−ζ

2
3 = 0.0119, while ζHW

1 ζHW
2 −m2

12 = −0.0957.
To close this section, we employ some special meshes to explore the meaning of (A1), including the
parallelogram and h1+γ-parallelogram meshes.

Theorem 3.3. Suppose that Th consists of parallelograms, then (A1) holds with

% = min
K∈Th

[
1

16
det(ΛK)

]
≥

1
16
λ2.

Proof. If K ∈ Th is a parallelogram, then we obtain mK = 0 and βK = γK = 0. It follows from Eqs (3.3)
and (3.6) that

ζ1ζ2 − ζ
2
3 = m11m22 − m2

12 =
1

16
det(ΛK), ∀K ∈ Th,

implying the desired result. �

Theorem 3.4. Assume that Th consists of h1+γ-parallelograms, i.e., ‖mK‖ . h1+γ
K , ∀K ∈ Th, where

γ > 0 is a constant. Let Eq (2.4) hold. Then, when h is small enough, we have∣∣∣∣∣(ζ1ζ2 − ζ
2
3

)
−

1
16

det (ΛK)
∣∣∣∣∣ . h2γ

K , ∀K ∈ Th.

As a result, (A1) holds with % = C0λ
2, where 0 < C0 < 1/16 is a constant.

Proof. By denoting

a1 = −
µ2

3

16µ1
β

2
K , a2 = −

µ2
2

16µ1
γ2

K , a3 =
µ2µ3

16µ1
βKγK ,

we obtain

ζ1ζ2 − ζ
2
3 =

1
16

det(ΛK) + Res, Res = a2m11 + a1m22 + a1a2 − 2a3m12 − a2
3.

Since Th is an h1+γ-parallelogram mesh and Eq (2.4) holds, we deduce that
∣∣∣βK

∣∣∣ . hγK ,
∣∣∣γK

∣∣∣ . hγK , and
µi . 1 (i = 2, 3). It follows that |ai| . h2γ

K (i = 1, 2, 3) and |Res| . h2γ
K , completing the proof. �
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4. Error analysis

In this section, for any adjacent elements K1 and K2 with a common edge, we assume that ‖ΛK1 −

ΛK2‖ . h. The quadrilateral mesh Th is called h2-uniform (c.f. [12, 27]) provided that the relation
‖mK‖ . h2

K , ∀K ∈ Th holds, and for any two adjacent quadrilateral elements K1 = �x1x2x3x4 and
K2 = �x4x3x5x6 (see Figure 3), they satisfy the h2-parallelogram condition ‖2x4 − x1 − x6‖ . h2.

x1 x2

x3

x4

x5

x6

K1

K2

Figure 3. Two adjacent quadrilaterals K1 = �x1x2x3x4 and K2 = �x4x3x5x6 that have the
common edge x4x3.

4.1. Superconvergence

Denote by uI ∈ Uh the isoparametric bilinear interpolation of u, such that uI(xi) = u(xi), ∀ xi ∈ Nh.
Then, we have the following superconvergence result (4.1).

Lemma 4.1. [20, 39, 50] Let the quadrilateral mesh Th be h2-uniform, then we have∥∥∥∥∇(u − uI)(x)
∥∥∥∥ . h2‖u‖3,∞, ∀ u ∈ W3,∞(Ω), (4.1)

where ∇ is the arithmetic average of the gradient over all neighboring quadrilateral elements for x,
while x is any geometric center in Ch, or any interior vertex in N◦h , or any interior midpoint inM◦

h.

It follows from Eq (3.4) that

|uI − uh|
2
1 . ãh (uI − uh, (uI − uh)∗) = J1 + J2, (4.2)

where
J1 = ãh (uI − u, (uI − uh)∗) , J2 = ãh (u − uh, (uI − uh)∗) .

Next, we will analyze the right-hand side of Eq (4.2) term by term.

Lemma 4.2. Let u ∈ H1
0(Ω)∩W3,∞(Ω) be the exact solution of Eqs (2.1) and (2.2), and uh ∈ Uh be the

finite volume element solution of Eq (2.7). Assume that the quadrilateral mesh Th is h2-uniform, then
we have

|J1| . h2‖u‖3,∞|uI − uh|1. (4.3)
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Proof. Let

ã1,K,h (uh, vh) =
1
2

4∑
i=1

[vh]xK yi(xK − yi)TRT ΛK∇uh(xK),

ã2,K,h (uh, vh) =
1
2

4∑
i=1

[vh]xK yi(xK − yi)TRT ΛK∇uh(yi),

then we have ãK,h (uh, vh) = ã1,K,h (uh, vh) + ã2,K,h (uh, vh). In the following, we will estimate the terms
ã1,K,h(·, ·) and ã2,K,h(·, ·) one by one. First, by Eq (4.1) and Cauchy-Schwarz inequality,∑

K∈Th

∣∣∣̃a1,K,h (u − uI , (uI − uh)∗)
∣∣∣ =

1
2

∑
K∈Th

∣∣∣∣∣∣∣
4∑

i=1

[(uI − uh)∗]xK yi(xK − yi)TRT ΛK∇(u − uI)(xK)

∣∣∣∣∣∣∣
.

∑
K∈Th

4∑
i=1

h|uI − uh|1,K,h ‖∇(u − uI)(xK)‖

. h3‖u‖3,∞
∑
K∈Th

|uI − uh|1,K,h

. h2‖u‖3,∞|uI − uh|1,

where |uh|1,K,h = ‖δUK‖; also, we have used the fact that the number of elements in Th is O(h−2).
Second, for any two adjacent quadrilateral elements K1,K2 ∈ Th, we assume that the common edge of
K1 and K2 is xix j ∈ E

◦
h; see Figure 4. Moreover, we let yi j be the midpoint of xix j. It can be checked

that ‖2yi j − xK1 − xK2‖ . h2. By noticing (uI − uh)∗ = 0 on ∂Ω, it follows from Eq (4.1) that∣∣∣∣∣∣∣∑K∈Th

ã2,K,h (u − uI , (uI − uh)∗)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ ∑
xi x j∈E

◦
h

[(uI − uh)∗]xK1 xK2

1
2

(
(xK1 − yi j)TRT ΛK1∇K1(u − uI)(yi j)

+ (yi j − xK2)
TRT ΛK2∇K2(u − uI)(yi j)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
xi x j∈E

◦
h

[(uI − uh)∗]xK1 xK2

1
2

(
(xK1 − yi j)TRT ΛK1∇K1(u − uI)(yi j)

+ (xK1 − yi j)TRT ΛK2∇K2(u − uI)(yi j)

+ (2yi j − xK1 − xK2)
TRT ΛK2∇K2(u − uI)(yi j)

)∣∣∣∣∣∣
.

∑
xi x j∈E

◦
h

|uI − uh|1,K1,h

(
h
∥∥∥∥∇(u − uI)(yi j)

∥∥∥∥ + h2
∥∥∥∇K2(u − uI)(yi j)

∥∥∥)
. h3‖u‖3,∞

∑
xi x j∈E

◦
h

|uI − uh|1,K1,h

. h2‖u‖3,∞|uI − uh|1,

where ∇Ki is the gradient ∇ that restricts on Ki, i = 1, 2,

[(uI − uh)∗]xK1 xK2
= (uI − uh)(x j) − (uI − uh)(xi),
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3407∥∥∥ΛK1∇K1(u − uI)(yi j) + ΛK2∇K2(u − uI)(yi j)
∥∥∥ =

∥∥∥∥2ΛK1∇(u − uI)(yi j) +
(
ΛK2 − ΛK1

)
∇K2(u − uI)(yi j)

∥∥∥∥
.

∥∥∥∥∇(u − uI)(yi j)
∥∥∥∥ + h

∥∥∥∇K2(u − uI)(yi j)
∥∥∥ ,

and we have used the fact that
∥∥∥∇K2(u − uI)(yi j)

∥∥∥ . h‖u‖3,∞, which can be obtained by Taylor’s
expansion; the proof is similar to [39] and we omit it here. Consequently,

|̃ah (u − uI , (uI − uh)∗)| ≤
∑
K∈Th

∣∣∣̃a1,K,h (u − uI , (uI − uh)∗)
∣∣∣ +

∣∣∣∣∣∣∣∑K∈Th

ã2,K,h (u − uI , (uI − uh)∗)

∣∣∣∣∣∣∣
. h2‖u‖3,∞|uI − uh|1,

leads to Eq (4.3) and completes the proof. �

xj

xi

yij

xK1
xK2

K1 K2

Figure 4. Two adjacent quadrilateral elements K1 and K2 that have a common edge xix j.

Lemma 4.3. Assume that u ∈ H1
0(Ω)∩W3,∞(Ω) is the exact solution of Eqs (2.1) and (2.2), and uh ∈ Uh

is the finite volume element solution of Eq (2.7). Then, we have

|J2| . h2‖u‖3,∞|uI − uh|1. (4.4)

Proof. By Eqs (2.5) and (2.7), we deduce that ah (u, vh) = ( f , vh) = ãh (uh, vh), ∀ vh ∈ Vh. From
Eqs (2.6) and (2.8), and using the quadrature error of trapezoidal rule, we have

|̃ah (u − uh, (uI − uh)∗)| = |̃ah (u, (uI − uh)∗) − ah (u, (uI − uh)∗)|

=

∣∣∣∣∣∣∣∑K∈Th

4∑
i=1

[(uI − uh)∗]xK yi EK,i

∣∣∣∣∣∣∣
.

∑
K∈Th

4∑
i=1

h3
K |uI − uh|1,K,h‖u‖3,∞,K

. h3‖u‖3,∞
∑
K∈Th

|uI − uh|1,K,h

. h2‖u‖3,∞|uI − uh|1,
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where
EK,i =

∫
xK yi

(−ΛK∇u) · n∗K,i ds −
1
2

(xK − yi)TRT ΛK
[
∇u(xK) + ∇u(yi)

]
.

The proof is complete. �

Theorem 4.1. Suppose that the quadrilateral mesh Th is regular and h2-uniform. Let u ∈ H1
0(Ω) ∩

W3,∞(Ω) be the exact solution of Eqs (2.1) and (2.2), and uh ∈ Uh is the finite volume element solution
of Eq (2.7). Then, we have

|uI − uh|1 . h2‖u‖3,∞. (4.5)

Proof. Combining the results Eqs (4.2)–(4.4), we obtain Eq (4.5). �

4.2. Some corollaries

Corollary 4.1. Under the same assumptions as in Theorem 4.1, we have

|u − uh|1 . h‖u‖3,∞

and
‖u − uh‖0 . h2‖u‖3,∞. (4.6)

Proof. Recalling the triangle inequality, standard interpolation error estimate, and Eq (4.5),

|u − uh|1 ≤ |u − uI |1 + |uI − uh|1 . h‖u‖3,∞,

and by Poincaré-Friedrichs inequality,

‖u − uh‖0 ≤ ‖u − uI‖0 + ‖uI − uh‖0 . ‖u − uI‖0 + |uI − uh|1 . h2‖u‖3,∞,

which completes the proof. �

In the above optimal L2 error estimate, we do not use the Aubin-Nitsche technique, and Eq (4.6) is
a by-product of the superconvergence result (4.5).

Corollary 4.2. Under the same assumptions as in Theorem 4.1, we have 1
#S

∑
x∈S

∥∥∥∥∇(u − uh)(x)
∥∥∥∥2


1
2

. h2‖u‖3,∞, (4.7)

where S is the set Ch or N◦h orM◦
h, and #S denotes the cardinality of S .

Proof. It follows from Eq (4.1) that 1
#S

∑
x∈S

∥∥∥∥∇(u − uI)(x)
∥∥∥∥2


1
2

. h2‖u‖3,∞

 1
#S

∑
x∈S

1


1
2

. h2‖u‖3,∞.

By using the inverse inequality, the fact #S = O(h−2), and Eq (4.5), 1
#S

∑
x∈S

∥∥∥∥∇(uI − uh)(x)
∥∥∥∥2


1
2

.

 1
#S

∑
x∈S

h−2 ‖uI − uh‖
2
1,Kx


1
2

.

∑
x∈S

‖uI − uh‖
2
1,Kx


1
2

. ‖uI − uh‖1 . h2‖u‖3,∞,

where Kx = ∪K′3x{K′} is the union of quadrilateral element K′ that contains x. Thus, we get the desired
result (4.7) by combining the above results. �
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5. Numerical results

Several numerical examples are given in this section to verify the above theoretical results, in which
we use four types of meshes. The first type (Mesh I) is a uniform rectangular mesh, see Figure 5(a),
where the coordinates of the vertices are given by

h(i − 1, j − 1)T , 1 ≤ i, j ≤ n + 1,

and h = 1/n is the mesh size. The second one (Mesh II) is a quadrilateral mesh constructed by
disturbing the vertices of Mesh I and keeping the connections unchanged, see Figure 5(b), where the
coordinates of the vertices are subjected to

xi j = (i − 1)h, yi j = ( j − 1)h +
1

25
sin (2πh(i − 1)) sin (2πh( j − 1)) , 1 ≤ i, j ≤ n + 1.

Mesh IV is a uniform trapezoidal mesh also obtained by disturbing some vertices of Mesh I, see
Figure 5(d), where the disturbance of a vertex is h/4 along y direction. For Meshes I, II, and IV, we
set Ω = (0, 1)2 in the following numerical examples. The third mesh (Mesh III), see Figure 5(c), is a
refined one where the initial region Ω0 is a quadrilateral, and the four coordinates of Ω0 are given as
below

(0, 0)T , (1, 0)T , (0.8, 1)T , (0.2, 1)T .

Precisely, Mesh III is obtained by the standard bisection procedure, i.e., by connecting the midpoints
of opposite edges of each quadrilateral; see the thin line segments of Figure 5(c). It can be verified that
Meshes I, II, and III are all h2-uniform. For convenience, we denote

EC =

 1
#Ch

∑
x∈Ch

∥∥∥∥∇(u − uh)(x)
∥∥∥∥2


1
2

, EV =

 1
#N◦h

∑
x∈N◦h

∥∥∥∥∇(u − uh)(x)
∥∥∥∥2


1
2

and

EM =

 1
#M◦

h

∑
x∈M◦h

∥∥∥∥∇(u − uh)(x)
∥∥∥∥2


1
2

as the errors at geometric centers, interior vertices, and edge midpoints, respectively. Moreover, for the
ζi that appears in Eq (3.3), we define

% = min
K∈Th

{
ζ1ζ2 − ζ

2
3

}
.
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(a) Mesh I (b) Mesh II

(c) Mesh III (d) Mesh IV

Figure 5. Mesh types used in the numerical experiments.

Example 5.1. Solve Eqs (2.1) and (2.2), and choose the anisotropic diffusion coefficient and right-hand
side function as follows:

Λ =

 1 1
1 2

 , f (x, y) = −5ex+y.

This problem has the analytic solution u(x, y) = ex+y.

The numerical results are reported in Tables 1 and 2, where “Order” indicates the numerical
convergence order computed by log2(E2h/Eh), where E2h and Eh are the errors of the corresponding
two successive mesh sizes T2h and Th. One can see that, for the four meshes and diffusion coefficient,
(A1) is satisfied. In particular, for Meshes I, II, and III, the finite volume element solution uh converges
to the interpolation uI of u with second-order under H1 norm, which conforms the superconvergence
property in Theorem 4.1. The remaining results of these two tables also verify the theoretical findings
in Corollaries 4.1 and 4.2. Note that Mesh IV is not h2-uniform; then, the corresponding finite volume
element solution does not preserve the superconvergence result.

AIMS Mathematics Volume 11, Issue 2, 3394–3424.



3411

Table 1. Numerical results for Example 5.1 on Meshes I and II.

Mesh #Th 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Mesh I

% 6.25e-02 6.25e-02 6.25e-02 6.25e-02 6.25e-02 6.25e-02
|uI − uh|1 5.35e-03 1.38e-03 3.48e-04 8.73e-05 2.18e-05 5.46e-06
Order / 1.96 1.99 2.00 2.00 2.00
|u − uh|1 1.63e-01 8.15e-02 4.08e-02 2.04e-02 1.02e-02 5.09e-03
Order / 1.00 1.00 1.00 1.00 1.00
‖u − uh‖0 9.60e-03 2.41e-03 6.03e-04 1.51e-04 3.77e-05 9.42e-06
Order / 1.99 2.00 2.00 2.00 2.00
EC 1.17e-02 2.94e-03 7.36e-04 1.84e-04 4.60e-05 1.15e-05
Order / 1.99 2.00 2.00 2.00 2.00
EV 2.80e-02 7.07e-03 1.78e-03 4.46e-04 1.12e-04 2.79e-05
Order / 1.98 1.99 2.00 2.00 2.00
EM 1.98e-02 4.98e-03 1.25e-03 3.13e-04 7.82e-05 1.95e-05
Order / 1.99 2.00 2.00 2.00 2.00

Mesh II

% 6.25e-02 6.25e-02 6.25e-02 6.25e-02 6.25e-02 6.25e-02
|uI − uh|1 1.07e-02 3.11e-03 8.15e-04 2.06e-04 5.18e-05 1.30e-05
Order / 1.78 1.93 1.98 1.99 2.00
|u − uh|1 1.67e-01 8.38e-02 4.19e-02 2.10e-02 1.05e-02 5.24e-03
Order / 1.00 1.00 1.00 1.00 1.00
‖u − uh‖0 9.43e-03 2.37e-03 5.95e-04 1.49e-04 3.72e-05 9.30e-06
Order / 1.99 2.00 2.00 2.00 2.00
EC 1.68e-02 4.44e-03 1.13e-03 2.84e-04 7.12e-05 1.78e-05
Order / 1.92 1.97 1.99 2.00 2.00
EV 7.85e-02 2.29e-02 5.99e-03 1.52e-03 3.83e-04 9.60e-05
Order / 1.78 1.93 1.98 1.99 2.00
EM 6.90e-02 1.78e-02 4.46e-03 1.11e-03 2.78e-04 6.94e-05
Order / 1.95 2.00 2.00 2.00 2.00
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Table 2. Numerical results for Example 5.1 on Meshes III and IV.
Mesh #Th 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Mesh III

% 6.25e-02 6.25e-02 6.25e-02 6.25e-02 6.25e-02 6.25e-02
|uI − uh|1 5.51e-04 1.46e-04 3.70e-05 9.31e-06 2.33e-06 5.83e-07
Order / 1.92 1.97 1.99 2.00 2.00
|u − uh|1 1.16e-01 5.82e-02 2.91e-02 1.46e-02 7.28e-03 3.64e-03
Order / 1.00 1.00 1.00 1.00 1.00
‖u − uh‖0 5.49e-03 1.37e-03 3.43e-04 8.58e-05 2.14e-05 5.36e-06
Order / 2.00 2.00 2.00 2.00 2.00
EC 2.20e-03 5.54e-04 1.39e-04 3.47e-05 8.68e-06 2.17e-06
Order / 1.99 2.00 2.00 2.00 2.00
EV 8.30e-03 2.09e-03 5.25e-04 1.32e-04 3.29e-05 8.23e-06
Order / 1.99 1.99 2.00 2.00 2.00
EM 6.21e-03 1.58e-03 3.97e-04 9.96e-05 2.50e-05 6.25e-06
Order / 1.98 1.99 1.99 2.00 2.00

Mesh IV

% 6.23e-02 6.23e-02 6.23e-02 6.23e-02 6.23e-02 6.23e-02
|uI − uh|1 1.04e-02 3.74e-03 1.59e-03 7.56e-04 3.74e-04 1.86e-04
Order / 1.48 1.23 1.07 1.02 1.00
|u − uh|1 1.86e-01 9.42e-02 4.74e-02 2.38e-02 1.19e-02 5.95e-03
Order / 0.98 0.99 1.00 1.00 1.00
‖u − uh‖0 1.07e-02 2.72e-03 6.86e-04 1.72e-04 4.32e-05 1.08e-05
Order / 1.97 1.99 1.99 2.00 2.00
EC 7.14e-02 3.55e-02 1.77e-02 8.87e-03 4.43e-03 2.22e-03
Order / 1.01 1.00 1.00 1.00 1.00
EV 1.55e-01 7.62e-02 3.78e-02 1.88e-02 9.38e-03 4.69e-03
Order / 1.02 1.01 1.01 1.00 1.00
EM 6.99e-02 3.51e-02 1.76e-02 8.82e-03 4.42e-03 2.21e-03
Order / 0.99 1.00 1.00 1.00 1.00

Example 5.2. We still consider the problem Eqs (2.1) and (2.2) with the following discontinuous
anisotropic diffusion coefficient:

Λ(x, y) =



 1.75 0.5
0.5 1.75

 , x ≤ 0.5, 3 1
1 2

 , x > 0.5.
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The exact solution and corresponding right-hand side function are given by

u(x, y) =

 2xey, x ≤ 0.5,
(0.5 + x)ey, x > 0.5,

f (x, y) =

 −(2 + 3.5x)ey, x ≤ 0.5,
−(3 + 2x)ey, x > 0.5.

We mention that, in this example, u < W3,∞(Ω), and u is just a continuous function. Moreover,
the first derivative (Λ∇u) · n on the interface x = 0.5 is a continuous vector-valued function. We
can observe from Tables 3 and 4 that the numerical results are similar to the previous example,
except the convergence orders of EV and EM, which are all approximately 1.5 (the corresponding
superconvergence results have not been proved for the discontinuous anisotropic diffusion coefficient),
and a little lower than 2.

Example 5.3. Solve a highly anisotropic diffusion problem that was considered in [3], where the
diffusion coefficient and analytic solution are as follows:

Λ =

 cos θ sin θ
− sin θ cos θ

  1 0
0 κ

  cos θ − sin θ
sin θ cos θ

 , u(x, y) =
arctan

(
0.5 − (x − 0.5)2 − (y − 0.5)2

)
arctan 0.5

,

respectively. Thus, the right-hand side function is given by

f (x, y) =
2(

1 + f 2
1 (x, y)

)2
arctan 0.5

(
(κ + 1)

(
1 + f 2

1 (x, y)
)

+ 8(κ − 1)(x − 0.5)(y − 0.5) f1(x, y) sin θ cos θ

+ 4 f1(x, y)
(
(x − 0.5)2

(
κ sin2 θ + cos2 θ

)
+ (y − 0.5)2

(
sin2 θ + κ cos2 θ

)) )
,

with f1(x, y) = x + y − x2 − y2. In this example, we employ κ = 103 and θ = π/4.
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Table 3. Numerical results for Example 5.2 on Meshes I and II.
Mesh #Th 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Mesh I

% 1.76e-01 1.76e-01 1.76e-01 1.76e-01 1.76e-01 1.76e-01
|uI − uh|1 8.43e-04 2.14e-04 5.38e-05 1.35e-05 3.37e-06 8.42e-07
Order / 1.98 1.99 2.00 2.00 2.00
|u − uh|1 6.32e-02 3.16e-02 1.58e-02 7.89e-03 3.95e-03 1.97e-03
Order / 1.00 1.00 1.00 1.00 1.00
‖u − uh‖0 2.62e-03 6.57e-04 1.64e-04 4.11e-05 1.03e-05 2.57e-06
Order / 2.00 2.00 2.00 2.00 2.00
EC 5.80e-03 1.45e-03 3.63e-04 9.09e-05 2.27e-05 5.68e-06
Order / 2.00 2.00 2.00 2.00 2.00
EV 2.23e-02 7.47e-03 2.56e-03 8.89e-04 3.11e-04 1.10e-04
Order / 1.58 1.55 1.53 1.51 1.51
EM 1.74e-02 5.57e-03 1.86e-03 6.38e-04 2.22e-04 7.78e-05
Order / 1.64 1.58 1.54 1.52 1.51

Mesh II

% 1.76e-01 1.76e-01 1.76e-01 1.76e-01 1.76e-01 1.76e-01
|uI − uh|1 4.86e-03 1.34e-03 3.43e-04 8.61e-05 2.16e-05 5.39e-06
Order / 1.86 1.97 1.99 2.00 2.00
|u − uh|1 6.88e-02 3.46e-02 1.73e-02 8.66e-03 4.33e-03 2.16e-03
Order / 0.99 1.00 1.00 1.00 1.00
‖u − uh‖0 2.74e-03 6.89e-04 1.72e-04 4.31e-05 1.08e-05 2.70e-06
Order / 1.99 2.00 2.00 2.00 2.00
EC 1.01e-02 2.58e-03 6.49e-04 1.63e-04 4.06e-05 1.02e-05
Order / 1.97 1.99 2.00 2.00 2.00
EV 5.03e-02 1.53e-02 4.35e-03 1.26e-03 3.87e-04 1.24e-04
Order / 1.72 1.82 1.78 1.71 1.64
EM 4.17e-02 1.14e-02 3.12e-03 8.97e-04 2.73e-04 8.80e-05
Order / 1.87 1.87 1.80 1.71 1.64
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Table 4. Numerical results for Example 5.2 on Meshes III and IV.
Mesh #Th 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Mesh III

% 1.76e-01 1.76e-01 1.76e-01 1.76e-01 1.76e-01 1.76e-01
|uI − uh|1 3.07e-04 7.79e-05 1.96e-05 4.90e-06 1.22e-06 3.06e-07
Order / 1.98 1.99 2.00 2.00 2.00
|u − uh|1 5.58e-02 2.79e-02 1.39e-02 6.97e-03 3.49e-03 1.74e-03
Order / 1.00 1.00 1.00 1.00 1.00
‖u − uh‖0 2.24e-03 5.61e-04 1.40e-04 3.51e-05 8.77e-06 2.19e-06
Order / 2.00 2.00 2.00 2.00 2.00
EC 1.58e-03 3.97e-04 9.94e-05 2.49e-05 6.22e-06 1.55e-06
Order / 1.99 2.00 2.00 2.00 2.00
EV 7.57e-03 2.61e-03 9.01e-04 3.14e-04 1.10e-04 3.87e-05
Order / 1.54 1.53 1.52 1.51 1.51
EM 6.26e-03 2.00e-03 6.65e-04 2.27e-04 7.87e-05 2.75e-05
Order / 1.64 1.59 1.55 1.53 1.51

Mesh IV

% 1.75e-01 1.75e-01 1.75e-01 1.75e-01 1.75e-01 1.75e-01
|uI − uh|1 8.76e-03 4.32e-03 2.16e-03 1.08e-03 5.43e-04 2.72e-04
Order / 1.02 1.00 1.00 1.00 1.00
|u − uh|1 9.88e-02 4.94e-02 2.47e-02 1.24e-02 6.18e-03 3.09e-03
Order / 1.00 1.00 1.00 1.00 1.00
‖u − uh‖0 3.95e-03 1.01e-03 2.56e-04 6.43e-05 1.61e-05 4.03e-06
Order / 1.97 1.98 1.99 2.00 2.00
EC 5.32e-02 2.66e-02 1.33e-02 6.67e-03 3.34e-03 1.67e-03
Order / 1.00 1.00 1.00 1.00 1.00
EV 1.35e-01 6.56e-02 3.24e-02 1.61e-02 8.02e-03 4.00e-03
Order / 1.04 1.02 1.01 1.00 1.00
EM 6.19e-02 3.12e-02 1.57e-02 7.84e-03 3.92e-03 1.96e-03
Order / 0.99 1.00 1.00 1.00 1.00

The numerical results are shown in Tables 5 and 6, which are consistent with the theoretical findings
of Theorem 4.1, and Corollaries 4.1 and 4.2. One can observe that for Mesh IV, the values of % are
negative. That is, there exists one unique finite volume element solution that converges to an exact
solution with the desired convergence rates under H1 and L2 norms, even though the assumption (A1)
is not satisfied.
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Table 5. Numerical results for Example 5.3 on Meshes I and II.
Mesh #Th 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Mesh I

% 6.25e+01 6.25e+01 6.25e+01 6.25e+01 6.25e+01 6.25e+01
|uI − uh|1 4.34e-03 1.30e-03 3.79e-04 1.06e-04 2.87e-05 7.50e-06
Order / 1.74 1.78 1.83 1.89 1.93
|u − uh|1 2.14e-01 1.07e-01 5.36e-02 2.68e-02 1.34e-02 6.69e-03
Order / 1.00 1.00 1.00 1.00 1.00
‖u − uh‖0 1.19e-02 2.97e-03 7.40e-04 1.85e-04 4.62e-05 1.16e-05
Order / 2.01 2.00 2.00 2.00 2.00
EC 3.74e-03 1.24e-03 3.70e-04 1.05e-04 2.84e-05 7.42e-06
Order / 1.59 1.74 1.82 1.89 1.93
EV 1.26e-02 3.29e-03 8.51e-04 2.19e-04 5.58e-05 1.41e-05
Order / 1.94 1.95 1.96 1.97 1.98
EM 7.94e-03 2.21e-03 5.96e-04 1.58e-04 4.10e-05 1.05e-05
Order / 1.85 1.89 1.92 1.94 1.97

Mesh II

% 5.53e+01 6.02e+01 6.19e+01 6.23e+01 6.25e+01 6.25e+01
|uI − uh|1 2.64e-02 9.79e-03 2.92e-03 7.94e-04 2.05e-04 5.19e-05
Order / 1.43 1.74 1.88 1.95 1.98
|u − uh|1 2.20e-01 1.10e-01 5.49e-02 2.74e-02 1.37e-02 6.85e-03
Order / 1.00 1.00 1.00 1.00 1.00
‖u − uh‖0 1.26e-02 3.25e-03 8.28e-04 2.08e-04 5.22e-05 1.31e-05
Order / 1.95 1.97 1.99 2.00 2.00
EC 3.11e-02 1.10e-02 3.20e-03 8.56e-04 2.20e-04 5.56e-05
Order / 1.50 1.78 1.90 1.96 1.99
EV 4.95e-02 1.72e-02 4.87e-03 1.28e-03 3.24e-04 8.15e-05
Order / 1.52 1.82 1.93 1.98 1.99
EM 4.45e-02 1.47e-02 4.13e-03 1.08e-03 2.76e-04 6.95e-05
Order / 1.59 1.83 1.93 1.97 1.99
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Table 6. Numerical results for Example 5.3 on Meshes III and IV.
Mesh #Th 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Mesh III

% 6.18e+01 6.23e+01 6.25e+01 6.25e+01 6.25e+01 6.25e+01
|uI − uh|1 3.83e-03 1.08e-03 2.97e-04 8.00e-05 2.11e-05 5.43e-06
Order / 1.83 1.86 1.89 1.93 1.95
|u − uh|1 1.75e-01 8.76e-02 4.38e-02 2.19e-02 1.09e-02 5.47e-03
Order / 1.00 1.00 1.00 1.00 1.00
‖u − uh‖0 9.07e-03 2.26e-03 5.65e-04 1.41e-04 3.53e-05 8.82e-06
Order / 2.00 2.00 2.00 2.00 2.00
EC 6.45e-03 1.71e-03 4.49e-04 1.17e-04 3.00e-05 7.63e-06
Order / 1.91 1.93 1.94 1.96 1.97
EV 1.60e-02 4.08e-03 1.03e-03 2.59e-04 6.51e-05 1.63e-05
Order / 1.98 1.99 1.99 1.99 1.99
EM 1.14e-02 2.92e-03 7.44e-04 1.89e-04 4.77e-05 1.20e-05
Order / 1.96 1.97 1.98 1.98 1.99

Mesh IV

% -1.39e+01 -1.39e+01 -1.39e+01 -1.39e+01 -1.39e+01 -1.39e+01
|uI − uh|1 8.71e-03 3.90e-03 1.88e-03 9.29e-04 4.64e-04 2.32e-04
Order / 1.16 1.06 1.02 1.00 1.00
|u − uh|1 2.29e-01 1.15e-01 5.73e-02 2.87e-02 1.43e-02 7.17e-03
Order / 1.00 1.00 1.00 1.00 1.00
‖u − uh‖0 1.33e-02 3.30e-03 8.24e-04 2.06e-04 5.15e-05 1.29e-05
Order / 2.01 2.00 2.00 2.00 2.00
EC 6.42e-02 3.22e-02 1.61e-02 8.04e-03 4.02e-03 2.01e-03
Order / 1.00 1.00 1.00 1.00 1.00
EV 6.61e-02 3.31e-02 1.66e-02 8.32e-03 4.17e-03 2.08e-03
Order / 1.00 1.00 1.00 1.00 1.00
EM 1.17e-02 4.72e-03 2.14e-03 1.03e-03 5.12e-04 2.55e-04
Order / 1.31 1.14 1.05 1.01 1.00

Example 5.4. Solve Eqs (2.1) and (2.2) and choose the strongly anisotropic diffusion coefficient and
exact solution as follows (see [34]):

Λ(x, y) =
1

x2 + y2

 κx2 + y2 (κ − 1)xy

(κ − 1)xy x2 + κy2

 , u(x, y) = sin(πx)sin(πy),

where κ characterizes the level of anisotropy. The right-hand side function is determined by

f (x, y) = π2(1 + κ) f1 +
π(1 − κ)
x2 + y2 (y f2 + x f3 + 2πxy f4),

with

AIMS Mathematics Volume 11, Issue 2, 3394–3424.



3418

f1(x, y) = sin(πx)sin(πy), f2(x, y) = sin(πx)cos(πy),
f3(x, y) = cos(πx)sin(πy), f4(x, y) = cos(πx)cos(πy).

In this example, we employ κ = 10−3.

Note that here, Λ is a variable diffusion coefficient, thus in our numerical experiments, we let Λ be
a piecewise constant with respect to Th, such that ΛK = Λ(xK). Tables 7 and 8 report the numerical
results, and we find that the performance is similar to the previous Examples 5.1 and 5.3. Moreover,
Examples 5.3 and 5.4 all show that (A1) is just a sufficient condition to guarantee coercivity.

Table 7. Numerical results for Example 5.4 on Meshes I and II.
Mesh #Th 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Mesh I

% 6.25e-05 6.25e-05 6.25e-05 6.25e-05 6.25e-05 6.25e-05
|uI − uh|1 6.53e-02 1.75e-02 4.65e-03 1.22e-03 3.19e-04 8.25e-05
Order / 1.90 1.91 1.93 1.94 1.95
|u − uh|1 2.58e-01 1.27e-01 6.31e-02 3.15e-02 1.57e-02 7.87e-03
Order / 1.02 1.01 1.00 1.00 1.00
‖u − uh‖0 8.04e-03 2.10e-03 5.41e-04 1.37e-04 3.46e-05 8.67e-06
Order / 1.94 1.96 1.98 1.99 2.00
EC 5.59e-02 1.57e-02 4.27e-03 1.14e-03 2.99e-04 7.78e-05
Order / 1.83 1.88 1.91 1.93 1.94
EV 1.11e-01 2.94e-02 7.61e-03 1.95e-03 4.97e-04 1.26e-04
Order / 1.92 1.95 1.96 1.97 1.98
EM 7.70e-02 2.08e-02 5.48e-03 1.43e-03 3.70e-04 9.49e-05
Order / 1.89 1.92 1.94 1.95 1.96

Mesh II

% 1.30e-05 4.54e-05 5.79e-05 6.13e-05 6.22e-05 6.24e-05
|uI − uh|1 8.29e-02 3.04e-02 1.01e-02 2.93e-03 7.83e-04 2.01e-04
Order / 1.45 1.59 1.78 1.90 1.96
|u − uh|1 2.71e-01 1.34e-01 6.61e-02 3.28e-02 1.64e-02 8.18e-03
Order / 1.02 1.02 1.01 1.00 1.00
‖u − uh‖0 1.07e-02 3.47e-03 1.02e-03 2.77e-04 7.14e-05 1.80e-05
Order / 1.63 1.76 1.89 1.96 1.99
EC 8.36e-02 3.17e-02 1.04e-02 2.99e-03 7.95e-04 2.03e-04
Order / 1.40 1.61 1.80 1.91 1.97
EV 1.45e-01 4.87e-02 1.46e-02 3.99e-03 1.04e-03 2.62e-04
Order / 1.57 1.74 1.87 1.95 1.98
EM 1.10e-01 3.91e-02 1.22e-02 3.42e-03 8.98e-04 2.28e-04
Order / 1.50 1.68 1.84 1.93 1.97
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Table 8. Numerical results for Example 5.4 on Meshes III and IV.
Mesh #Th 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Mesh III

% 5.77e-05 6.13e-05 6.22e-05 6.24e-05 6.25e-05 6.25e-05
|uI − uh|1 4.48e-02 1.16e-02 3.00e-03 7.75e-04 2.00e-04 5.12e-05
Order / 1.95 1.95 1.95 1.96 1.96
|u − uh|1 2.34e-01 1.16e-01 5.78e-02 2.89e-02 1.44e-02 7.22e-03
Order / 1.01 1.00 1.00 1.00 1.00
‖u − uh‖0 7.18e-03 1.79e-03 4.49e-04 1.12e-04 2.81e-05 7.03e-06
Order / 2.00 2.00 2.00 2.00 2.00
EC 4.25e-02 1.13e-02 2.98e-03 7.74e-04 2.00e-04 5.15e-05
Order / 1.91 1.93 1.94 1.95 1.96
EV 9.23e-02 2.42e-02 6.17e-03 1.57e-03 3.96e-04 9.98e-05
Order / 1.93 1.97 1.98 1.98 1.99
EM 6.42e-02 1.68e-02 4.33e-03 1.11e-03 2.82e-04 7.16e-05
Order / 1.93 1.96 1.97 1.97 1.98

Mesh IV

% -3.87e-04 -4.05e-04 -4.05e-04 -4.05e-04 -4.05e-04 -4.05e-04
|uI − uh|1 7.72e-02 2.66e-02 1.17e-02 5.77e-03 2.85e-03 1.39e-03
Order / 1.53 1.18 1.02 1.02 1.04
|u − uh|1 3.01e-01 1.49e-01 7.43e-02 3.72e-02 1.86e-02 9.28e-03
Order / 1.01 1.00 1.00 1.00 1.00
‖u − uh‖0 1.07e-02 2.85e-03 7.41e-04 1.88e-04 4.74e-05 1.19e-05
Order / 1.90 1.94 1.97 1.99 2.00
EC 1.28e-01 6.00e-02 2.96e-02 1.48e-02 7.38e-03 3.68e-03
Order / 1.10 1.02 1.00 1.00 1.01
EV 2.33e-01 1.17e-01 5.82e-02 2.90e-02 1.45e-02 7.24e-03
Order / 1.00 1.00 1.00 1.00 1.00
EM 1.29e-01 5.88e-02 2.87e-02 1.43e-02 7.12e-03 3.55e-03
Order / 1.14 1.04 1.01 1.00 1.00

6. Conclusions

We improved the coercivity and established the superconvergence of the isoparametric bilinear finite
volume element scheme that was constructed in [17]; namely, the scheme is obtained by using the
trapezoidal rule to approximate the line integrals in classical Q1-FVEM. A new sufficient condition is
proposed to guarantee the coercivity result of this scheme, which improved the coercivity result in [17];
see Theorem 3.2. We mention that the weaker condition (A1) is a basis for various error estimates.
Assume that the quadrilateral mesh is h2-uniform, and we reach the superconvergence property |uI −

AIMS Mathematics Volume 11, Issue 2, 3394–3424.



3420

uh|1 = O(h2). As a by-product, we prove that uh converges to u with optimal convergence order 1
(resp. 2) under H1 (resp. L2) norm. Moreover, the superconvergence results of uh at geometric centers,
interior vertices, and edge midpoints are also obtained in an average gradient norm. The numerical
results in Examples 5.3 and 5.4 imply that, there exists one unique finite volume element solution
that converges to the exact solution with the desired convergence orders under H1 and L2 norms, even
though (A1) is violated. In summary, (A1) is just a sufficient condition to guarantee coercivity.

To obtain the superconvergence result, previous works required a strong mesh condition, e.g.,
rectangular mesh or h2-uniform quadrilateral mesh [4, 27, 30, 31, 46]. Thus, the weakening of h2-
uniform quadrilateral mesh condition is not easy. Moreover, if we slightly violate the h2-uniform
quadrilateral mesh (e.g., Mesh IV, uniform trapezoidal mesh in Section 5), the superconvergence result
is not valid. In the future, we expect that the presented analysis can be applied to biquadratic finite
volume element schemes over quadrilateral meshes. For this purpose, there are some difficulties
that need to be overcome. First, how to appropriately express the 9 × 9 element stiffness matrix.
Second, the spectral analysis of element stiffness matrix is not easy, and how to derive a sufficient
condition (with analytic expression) to guarantee the coercivity remains unknown. Third, to establish
the superconvergence, the difference between finite element and finite volume element bilinear forms
needs to be carefully investigated.
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