Artificial Intelligence (AI) based computing techniques play a transformative role in enhancing the capabilities of modern computing systems by enabling them to learn, adapt, optimize, and make decisions autonomously. These techniques are applied across various fields to improve performance, reduce human effort, and solve complex problems more efficiently. In this article, we explored a potent approach of the circular q-rung orthopair fuzzy for coping with uncertain and vague type information in life-life dilemmas because it covers extensive information in the form of degree of membership value, degree of non-membership value, and radius among both membership functions. Some flexible operations of Frank t-norms were formulated under the circular q-rung orthopair fuzzy (Crq-ROF) context. Based on these operations, we developed novel approaches of circular q-rung orthopair fuzzy Frank weighted average (Crq-ROFFWA) and circular q-rung orthopair fuzzy Frank weighted geometric (Crq-ROFFWG) operators with dominant properties. Additionally, we modified a novel theory of evaluation based on distance from the average solution (EDAS) method for the multi-attribute decision-making (MADM) problem. Later, we discussed an experimental case study related to artificial intelligence for measuring the performance of intelligent computing techniques. Using a numerical example, we explored the worth and compatibility of discussed methodologies and decision support systems. Finally, utilizing a comparison technique, we identified the supremacy and effectiveness of proposed theories.
Citation: Jian Qi. Artificial intelligence-based intelligent computing using circular q-rung orthopair fuzzy information aggregation[J]. AIMS Mathematics, 2025, 10(2): 3062-3094. doi: 10.3934/math.2025143
Artificial Intelligence (AI) based computing techniques play a transformative role in enhancing the capabilities of modern computing systems by enabling them to learn, adapt, optimize, and make decisions autonomously. These techniques are applied across various fields to improve performance, reduce human effort, and solve complex problems more efficiently. In this article, we explored a potent approach of the circular q-rung orthopair fuzzy for coping with uncertain and vague type information in life-life dilemmas because it covers extensive information in the form of degree of membership value, degree of non-membership value, and radius among both membership functions. Some flexible operations of Frank t-norms were formulated under the circular q-rung orthopair fuzzy (Crq-ROF) context. Based on these operations, we developed novel approaches of circular q-rung orthopair fuzzy Frank weighted average (Crq-ROFFWA) and circular q-rung orthopair fuzzy Frank weighted geometric (Crq-ROFFWG) operators with dominant properties. Additionally, we modified a novel theory of evaluation based on distance from the average solution (EDAS) method for the multi-attribute decision-making (MADM) problem. Later, we discussed an experimental case study related to artificial intelligence for measuring the performance of intelligent computing techniques. Using a numerical example, we explored the worth and compatibility of discussed methodologies and decision support systems. Finally, utilizing a comparison technique, we identified the supremacy and effectiveness of proposed theories.
[1] | M. Raparthi, Quantum-inspired neural networks for advanced AI applications-a scholarly review of quantum computing techniques in neural network design, J. Comput. Intell. Robot., 2 (2022), 1–8. Available from: https://orcid.org/0009-0004-7971-9364. |
[2] |
G. Carvalho, B. Cabral, V. Pereira, J. Bernardino, Computation offloading in edge computing environments using artificial intelligence techniques, Eng. Appl. Artif. Intell., 95 (2020), 103840. https://doi.org/10.1016/j.engappai.2020.103840 doi: 10.1016/j.engappai.2020.103840
![]() |
[3] | S. M. Bridges, R. B. Vaughn, A. Siraj, AI techniques applied to high performance computing intrusion detection, In: Proceeding of the Tenth International Conference on Telecommunication Systems, Modeling and Analysis, Monterey CA, Citeseer, 2002,100–114. |
[4] |
I. H. Sarker, AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems, SN Comput. Sci., 3 (2022), 158. https://doi.org/10.1007/s42979-022-01043-x doi: 10.1007/s42979-022-01043-x
![]() |
[5] |
M. Maurya, I. Panigrahi, D. Dash, C. Malla, Intelligent fault diagnostic system for rotating machinery based on IoT with cloud computing and artificial intelligence techniques: A review, Soft Comput., 28 (2024), 477–494. https://doi.org/10.1007/s00500-023-08255-0 doi: 10.1007/s00500-023-08255-0
![]() |
[6] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[7] |
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. http://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
![]() |
[8] | R. R. Yager, Pythagorean fuzzy subsets, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada: IEEE, 2013, 57–61. http://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
[9] |
R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
![]() |
[10] |
K. T. Atanassov, Circular intuitionistic fuzzy sets, J. Intell. Fuzzy Syst., 39 (2020), 5981–5986. https://doi.org/10.3233/JIFS-189072 doi: 10.3233/JIFS-189072
![]() |
[11] |
M. C. Bozyigit, M. Olgun, M. Ünver, Circular pythagorean fuzzy sets and applications to multi-criteria decision making, Informatica, 34 (2023), 713–742. http://doi.org/10.15388/23-INFOR529 doi: 10.15388/23-INFOR529
![]() |
[12] |
B. Yusoff, A. Kilicman, D. Pratama, H. Roslan, Circular q-rung orthopair fuzzy set and its algebraic properties, Malays. J. Math. Sci., 17 (2023), 363–378. https://doi.org/10.47836/mjms.17.3.08 doi: 10.47836/mjms.17.3.08
![]() |
[13] |
C. Xu, New measure of circular intuitionistic fuzzy sets and its application in decision making, AIMS Math., 8 (2023), 24053–24074. http://doi.org/10.3934/math.20231226 doi: 10.3934/math.20231226
![]() |
[14] |
T. Y. Chen, A circular intuitionistic fuzzy evaluation method based on distances from the average solution to support multiple criteria intelligent decisions involving uncertainty, Eng. Appl. Artif. Intell., 117 (2023), 105499. https://doi.org/10.1016/j.engappai.2022.105499 doi: 10.1016/j.engappai.2022.105499
![]() |
[15] |
H. A. Alsattar, S. Qahtan, N. Mourad, A. A. Zaidan, M. Deveci, C. Jana, et al., Three-way decision-based conditional probabilities by opinion scores and Bayesian rules in circular-Pythagorean fuzzy sets for developing sustainable smart living framework, Inf. Sci., 649 (2023), 119681. http://doi.org/10.1016/j.ins.2023.119681 doi: 10.1016/j.ins.2023.119681
![]() |
[16] |
J. Ahmmad, Classification of renewable energy trends by utilizing the novel entropy measures under the environment of q-rung orthopair fuzzy soft sets, J. Innov. Res. Math. Comput. Sci., 2 (2023), 2. http://doi.org/10.62270/jirmcs.v2i2.19 doi: 10.62270/jirmcs.v2i2.19
![]() |
[17] | H. Bibi, Z. Ali, Ambiguities in the x-ray analysis of crystal structure based on neutrosophic fuzzy rough Aczel-Alsina aggregation operators and their application in decision-making, J. Innov. Res. Math. Comput. Sci., 2 (2023), 46–75. Available from: https://jirmcs.agasr.org/index.php/jirmcs/article/view/17. |
[18] |
M. Hussain, A. Hussain, S. Yin, M. N. Abid, T-spherical fuzzy information and Shweizer-Sklar operations based Maclaurin symmetric mean operator and their applications, J. Innov. Res. Math. Comput. Sci., 2 (2023), 2. http://doi.org/10.62270/jirmcs.v2i2.21 doi: 10.62270/jirmcs.v2i2.21
![]() |
[19] | A. Hussain, S. Latif, K. Ullah, A novel approach of picture fuzzy sets with unknown degree of weights based on Schweizer-Sklar aggregation operators., J. Innov. Res. Math. Comput. Sci., 1 (2022), 18–39. Available from: https://jirmcs.agasr.org/index.php/jirmcs/article/view/8. |
[20] |
A. Hussain, K. Ullah, M. N. Alshahrani, M. S. Yang, D. Pamucar, Novel Aczel-Alsina operators for pythagorean fuzzy sets with application in multi-attribute decision making, Symmetry, 14 (2022), 5. http://doi.org/10.3390/sym14050940 doi: 10.3390/sym14050940
![]() |
[21] |
A. Hussain, K. Ullah, D. Pamucar, V. Simic, Intuitionistic fuzzy Sugeno-Weber decision framework for sustainable digital security assessment, Eng. Appl. Artif. Intell., 137 (2024), 109085. http://doi.org/10.1016/j.engappai.2024.109085 doi: 10.1016/j.engappai.2024.109085
![]() |
[22] |
A. Hussain, K. Ullah, A. Al-Quran, H. Garg, Some T-spherical fuzzy dombi hamy mean operators and their applications to multi-criteria group decision-making process, J. Intell. Fuzzy Syst., 45 (2023), 9621–9641. https://doi.org/10.3233/JIFS-232505 doi: 10.3233/JIFS-232505
![]() |
[23] |
A. Hussain, H. Wang, K. Ullah, D. Pamucar, Novel intuitionistic fuzzy Aczel Alsina Hamy mean operators and their applications in the assessment of construction material, Complex Intell. Syst., 10 (2024), 1061–1086. http://doi.org/10.1007/s40747-023-01116-1 doi: 10.1007/s40747-023-01116-1
![]() |
[24] |
A. Hussain, K. Ullah, H. Garg, T. Mahmood, A novel multi-attribute decision-making approach based on T-spherical fuzzy Aczel Alsina Heronian mean operators, Granul. Comput., 9 (2024), 21. http://doi.org/10.1007/s41066-023-00442-6 doi: 10.1007/s41066-023-00442-6
![]() |
[25] |
T. Senapati, An Aczel-Alsina aggregation-based outranking method for multiple attribute decision-making using single-valued neutrosophic numbers, Complex Intell. Syst., 10 (2024), 1185–1199. http://doi.org/10.1007/s40747-023-01215-z doi: 10.1007/s40747-023-01215-z
![]() |
[26] |
T. Senapati, R. R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods, Eng. Appl. Artif. Intell., 85 (2019), 112–121. https://doi.org/10.1016/j.engappai.2019.05.012 doi: 10.1016/j.engappai.2019.05.012
![]() |
[27] |
T. Senapati, G. Chen, R. Mesiar, R. R. Yager, Intuitionistic fuzzy geometric aggregation operators in the framework of Aczel-Alsina triangular norms and their application to multiple attribute decision making, Expert Syst. Appl., 212 (2023), 118832. https://doi.org/10.1016/j.eswa.2022.118832 doi: 10.1016/j.eswa.2022.118832
![]() |
[28] |
H. Garg, A novel exponential-logarithm-q-rung orthopair fuzzy set and their applications to multiple attribute group decision-making process, Granul. Comput., 8 (2023), 1991–2004. https://doi.org/10.1007/s41066-023-00418-6 doi: 10.1007/s41066-023-00418-6
![]() |
[29] |
H. Garg, A new exponential-logarithm-based single-valued neutrosophic set and their applications, Expert Syst. Appl., 238 (2024), 121854. http://doi.org/10.1016/j.eswa.2023.121854 doi: 10.1016/j.eswa.2023.121854
![]() |
[30] |
H. Garg, Linguistic interval-valued pythagorean fuzzy sets and their application to multiple attribute group decision-making process, Cogn. Comput., 12 (2020), 1313–1337. http://doi.org/10.1007/s12559-020-09750-4 doi: 10.1007/s12559-020-09750-4
![]() |
[31] |
Q. Sun, J. Ren, F. Zhao, Sliding mode control of discrete-time interval type-2 fuzzy Markov jump systems with the preview target signal, Appl. Math. Comput., 435 (2022), 127479. https://doi.org/10.1016/j.amc.2022.127479 doi: 10.1016/j.amc.2022.127479
![]() |
[32] |
M. Gao, L. Zhang, W. Qi, J. Cao, J. Cheng, Y. Kao, et al., SMC for semi-Markov jump TS fuzzy systems with time delay, Appl. Math. Comput., 374 (2020), 125001. https://doi.org/10.1016/j.amc.2019.125001 doi: 10.1016/j.amc.2019.125001
![]() |
[33] |
J. Ge, S. Zhang, Adaptive inventory control based on fuzzy neural network under uncertain environment, Complexity, 2020 (2020), 1–10. http://doi.org/10.1155/2020/6190936 doi: 10.1155/2020/6190936
![]() |
[34] |
M. Riaz, H. M. A. Farid, Enhancing green supply chain efficiency through Linear diophantine fuzzy soft-max aggregation operators, J. Ind. Intell., 1 (2023), 8–29. https://doi.org/10.56578/jii010102 doi: 10.56578/jii010102
![]() |
[35] |
M. Riaz, H. M. A. Farid, M. Aslam, D. Pamucar, D. Bozanić, Novel approach for third-party reverse logistic provider selection process under linear Diophantine fuzzy prioritized aggregation operators, Symmetry, 13 (2021), 1152. https://doi.org/10.3390/sym13071152 doi: 10.3390/sym13071152
![]() |
[36] |
M. Riaz, M. T. Hamid, H. M. Athar Farid, D. Afzal, TOPSIS, VIKOR and aggregation operators based on q-rung orthopair fuzzy soft sets and their applications, J. Intell. Fuzzy Syst., 39 (2020), 6903–6917. https://doi.org/10.3233/JIFS-192175 doi: 10.3233/JIFS-192175
![]() |
[37] |
M. Saeed, I. Shafique, Relation on fermatean neutrosophic soft set with application to sustainable agriculture, HyperSoft Set Meth. Eng., 1 (2024), 21–33. https://doi.org/10.61356/j.hsse.2024.18250 doi: 10.61356/j.hsse.2024.18250
![]() |
[38] |
M. Saeed, M. R. Ahmad, A. U. Rahman, Refined pythagorean fuzzy sets: Properties, set-theoretic operations and axiomatic results, J. Comput. Cogn. Eng., 2 (2023), 10–16. https://doi.org/10.47852/bonviewJCCE2023512225 doi: 10.47852/bonviewJCCE2023512225
![]() |
[39] |
R. M. Zulqarnain, X. L. Xin, M. Saeed, Extension of TOPSIS method under intuitionistic fuzzy hypersoft environment based on correlation coefficient and aggregation operators to solve decision making problem, AIMS Math., 6 (2020), 2732–2755. https://doi.org/10.3934/math.2021167 doi: 10.3934/math.2021167
![]() |
[40] |
M. Ihsan, M. Saeed, A. U. Rahman, An intuitionistic fuzzy hypersoft expert set-based robust decision-support framework for human resource management integrated with modified TOPSIS and correlation coefficient, Neural Comput. Appl., 36 (2024), 1123–1147. https://doi.org/10.1007/s00521-023-09085-9 doi: 10.1007/s00521-023-09085-9
![]() |
[41] |
M. Akram, G. Ali, Hybrid models for decision-making based on rough Pythagorean fuzzy bipolar soft information, Granul. Comput., 5 (2020), 1–15. https://doi.org/10.1007/s41066-018-0132-3 doi: 10.1007/s41066-018-0132-3
![]() |
[42] |
M. Akram, N. Ramzan, M. Deveci, Linguistic Pythagorean fuzzy CRITIC-EDAS method for multiple-attribute group decision analysis, Eng. Appl. Artif. Intell., 119 (2023), 105777. https://doi.org/10.1016/j.engappai.2022.105777 doi: 10.1016/j.engappai.2022.105777
![]() |
[43] |
S. Ashraf, S. Ahmad, M. Naeem, M. Riaz, M. A. Alam, Novel EDAS methodology based on single-valued neutrosophic Aczel-Alsina aggregation information and their application in complex decision-making, Complexity, 2022 (2022), 1–18. https://doi.org/10.1155/2022/2394472 doi: 10.1155/2022/2394472
![]() |
[44] |
M. K. Ghorabaee, E. K. Zavadskas, L. Olfat, Z. Turskis, Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS), Informatica, 26 (2015), 435–451. https://doi.org/10.15388/Informatica.2015.57 doi: 10.15388/Informatica.2015.57
![]() |
[45] |
H. Dhumras, R. K. Bajaj, Modified EDAS method for MCDM in robotic agrifarming with picture fuzzy soft Dombi aggregation operators, Soft Comput., 27 (2023), 5077–5098. https://doi.org/10.1007/s00500-023-07927-1 doi: 10.1007/s00500-023-07927-1
![]() |
[46] | Y. Fan, Z. Ali, S. Yin, A systematic review and Meta-analysis of EDAS method and power aggregation operators: Theory and applications with recent bipolar complex fuzzy linguistic developments, IEEE Access, 2024. Available from: https://ieeexplore.ieee.org/abstract/document/10445188/. |
[47] |
M. Akram, M. Arshad, Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis, J. Comput. Appl. Math., 39 (2019), 1–21. http://doi.org/10.1007/s40314-019-0980-8 doi: 10.1007/s40314-019-0980-8
![]() |
[48] |
A. Al-Barakati, A. R. Mishra, A. Mardani, P. Rani, An extended interval-valued Pythagorean fuzzy WASPAS method based on new similarity measures to evaluate the renewable energy sources, Appl. Soft Comput., 120 (2022), 108689. https://doi.org/10.1016/j.asoc.2022.108689 doi: 10.1016/j.asoc.2022.108689
![]() |
[49] |
C. N. Rao, M. Sujatha, A consensus-based Fermatean fuzzy WASPAS methodology for selection of healthcare waste treatment technology selection, Decis. Mak. Appl. Manag. Eng., 6 (2023), 600–619. https://doi.org/10.31181/dmame622023621 doi: 10.31181/dmame622023621
![]() |
[50] |
Z. Ali, T. Mahmood, M. S. Yang, TOPSIS method based on complex spherical fuzzy sets with Bonferroni mean operators, Mathematics, 8 (2020), 10. http://doi.org/10.3390/math8101739 doi: 10.3390/math8101739
![]() |
[51] |
X. Zhang, P. Liu, Y. Wang, Multiple attribute group decision making methods based on intuitionistic fuzzy frank power aggregation operators, J. Intell. Fuzzy Syst., 29 (2015), 2235–2246. http://doi.org/10.3233/IFS-151699 doi: 10.3233/IFS-151699
![]() |
[52] |
S. Kanungo, AI-driven resource management strategies for cloud computing systems, services, and applications, World J. Adv. Eng. Technol. Sci., 11 (2024), 559–566. https://doi.org/10.30574/wjaets.2024.11.2.0137 doi: 10.30574/wjaets.2024.11.2.0137
![]() |
[53] |
S. S. Gill, H. M. Wu, P. Patros, C. Ottaviani, P. Arora, V. C. Pujol, et al., Modern computing: Vision and challenges, Telemat. Inform. Rep., 13 (2024), 100116. https://doi.org/10.1016/j.teler.2024.100116 doi: 10.1016/j.teler.2024.100116
![]() |
[54] |
Z. Ali, M. S. Yang, On circular q-rung orthopair fuzzy sets with Dombi aggregation operators and application to symmetry analysis in artificial intelligence, Symmetry, 16 (2024), 260. https://doi.org/10.3390/sym16030260 doi: 10.3390/sym16030260
![]() |
[55] |
A. Hussain, K. Ullah, T. Senapati, S. Moslem, Complex spherical fuzzy Aczel Alsina aggregation operators and their application in assessment of electric cars, Heliyon, 9 (2023), e18100. http://doi.org/10.1016/j.heliyon.2023.e18100 doi: 10.1016/j.heliyon.2023.e18100
![]() |
[56] |
L. Ma, K. Jabeen, W. Karamti, K. Ullah, Q. Khan, H. Garg, et al., Aczel-Alsina power bonferroni aggregation operators for picture fuzzy information and decision analysis, Complex Intell. Syst., 10 (2024), 3329–3352. http://doi.org/10.1007/s40747-023-01287-x doi: 10.1007/s40747-023-01287-x
![]() |
[57] |
H. Garg, T. Mahmood, U. ur Rehman, G. N. Nguyen, Multi-attribute decision-making approach based on Aczel-Alsina power aggregation operators under bipolar fuzzy information and its application to quantum computing, Alex. Eng. J., 82 (2023), 248–259. http://doi.org/10.1016/j.aej.2023.09.073 doi: 10.1016/j.aej.2023.09.073
![]() |