Editorial Special Issues

Special issue "Mathematical Foundations of Information Theory"

  • Published: 03 February 2026
  • Citation: Igal Sason. Special issue 'Mathematical Foundations of Information Theory'[J]. AIMS Mathematics, 2026, 11(2): 3269-3274. doi: 10.3934/math.2026132

    Related Papers:



  • 加载中


    [1] S. Verdú, Relative information spectra with applications to statistical inference, AIMS Math., 9 (2024), 35038–35090. https://doi.org/10.3934/math.20241668 doi: 10.3934/math.20241668
    [2] A. Lapidoth, B. Ni, Causal state quantization with or without cribbing for the MAC with a state-cognizant receiver, AIMS Math., 10 (2025), 15821–15840. https://doi.org/10.3934/math.2025709 doi: 10.3934/math.2025709
    [3] L. G. Wang, Output statistics, equivocation, and state masking, AIMS Math., 10 (2025), 13151–13165. https://doi.org/10.3934/math.2025590 doi: 10.3934/math.2025590
    [4] R. Tamir, Testing for correlation in Gaussian databases via local decision making, AIMS Math., 10 (2025), 7721–7766. https://doi.org/10.3934/math.2025355 doi: 10.3934/math.2025355
    [5] H. Natur, U. Pereg, Empirical coordination of separable quantum correlations, AIMS Math., 10 (2025), 10028–10061. https://doi.org/10.3934/math.2025458 doi: 10.3934/math.2025458
    [6] C. Carlet, Identifying codewords in general Reed-Muller codes and determining their weights, AIMS Math., 9 (2024), 10609–10637. https://doi.org/10.3934/math.2024518 doi: 10.3934/math.2024518
    [7] R. Bruno, U. Vaccaro, A note on equivalent conditions for majorization, AIMS Math., 9 (2024), 8641–8660. https://doi.org/10.3934/math.2024419 doi: 10.3934/math.2024419
    [8] N. Lavi, I. Sason, Advances in the Shannon capacity of graphs, AIMS Math., 11 (2026), 2747–2796. https://doi.org/10.3934/math.2026111 doi: 10.3934/math.2026111
    [9] I. Sason, Observations on graph invariants with the Lovász $\vartheta$-function, AIMS Math., 9 (2024), 15385–15468. https://doi.org/10.3934/math.2024747 doi: 10.3934/math.2024747
    [10] I. Sason, An example showing that Schrijver's $\vartheta$-function need not upper bound the Shannon capacity of a graph, AIMS Math., 10 (2025), 15294–15301. https://doi.org/10.3934/math.2025685 doi: 10.3934/math.2025685
    [11] I. Sason, On H-intersecting graph families and counting of homomorphisms, AIMS Math., 10 (2025), 6355–6378. https://doi.org/10.3934/math.2025290 doi: 10.3934/math.2025290
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(143) PDF downloads(15) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog