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1. Introduction

This study seeks to analyze the asymptotic and oscillatory characteristics of solutions to the delay
differential equation (DDE) with a delayed damping term

y′′ (t) + p (t) y′ (h (t)) + q (t) y (g (t)) = 0, (1.1)

where t ≥ t0, p and q are continuous functions on [t0,∞), p (t) ≥ 0, q (t) > 0, h and g are continuous
delay functions on [t0,∞), g′ (t) ≥ 0, limt→∞ h (t) = ∞, and limt→∞ g (t) = ∞.

A continuous real function y is considered a solution of (1.1) on [ty,∞) for ty ≥ t0, if it is
differentiable twice, satisfies Eq (1.1), and satisfies the condition sup {|y (t)| : t ≥ t∗} > 0 for any t∗ ≥ ty.
This solution exhibits oscillatory behavior if it possesses arbitrarily large zeros; otherwise, it is
termed nonoscillatory.
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Damping is regarded as a fundamental and central concept in the study of differential
equations (DE), particularly those that model physical systems exhibiting oscillatory behavior. The
presence of damping terms in such equations typically arises from dissipative forces, such as friction
or resistance, which inherently act to reduce the amplitude of oscillations over time. The impact
of damping on system dynamics varies: A system may be underdamped, overdamped, or critically
damped, with each regime corresponding to a distinct qualitative behavior. From a theoretical
perspective, damping modifies both the stability and asymptotic behavior of solutions, effectively
suppressing periodicity and guiding the system toward equilibrium. In practical applications, damping
plays a crucial role in the design of engineering systems (e.g., vibration control in mechanical
structures), signal processing, and control theory, where precise regulation of oscillatory responses
is essential; see [1–3]. Consequently, understanding the interplay between damping and oscillatory
dynamics provides a foundational framework for both qualitative analysis and applied modeling across
a wide range of scientific and technological disciplines; see [4, 5].

Several studies have resorted to additional analytical techniques in conjunction with numerical
approaches to capture subtle dynamical features and enhance the general understanding of various
classes of delay differential equations (DDEs) as well as preserving important physical properties and
structures with certain conditions; see, for example, [6–9].

Oscillation theory is an essential subfield of qualitative theory and a crucial element of the
qualitative analysis of DDEs. This theory examines the oscillatory characteristics of solutions to
differential equations together with their asymptotic and monotonic qualities. Recent investigations
of the oscillatory characteristics of DDE solutions have demonstrated significant progress. Various
studies on second-order equations have focused on establishing more accurate and efficient criteria
than those now recognized (see [10–12]). Third-order neutral equations have also undergone significant
research and examination (see [13–15]). Higher-order DDEs have also received considerable attention
in investigating their oscillatory behavior; see, for example, [16–18].

The effect of ordinary damping on the oscillatory behavior of solutions to differential equations has
been studied extensively using various analytical methods and techniques; see, for example, [19–21]
for ordinary DEs and [22–24] for DDEs. In contrast, the impact of delayed damping has received
significantly less attention. This is primarily due to the analytical difficulties that arise from
incorporating delay into the damping term, which often leads to the failure of conventional techniques
which analyze oscillatory behavior.

Delayed damping was addressed in the works of Grace [25] and Saker et al. [26], where the
authors employed, respectively, the comparison technique and Riccati substitution to investigate the
asymptotic behavior of solutions. However, the approach adopted in their analysis relies on neglecting
the influence of one of the terms in the equation (either the second or the third). As a result, the
criteria they obtained disregard the effect of one of the equation’s coefficients as well as the associated
delay functions.

Very recently, Moaaz and Ramos [27] employed an improved approach to derive oscillation criteria
for Eq (1.1), thereby refining the results previously established in [25, 26].

In this work, we employ the Riccati substitution technique to investigate the asymptotic and
oscillatory behavior of solutions to Eq (1.1), which incorporates a delayed damping term. We begin
by deriving certain monotonicity properties of positive solutions and subsequently utilize them to
establish the desired oscillation criteria. Our results are then compared with existing findings through
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their application to a special case of Euler-type equations. The second part of the study provides a
numerical illustration of the impact of delayed damping, based on simulations of selected solution
profiles for specific instances of the studied equation.

The main contributions of the paper can be summarized as follows:

– Investigating the oscillatory behavior of solutions to DDEs with delayed damping, a topic that
has not been sufficiently explored.

– Establishing new oscillation criteria that explicitly incorporate the effect of the delay function h,
providing a more accurate assessment of the system’s dynamics.

– Conduct numerical simulations to support the theoretical results and illustrate the influence of
delayed damping on solution behavior.

2. Main theoretical results

Remark 2.1. For Eq (1.1), one can readily establish that any positive solution is monotonic. If
this were not the case, the oscillation of the derivative y′ would imply that y′′ < 0 at each point
where y′ (h (t)) = 0, which necessarily restricts y′ from attaining further zeros beyond the initial
one. Consequently, any positive solution must eventually exhibit either increasing or decreasing
monotonic behavior.

By employing an approach identical to that used in [25, Theorem 1], we can establish the following
result. Therefore, its proof is omitted.

Lemma 2.1. Let 
ϕ′ (t) ≥ 0,

(
ϕ (t) p (t)

h′ (t)

)′
≤ 0,∫ ∞

t0
ϕ (υ) q (υ) dυ = ∞,∫ ∞

t0

1
ϕ (υ)

∫ u

t0
ϕ (υ) q (υ) dυdu = ∞,

(2.1)

for some ϕ ∈ C1 ([t0,∞) ,R+). Then, every positive decreasing solution of (1.1) converges to zero.

Lemma 2.2. Let ∫ ∞

t1
υ q (υ) dυ = ∞. (2.2)

Then, any positive increasing solution y of (1.1) eventually satisfies that both y′ and y/t are decreasing.

Proof. Let y (t) > 0 and y′ (t) > 0 for t ≥ t1. Then, from (1.1), we obtain

y′′ (t) = −p (t) y′ (h (t)) − q (t) y (g (t)) ≤ 0.

Equation (1.1) implies that

d
dt

(
t2 d

dt
y (t)

t

)
=

d
dt

(
t y′ (t) − y (t)

)
= t y′′ (t)

= t
[
−p (t) y′ (h (t)) − q (t) y (g (t))

]
.
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As a result, we deduce that
d
dt

(
t2 d

dt
y (t)

t

)
≤ −t q (t) y (g (t)) ,

which, upon integration, yields

t2 d
dt

y (t)
t
− t2

1

[
d
dt

y (t)
t

]
t=t1

≤ −

∫ t

t1
υ q (υ) y (g (υ)) dυ.

Because g′ (t) ≥ 0 and y′ (t) > 0, we obtain that y (g (v)) ≥ y (g (t1)) for all v ∈ [t1, t], and so∫ t

t1
υ q (υ) y (g (υ)) dυ ≥ y (g (t1))

∫ t

t1
υ q (υ) dυ.

This implies that

t2 d
dt

y (t)
t
− t2

1

[
d
dt

y (t)
t

]
t=t1

≤ −

∫ t

t1
υ q (υ) y (g (υ)) dυ ≤ −y (g (t1))

∫ t

t1
υ q (υ) dυ,

or

−t2 d
dt

y (t)
t
≥ −t2

1

[
d
dt

y (t)
t

]
t=t1

+ y (g (t1))
∫ t

t1
υ q (υ) dυ.

Accordingly, it follows from (2.2) that y/t is necessarily decreasing.
This concludes the proof. �

Theorem 2.1. Let (2.1) hold for some ϕ ∈ C1 ([t0,∞) ,R+). If (2.2) holds, and there is θ ∈

C1 ([t0,∞) , (0,∞)) such that

lim sup
t→∞

∫ t

t1

(
θ (υ) δ (υ) q (υ)

g (υ)
υ
−

1
4
δ (υ) (θ′ (υ))2

θ (υ)

)
dυ = ∞, (2.3)

then every solution to (1.1) either exhibits oscillatory behavior or tends to zero, where

δ (t) = exp
(∫ t

t1
p (υ) dυ

)
.

Proof. Based on the symmetry between positive negative solutions, assuming that Eq (1.1) has a
positive solution does not affect the generality. Suppose that (1.1) has a positive solution y. Then,
from Remark 2.1, there are two possibilities: Either y is decreasing or increasing.

Let y′ (t) > 0 for t ≥ t1. As a consequence of (1.1), we have that

−q (t) y (g (t)) ≥ y′′ (t) + p (t) y′ (t)

=
1
δ (t)

(
δ (t) y′ (t)

)′ . (2.4)

Because y/t is decreasing, we obtain
y (g (t))

y (t)
≥

g (t)
t
. (2.5)
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Now, we define

Θ = θ δ
y′

y
> 0. (2.6)

Then,

Θ′ =
θ′

θ
Θ + θ

[
(δ y′)′

y
− δ

(y′)2

y2

]
,

which with (2.4)–(2.6) gives

Θ′ ≤
θ′

θ
Θ − θ δ q

y (g)
y
− θ δ

Θ2

θ2 δ2

≤
θ′

θ
Θ − θ δ q

g
t
−

1
θ δ

Θ2. (2.7)

It is easy to verify that
θ′

θ
Θ −

1
θ δ

Θ2 ≤
1
4
δ (θ′)2

θ
,

which, together with (2.7), yields

Θ′ ≤ −θ δ q
g
t

+
1
4
δ (θ′)2

θ
.

Upon integrating this inequality, we deduce that∫ t

t1

(
θ (υ) δ (υ) q (υ)

g (υ)
υ
−

1
4
δ (υ) (θ′ (υ))2

θ (υ)

)
dυ ≤ Θ (t1) .

This contradicts condition (2.3).
Next, let y′ (t) < 0 for t ≥ t1. It follows from Lemma 2.1 that y converges to zero.
This concludes the proof. �

The previous theorem neglects the effect of delay within the damping term, whereas the upcoming
result establishes a criterion that incorporates the role of the function h (t).

Theorem 2.2. Let (2.1) hold for some ϕ ∈ C1 ([t0,∞) ,R+). If (2.2) holds, and there is θ ∈

C1 ([t0,∞) , (0,∞)) such that

lim sup
t→∞

∫ t

t1

(
θ (υ) q̂ (υ)

g (h (υ))
υ

−
1
4

(θ′ (υ))2

θ (υ)

)
dυ = ∞, (2.8)

then every solution to (1.1) either exhibits oscillatory behavior or tends to zero, where

q̂ (t) = p (t)
∫ ∞

h(t)
q (υ) dυ + q (t) .

Proof. Based on the symmetry between positive and negative solutions, assuming that Eq (1.1) has a
positive solution does not affect the generality. Suppose that (1.1) has a positive solution y. Then, from
Remark 2.1, there are two possibilities: Either y is decreasing or increasing.
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Let y′ (t) > 0 for t ≥ t1. From (1.1), we get y′′ (t) ≤ −q (t) y (g (t)). Upon integrating this inequality,
we arrive at

y′ (h (t)) ≥
∫ ∞

h(t)
q (υ) y (g (υ)) dυ

≥ y (g (h (t)))
∫ ∞

h(t)
q (υ) dυ,

which with (1.1) gives

0 ≥ y′′ (t) + p (t) y (g (h (t)))
∫ ∞

h(t)
q (υ) dυ + q (t) y (g (t))

≥ y′′ (t) +

(
p (t)

∫ ∞

h(t)
q (υ) dυ + q (t)

)
y (g (h (t)))

= y′′ (t) + q̂ (t) y (g (h (t))) . (2.9)

Now, we define

Θ = θ
y′

y
> 0.

Hence,

Θ′ =
θ′

θ
Θ + θ

[
y′′

y
−

(y′)2

y2

]
.

From (2.9), we find

Θ′ ≤
θ′

θ
Θ − θ q̂

y (g (h))
y

−
1
θ

Θ2.

Because y/t is decreasing, we obtain

Θ′ ≤ −θ q̂
g (h)

t
+

1
4

(θ′)2

θ
.

Upon integrating this inequality, we deduce that∫ t

t1

(
θ (υ) q̂ (υ)

g (h (υ))
υ

−
1
4

(θ′ (υ))2

θ (υ)

)
dυ ≤ Θ (t1) .

This contradicts condition (2.8).
Next, let y′ (t) < 0 for t ≥ t1. It follows from Lemma 2.1 that y converges to zero.
This concludes the proof. �

Example 2.1. Consider the DDE

y′′ (t) +
p0

t
y′ (µt) +

q0

t2 y (λt) = 0, (2.10)

where µ, λ ∈ (0, 1] , p0, and q0 are positive. By choosing ϕ (t) = t, we note that ϕ′ (t) = 1 ≥ 0,

d
dt

(
ϕ (t) p (t)

h′ (t)

)′
=

d
dt

(
p0

µ

)
= 0,

AIMS Mathematics Volume 11, Issue 2, 3275–3289.



3281∫ ∞

t0
ϕ (υ) q (υ) dυ =

∫ ∞

t0
υq (υ) dυ = q0

∫ ∞

t0

1
υ

dυ = ∞,

and ∫ ∞

t0

1
ϕ (υ)

∫ u

t0
ϕ (υ) q (υ) dυdu = q0

∫ ∞

t0

ln (u/t0)
u

du = ∞.

Accordingly, both conditions (2.1) and (2.2) are fulfilled. Moreover, we have δ (t) = tp0 and

q̂ (t) =
q0

t2

(
p0

µ
+ 1

)
.

By applying the previous theorems, we obtain the following:

– By selecting θ (t) = t1−p0 , Theorem 2.1 asserts that the solutions of (2.10) oscillate or converge to
zero when

lim sup
t→∞

∫ t

t1

(
λq0 −

(1 − p0)2

4

)
1
υ

dυ = ∞,

which is satisfied when

q0 >
1

4λ
(1 − p0)2 . (2.11)

– Setting θ (t) = t and invoking Theorem 2.2 yields that the solutions of (2.10) exhibit oscillatory
behavior or tend to zero whenever

λµq0

(
p0

µ
+ 1

)
>

1
4
. (2.12)

Figure 1 provides a comparison between criteria (2.11) and (2.12). The results show that
criterion (2.11) exhibits greater sharpness for small values of p0 (near 1), and criterion (2.12)
is sharper for larger values of p0. Moreover, we observe that criterion (2.12) has an advantage
over (2.11) in that it takes into account the effect of the parameter µ.

Condition (2.11)

Condition (2.12)

0.5 1.0 1.5 2.0 2.5 3.0
p0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

q0

Figure 1. Comparison between conditions (2.11) and (2.12).
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Remark 2.2. Very recently, studies [27, 28] investigated the oscillatory and asymptotic behavior of
solutions to DDEs involving delayed damping. According to [28, Example 2.2], the solutions of
Eq (2.10) exhibit either oscillatory behavior or convergence to zero if

q0

[
(2 + p0) λ + (1 + p0) λ ln

1
λ

]
> 1. (2.13)

Figure 2 shows the lower bounds of the values of q0 for conditions (2.12) and (2.13) across the
values of λ in (0, 1]. It becomes clear that no absolute superiority can be ascribed to one condition
over the other; condition (2.13) exhibits greater sharpness in (0, 0.3679], whereas condition (2.12)
demonstrates sharper behavior in the interval [0.3679, 1]. Consider the DDEs

y′′ (t) +
1
2t

y′ (0.5t) +
11

10t2 y (0.2t) = 0 (2.14)

and
y′′ (t) +

1
2t

y′ (0.5t) +
4

10t2 y (0.8t) = 0. (2.15)

It is not difficult to observe that condition (2.13) ensures that the solutions of (2.14) either oscillate or
converge to zero, whereas (2.12) fails to apply. Conversely, the same property for (2.15) is established
through condition (2.12), whereas (2.13) does not hold.

In addition, condition (2.12) is characterized by its consideration of the delayed effect µ within the
damping term.

Condition (2.12)

Condition (2.13)

0.2 0.4 0.6 0.8 1.0
λ

0.5

1.0

1.5

2.0

2.5

q0

Figure 2. Comparison between conditions (2.12) and (2.13).

3. Numerical simulation of solutions

In this section, we present the numerical solutions of several examples of a delay differential
equation with a delayed damping term. The aim of this discussion is to illustrate the effect of the
damping term as well as the impact of the delay in the damping term.

We solve Eq (1.1) numerically by transforming it into a first-order system of delay differential
equations and use Matlab 2024 to find the numerical solutions of the transformed system. In this
discussion, we consider two different cases of delays as presented in the following subsections.
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3.1. Numerical results with constant delays

In this case, we consider the configuration in which the delays are of the form t − a, t − b, and so
forth. That is, we focus on the cases where h(t) = t − a and g(t) = t − b. These types of constant delay
are commonly used in applications such as population growth models.

Example 3.1. Consider the DDE

y′′(t) +
p0

t
y′(t − a) +

q0

t2 y(t − b) = 0, (3.1)

where p0, q0, a and b are constants. The numerical solutions of this example are illustrated in Figures 3
and 4.

Figure 3 shows the solution of Eq (3.1) with a = 0, q0 = 3, and b = 3 for all cases, where the
solid line represents the case without a damping term (p0 = 0). The other curves represent the case
with a damping term but no delay (a = 0) with different values of p0: The dotted line represents the
case with p0 = 0.25, the dashed line with p0 = 1, and the dashed-dotted line with p0 = 2. This figure
illustrates the effect of the damping term. It is apparent that the damping term has a significant impact
on the solution, as it leads to a reduction in the amplitude of the oscillations. We observe that the effect
of damping is greater with larger values of p0.

Figure 4 shows the solution of Eq (3.1) with q0 = 3 and b = 3 for all cases, where the solid
line represents the case without a damping term (p0 = 0), the dashed line represents the case with a
damping term but without a delay (with p0 = 1), and the starred line represents the case with a delay in
the damping term (p0 = 1 and a = 4). Comparing the dashed and starred curves corresponding to the
case with damping, we note that the impact of the damping is greater in the absence of a delay. The
presence of a delay in the damping term affects the damping process.

10 20 30 40 50 60 70 80 90 100

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

y(t)

t
Figure 3. Numerical solution to Eq (3.1) when a = 0, q0 = 3, and b = 3.
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0 10 20 30 40 50 60 70 80 90 100

-1.5

-1

-0.5

0

0.5

1

1.5

2

y(t)

t
Figure 4. Numerical solution to Eq (3.1) when q0 = 3 and b = 3.

Example 3.2. Consider the DDE

y′′(t) + p0y′(t − a) +
q0

t2 y(t − b) = 0, (3.2)

where p0, q0, a and b are constants.

Figure 5 shows the solution of Eq (3.2) with q0 = 3 and b = 3 for all cases, where the solid line
represents the case without a damping term (p0 = 0), the dashed line represents the case with a damping
term but no delay (with p0 = 1), and the starred line represents the case with a delay in the damping
term (p0 = 1 and a = 4). In this figure, we notice that the effect of damping is present in the case
without the delay, as before. In addition, we notice huge oscillations in the starred curve compared to
Example 1. This is due to the form of p(t) in Example 1, where there is a division by t. However, this
was not the case in the absence of a delay, where we note the impact of damping in both examples.

5 10 15 20 25 30 35 40 45 50

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

y(t)

t
Figure 5. Numerical solution to Eq (3.2) when q0 = 3 and b = 3.
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Figure 6 shows the solution of Eq (3.2) with q0 = 0.25 for all cases, where the solid line represents
the case without a damping term (p0 = 0 and b = 0), the dashed line represents the case with a damping
term but without delay (with p0 = 1, a = 0, b = 3), and the starred line represents the case with a delay
in the damping term (p0 = 1, b = 3, and a = 4). We note from this figure that this solid line solution
is nonoscillatory. However, the addition of the damping term leads to an oscillatory solution as shown
by the dashed and starred curves. This indicates that including a damping term can change the form of
the solution to become an oscillatory solution.

5 10 15 20 25 30 35 40 45 50

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

y(t)

t
Figure 6. Numerical solution to Eq (3.2) when q0 = 0.25.

3.2. Numerical results with time-dependent delays

In this subsection, we consider the situation where the delay changes with time; that is, the delay is
represented as a function of time, such as h(t) = at and g(t) = bt. This type of time-dependent delay is
common in applications such as control systems and mechanical systems.

Example 3.3. Consider the DDE

y′′(t) +
p0

t
y′(at) +

q0

t2 y(bt) = 0, (3.3)

where p0, q0, a, and b are constants.

Figure 7 shows the solution of Eq (3.3) with q0 = 3 and b = 0.3 for all cases, where the solid line
represents the case without a damping term (p0 = 0), the dashed line represents the case with a damping
term but without a delay (with p0 = 1, a = 0, b = 0.3), and the starred line represents the case with a
delay in the damping term (p0 = 1, b = 0.3, and a = 0.4). We observe that the addition of the damping
term has a significant impact on the solution, as illustrated by the dashed curve. The starred curve
solution, which represents the case with a delayed damping, shows a damping behavior compared to
the solid line curve. However, the damping effect is more apparent in the case of nondelayed damping.
The damping behavior of the case with delayed damping is noticeable in this example compared to the
constant delay configuration discussed in the previous subsection.
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-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

y(t)

t

Figure 7. Numerical solution to Eq (3.3) when q0 = 3 and b = 0.3.

4. Conclusions

In this work, we examined the oscillatory and asymptotic behavior of solutions of second-order
functional differential equations with a delayed damping term. Applying the Riccati substitution
method with advanced analytical techniques, we established novel oscillation criteria that expand and
reinforce numerous previously reported results in the literature. In contrast to previous approaches,
the criteria established here explicitly incorporate the influence of a delay in the damping term, thus
providing a more precise assessment of the dynamics of delayed systems.

Two principal theorems were derived: the first provides refined conditions for oscillation without
fully accounting for the delay effect in the damping coefficient, and the second presents an enhanced
criterion that directly incorporates the impact of the delay. Comparison with the latest findings indicates
that our conditions attain a more comprehensive understanding of the behavior of Euler-type equations.

To emphasize the theoretical results, numerical simulations were carried out for both constant and
time-dependent delay configurations. These numerical solutions clearly illustrated the role of damping
and delayed damping in solution profiles. In particular, they showed how including a delay may either
weaken or influence the damping effect. In addition, it was found that in some cases, nonoscillatory
solutions are transformed into oscillatory ones. This behavior indicates the practical importance of
accurately modeling the delay within the damping term.
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