This study aims to derive criteria for examining the asymptotic and oscillatory behavior of solutions to functional differential equations with delayed damping. By employing the Riccati technique together with an improved approach, we establish new criteria that complement the existing literature while distinguishing themselves by accounting for the delay effect in the damping term and by providing the well-known sharp criterion for Euler-type equations. Numerical examples illustrate the theoretical findings and clarify how the delay in the damping term affects the solution dynamics.
Citation: Ahmed S. Almohaimeed, Osama Moaaz. Oscillation of functional differential equations with a delayed damping term: Enhanced criteria and numerical simulation[J]. AIMS Mathematics, 2026, 11(2): 3275-3289. doi: 10.3934/math.2026133
This study aims to derive criteria for examining the asymptotic and oscillatory behavior of solutions to functional differential equations with delayed damping. By employing the Riccati technique together with an improved approach, we establish new criteria that complement the existing literature while distinguishing themselves by accounting for the delay effect in the damping term and by providing the well-known sharp criterion for Euler-type equations. Numerical examples illustrate the theoretical findings and clarify how the delay in the damping term affects the solution dynamics.
| [1] | W. H. Hayt, J. Kemmerly, J. Phillips, S. M. Durbin, Engineering circuit analysis, McGraw-Hill Education, 2018. |
| [2] | K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Springer Science & Business Media, 74 (2013). |
| [3] | S. S. Rao, Mechanical vibrations, Sixth Edition in SI Units, Pearson Education, Inc., 2018. |
| [4] |
Z. Luo, L. Luo, New criteria for oscillation of damped fractional partial differential equations, Math. Model. Control, 2 (2022), 219–227. https://doi.org/10.3934/mmc.2022021 doi: 10.3934/mmc.2022021
|
| [5] |
G. A. Grigorian, Oscillation and non-oscillation criteria for linear nonhomogeneous systems of two first-order ordinary differential equations, J. Math. Anal. Appl., 507 (2022), 125734. https://doi.org/10.1016/j.jmaa.2021.125734 doi: 10.1016/j.jmaa.2021.125734
|
| [6] |
Z. Zhang, X. Yang, Error estimation of $\alpha_{p}$-robust ADI difference scheme on graded meshes for the three-dimensional nonlinear multiterm subdiffusion equation with constant coefficients, Comput. Appl. Math., 45 (2026), 187. https://doi.org/10.1007/s40314-025-03469-4 doi: 10.1007/s40314-025-03469-4
|
| [7] |
J. Zhang, X. Yang, S. Wang, A compact difference method for the 2-D Kuramoto-Tsuzuki complex equation with Neumann boundary characterized by strong nonlinear effects, Comput. Math. Appl., 203 (2026), 1–19. https://doi.org/10.1016/j.camwa.2025.11.013 doi: 10.1016/j.camwa.2025.11.013
|
| [8] |
X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
|
| [9] |
X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
|
| [10] |
M. Bohner, S. Grace, I. Jadlovská, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theo., 2017 (2017), 1–12. https://doi.org/10.14232/ejqtde.2017.1.60 doi: 10.14232/ejqtde.2017.1.60
|
| [11] |
T. Hassan, O. Moaaz, A. Nabih, M. Mesmouli, A. El-Sayed, New sufficient conditions for oscillation of second-order neutral delay differential equations, Axioms, 10 (2021), 281. https://doi.org/10.3390/axioms10040281 doi: 10.3390/axioms10040281
|
| [12] |
B. Baculikova, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett., 91 (2018), 68–75. https://doi.org/10.1016/j.aml.2018.11.021 doi: 10.1016/j.aml.2018.11.021
|
| [13] |
T. S. Hassan, B. M. El-Matary, Asymptotic behavior and oscillation of third-order nonlinear neutral differential equations with mixed nonlinearities, Mathematics, 11 (2023), 424. https://doi.org/10.3390/math11020424 doi: 10.3390/math11020424
|
| [14] |
T. S. Hassan, E. R. Attia, B. M. El-Matary, Iterative oscillation criteria of third-order nonlinear damped neutral differential equations, AIMS Math., 9 (2024), 23128–23141. https://doi.org/10.3934/math.20241124 doi: 10.3934/math.20241124
|
| [15] | R. P. Agarwal, M. F. Aktas, A. Tiryaki, On oscillation criteria for third-order nonlinear delay differential equations, Arch. Math., 45 (2009), 1–18. |
| [16] |
S. R. Grace, R. P. Agarwal, J. R. Graef, Oscillation theorems for fourth-order functional differential equations, J. Appl. Math. Comput., 30 (2009), 75–88. https://doi.org/10.1007/s12190-008-0158-9 doi: 10.1007/s12190-008-0158-9
|
| [17] |
O. Moaaz, I. Dassios, O. Bazighifan, Oscillation criteria of higher-order neutral differential equations with several deviating arguments, Mathematics, 8 (2020), 412. https://doi.org/10.3390/math8030412 doi: 10.3390/math8030412
|
| [18] |
T. Li, Y. V. Rogovchenko, Asymptotic behavior of higher-order quasilinear neutral differential equations, Abstr. Appl. Anal., 2014 (2014), 395368. https://doi.org/10.1155/2014/395368 doi: 10.1155/2014/395368
|
| [19] |
S. R. Grace, Oscillation theorems for nonlinear differential equations of second order, J. Math. Anal. Appl., 171 (1992), 220–241. https://doi.org/10.1016/0022-247X(92)90386-R doi: 10.1016/0022-247X(92)90386-R
|
| [20] |
T. Li, Y. Rogovchenko, S. Tang, Oscillation of second-order nonlinear differential equations with damping, Math. Slovaca, 64 (2014), 1227–1236. https://doi.org/10.2478/s12175-014-0271-1 doi: 10.2478/s12175-014-0271-1
|
| [21] |
Y. Huang, F. Meng, Oscillation of second-order nonlinear ODE with damping, Appl. Math. Comput., 199 (2007), 644–652. https://doi.org/10.1016/j.amc.2007.10.025 doi: 10.1016/j.amc.2007.10.025
|
| [22] |
X. Fu, T. Li, C. Zhang, Oscillation of second-order damped differential equations, Adv. Differ. Equ., 2013 (2013), 326. https://doi.org/10.1186/1687-1847-2013-326 doi: 10.1186/1687-1847-2013-326
|
| [23] | M. H. Saker, M. Bohner, Oscillation of damped second-order nonlinear delay differential equations of Emden–Fowler type, Adv. Dyn. Syst. Appl., 1 (2006), 163–182. Available from: http://campus.mst.edu/adsa/contents/v1n2p3.pdf. |
| [24] |
H. Z. Qin, Y. Ren, Oscillation theorems for second-order damped nonlinear differential equations, Int. J. Differ. Equat., 2009 (2009), 714357. https://doi.org/10.1155/2009/714357 doi: 10.1155/2009/714357
|
| [25] |
S. R. Grace, Oscillatory and asymptotic behavior of damped functional differential equations, Math. Nachr., 142 (1989), 297–305. https://doi.org/10.1002/mana.19891420121 doi: 10.1002/mana.19891420121
|
| [26] | S. H. Saker, P. Y. Pang, R. P. Agarwal, Oscillation theorems for second-order nonlinear functional differential equations with damping, Dynam. Syst. Appl., 12 (2003), 307–322. |
| [27] |
O. Moaaz, H. Ramos, On the oscillation of second-order functional differential equations with a delayed damping term, Appl. Math. Lett., 163 (2025), 109464. https://doi.org/10.1016/j.aml.2025.109464 doi: 10.1016/j.aml.2025.109464
|
| [28] |
O. Moaaz, W. Albalawi, Investigation of the impact of delayed damping on the asymptotic behavior of solutions to Emden–Fowler neutral differential equations, AIMS Math., 10 (2025), 24983–24996. https://doi.org/10.3934/math.20251106 doi: 10.3934/math.20251106
|