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This special issue of AIMS Mathematics is devoted to the theme Mathematical Foundations
of Information Theory. The objective of the issue is to present recent research that advances the
theoretical underpinnings of information theory through rigorous mathematical analysis, while
also highlighting its interactions with neighboring areas such as combinatorics, graph theory,
statistics, and optimization.

The eleven papers collected in this issue reflect the diversity of contemporary foundational
research in information theory. Several contributions address long-standing open problems or
develop new structural insights into classical objects, while others introduce refined analytical
frameworks or provide exact characterizations of carefully formulated models. Taken together,
the papers underscore the continuing role of mathematical depth and precision in shaping the
development of information theory. The contributions in this special issue are partitioned into
three categories.

1. Classical and quantum information theory, and statistical inference

The non-asymptotic region of conditional error probabilities for binary non-Bayesian
hypothesis testing was characterized by Neyman and Pearson in 1933. In practice, the area of
this fundamental region serves as a useful scalar proxy for the distinguishability between a pair
of probability measures. Using information-theoretic methods, [1] shows that this area coincides
with a new divergence, termed the NP-divergence, which is not an f -divergence. It is also shown
that the asymptotic behavior of the area of that region is governed by the Bhattacharyya distance.
Another contribution of [1] is the introduction of an information-theoretic sufficient-statistics
criterion, termed I-sufficiency, which, for dominated data models, is shown to coincide with the
sufficiency criteria introduced by Fisher, Kolmogorov and Blackwell. Paper [1] highlights the
continuing relevance of spectral methods in modern information theory and statistical inference.
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The fundamental question of how to causally describe the state of a channel succinctly to an
encoder and how the latter should utilize the description to maximize throughput is a challenging
problem even for single-user channels, let alone for multiple-access channels (MACs). The
question of how the encoders of a MAC should instead utilize perfect causal state information
is open. Paper [2] determines the capacity regions of a two-user memoryless state-dependent
multiple-access channel (SD-MAC) with a helper that provides rate-limited (lossy) causal
descriptions of the state sequence to one or both encoders. The authors focus on scenarios where
the receiver is cognizant of the channel state and analyze optimal state quantization strategies.
The exact single-letter characterization of the capacity regions is obtained by establishing
matching achievability and converse results. The work in [2] makes a valuable theoretical
contribution to the study of SD-MAC with causal state information, with observations on
optimal quantization strategies and their impact on capacity regions.

The problem of approximating an output distribution over a noisy channel is well studied.
Paper [3] studies a variant of this problem, where the approximation error need not tend to zero
as the number of channel uses increases, and analyzes the tradeoff between the approximation
error and the rate of the codebook. It considers the problem of generating channel output
statistics that approximates a desired distribution via a finite-rate codebook, and characterizes
the smallest achievable relative entropy, normalized by blocklength, between the induced and
target output distributions. As applications, [3] presents a new proof of the rate-equivocation
region for the wiretap channel, and a capacity formula for state masking with channel state
information at the decoder. It offers a novel operational perspective on soft-covering and output
approximation with insights into problems in information-theoretic security and state masking.

Correlation detection is a fundamental problem in statistical inference for database models.
For two databases, it is formulated as a binary hypothesis testing problem in which, under the
null hypothesis, the databases are independent, while under the alternative hypothesis they are
correlated through an unknown permutation. The objective is to optimize the tradeoff between
the false-alarm and missed-detection probabilities. Paper [4] proposes an efficient statistical test
for correlation detection between two Gaussian databases. It introduces a new detection rule and
derives upper bounds on the false-alarm and missed-detection probabilities in Gaussian settings.
Paper [4] lies at the intersection of distributed statistical inference and information theory.

Finally, paper [5], in quantum information theory, introduces the notion of empirical
coordination for quantum correlations. It studies the generation of separable quantum states
using local quantum systems, shared randomness, and point-to-point classical communication, a
task commonly known as coordination or state simulation. The authors consider an empirical
coordination criterion that only requires the empirical average state to converge in probability
to a target state, which is weaker than strong coordination based on direct estimation of the
coordination error. The paper shows that shared randomness does not affect the achievable rates
and characterizes the empirical coordination capacity for both the point-to-point and cascade
network settings. The work [5] establishes the corresponding coordination capacities, compares
the quantum and classical settings, and provides physical insights and illustrative examples. The
implications for quantum cooperative games are also discussed.
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2. Coding theory and majorization theory

The coding theory paper [6] investigates the structure of Reed–Muller codes, which are of
longstanding interest from both practical and theoretical perspectives. The article addresses the
problem of determining as many Hamming weights as possible in binary Reed–Muller codes
of arbitrary lengths and orders, a task that is crucial for characterizing their weight spectra
(i.e., the number of codewords of each possible Hamming weight). Determining the weight
spectra of Reed–Muller codes is a notoriously difficult and important problem that has remained
open since the 1960s. This work derives new results on the identification of codewords and
the determination of their Hamming weights for general parameters of binary Reed–Muller
codes, thereby advancing the understanding of a classical and technically challenging family of
codes. These contributions are particularly timely in light of the renewed interest in Reed–Muller
codes following the introduction of polar codes and polarization in coding theory, as well as
recent results demonstrating that Reed–Muller codes can achieve the capacity of binary-input,
output-symmetric memoryless channels.

The work in paper [7] revisits the concept of majorization, which plays a central role in
entropy inequalities and information-theoretic comparisons. In particular, the majorization
framework enables the derivation of sharp inequalities that are based on comparisons of
probability distributions via their ordered structures. By establishing new equivalent conditions
for majorization, the paper leverages these novel characterizations to derive an improved entropy
inequality. This contribution enhances the understanding of a fundamental mathematical tool
that is widely used across information theory, probability theory, and many other subfields of
applied and pure mathematics.

3. Graph-theoretic foundations and Shannon capacity

Four contributions in the special issue focus on graph-theoretic aspects of information theory,
particularly those arising in zero-error information theory.

The Shannon capacity of a graph is a central notion in zero-error information theory, capturing
the largest effective input alphabet size achievable with zero error for a discrete memoryless
channel modeled by a graph. Paper [8] investigates the Shannon capacity for several families
of graphs. It derives exact values and new bounds, constructs a countably infinite family of
connected graphs whose Shannon capacity is not attained by the independence number of any
finite strong power, and establishes sufficient conditions under which the Shannon capacity of
graph polynomials—formed using disjoint unions and strong products—can be expressed in
terms of the capacities of their components. An additional inequality relating the capacities of
strong products and disjoint unions yields alternative proofs of known bounds and new tightness
conditions. The paper is also intended to serve as an accessible introduction to the theory of the
Shannon capacity of graphs.

The Lovász ϑ-function is a fundamental graph invariant with deep connections to
combinatorial optimization, semidefinite programming, and spectral graph theory, and
applications far beyond zero-error information theory. In paper [9], the Lovász ϑ-function
is studied as a graph invariant beyond its role as an upper bound on the Shannon capacity of
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graphs. The paper analyzes its relationships with other graph invariants, examines its behavior
for various graph families (including cospectral and non-isomorphic graphs), and explores its
connections with spectral and algebraic graph theory. It also establishes Shannon capacity
results for several graph families and presents a novel result demonstrating the utility of the
Lovász ϑ-function in distinguishing between cospectral and non-isomorphic graphs that share
identical associated matrices (i.e., adjacency, Laplacian, normalized Laplacian, and signless
Laplacian matrices), as well as identical independence, clique, and chromatic numbers. Owing
to its breadth and depth, the paper serves as a comprehensive reference of mutual interest to
researchers in zero-error information theory and algebraic graph theory.

The letter [10], following an outline presented in [9], resolves a question that had remained
open since the introduction, in the early 1980s, of Schrijver’s strengthening of the Lovász
ϑ-function as an upper bound on the independence number of graphs. By providing an explicit
example, it demonstrates that this variant does not universally upper bound the Shannon capacity
of a graph, thereby clarifying a subtle yet significant distinction between these two closely
related graph invariants, both of whose computation relies on semidefinite programming.

Finally, paper [11] studies families of graphs defined by intersection properties and derives
upper bounds on the size of such families. Extending earlier work of Chung, Graham, Frankl, and
Shearer, the analysis employs combinatorial and probabilistic forms of Shearer’s lemma to obtain
bounds in terms of structural parameters of a given graph and relaxations based on the Lovász
ϑ-function. This paper also establishes related results on counting graph homomorphisms,
illustrating connections between combinatorial methods and information-theoretic techniques.

4. Summary

The contributions in this special issue collectively highlight the depth and breadth of current
research in the mathematical foundations of information theory. This special issue received a
total of 30 submissions, all of which were processed under the journal’s standard peer-review
procedures to ensure scientific rigor, novelty, matching with the scope of the special issue, and
thematic coherence. Finally, 11 papers were published. It is our hope that this special issue
will serve as a useful reference for researchers and students interested in the mathematical
foundations of information theory, and that it will stimulate further research work.
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1. S. Verdú, Relative information spectra with applications to statistical inference, AIMS
Math., 9 (2024), 35038–35090. https://doi.org/10.3934/math.20241668

2. A. Lapidoth, B. Ni, Causal state quantization with or without cribbing for the
MAC with a state-cognizant receiver, AIMS Math., 10 (2025), 15821–15840.
https://doi.org/10.3934/math.2025709

3. L. G. Wang, Output statistics, equivocation, and state masking, AIMS Math., 10 (2025),
13151–13165. https://doi.org/10.3934/math.2025590

4. R. Tamir, Testing for correlation in Gaussian databases via local decision making, AIMS
Math., 10 (2025), 7721–7766. https://doi.org/10.3934/math.2025355

5. H. Natur, U. Pereg, Empirical coordination of separable quantum correlations, AIMS Math.,
10 (2025), 10028–10061. https://doi.org/10.3934/math.2025458

6. C. Carlet, Identifying codewords in general Reed-Muller codes and determining their
weights, AIMS Math., 9 (2024), 10609–10637. https://doi.org/10.3934/math.2024518

7. R. Bruno, U. Vaccaro, A note on equivalent conditions for majorization, AIMS Math., 9
(2024), 8641–8660. https://doi.org/10.3934/math.2024419

8. N. Lavi, I. Sason, Advances in the Shannon capacity of graphs, AIMS Math., 11 (2026),
2747–2796. https://doi.org/10.3934/math.2026111

9. I. Sason, Observations on graph invariants with the Lovász ϑ-function, AIMS Math., 9
(2024), 15385–15468. https://doi.org/10.3934/math.2024747

10. I. Sason, An example showing that Schrijver’s ϑ-function need not upper
bound the Shannon capacity of a graph, AIMS Math., 10 (2025), 15294–15301.
https://doi.org/10.3934/math.2025685

11. I. Sason, On H-intersecting graph families and counting of homomorphisms, AIMS Math.,
10 (2025), 6355–6378. https://doi.org/10.3934/math.2025290

AIMS Mathematics Volume 11, Issue 2, 3269–3274.

https://dx.doi.org/https://doi.org/10.3934/math.20241668
https://dx.doi.org/https://doi.org/10.3934/math.2025709
https://dx.doi.org/https://doi.org/10.3934/math.2025590
https://dx.doi.org/https://doi.org/10.3934/math.2025355
https://dx.doi.org/https://doi.org/10.3934/math.2025458
https://dx.doi.org/https://doi.org/10.3934/math.2024518
https://dx.doi.org/https://doi.org/10.3934/math.2024419
https://dx.doi.org/https://doi.org/10.3934/math.2026111
https://dx.doi.org/https://doi.org/10.3934/math.2024747
https://dx.doi.org/https://doi.org/10.3934/math.2025685
https://dx.doi.org/https://doi.org/10.3934/math.2025290


3274

© 2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 2, 3269–3274.

https://creativecommons.org/licenses/by/4.0

	Classical and quantum information theory, and statistical inference
	Coding theory and majorization theory
	Graph-theoretic foundations and Shannon capacity
	Summary

