Research article

Partial symmetric regularized alternating direction method of multipliers for non-convex split feasibility problems

  • Received: 23 December 2024 Revised: 02 February 2025 Accepted: 11 February 2025 Published: 19 February 2025
  • MSC : 47J20, 47J25, 47J30

  • In this paper, we propose a kind of partial symmetric regularized alternating direction method of multipliers for solving non-convex split feasibility problems. This algorithm adds an update to the Lagrangian multiplier term during the iteration process. Existing results about ADMM cannot be widely applied because the problem under consideration does not satisfy the assumptions usually claimed. The global convergence of the algorithm is proved under appropriate assumptions. And when the augmented Lagrangian function satisfies the KL property, the strong convergence of the algorithm is obtained. Furthermore, when the correlation function has a special structure, the sublinear and linear convergence rates of the algorithm are ensured. Finally, numerical experiments are conducted to show that the algorithm is effective.

    Citation: Yue Zhao, Meixia Li, Xiaowei Pan, Jingjing Tan. Partial symmetric regularized alternating direction method of multipliers for non-convex split feasibility problems[J]. AIMS Mathematics, 2025, 10(2): 3041-3061. doi: 10.3934/math.2025142

    Related Papers:

  • In this paper, we propose a kind of partial symmetric regularized alternating direction method of multipliers for solving non-convex split feasibility problems. This algorithm adds an update to the Lagrangian multiplier term during the iteration process. Existing results about ADMM cannot be widely applied because the problem under consideration does not satisfy the assumptions usually claimed. The global convergence of the algorithm is proved under appropriate assumptions. And when the augmented Lagrangian function satisfies the KL property, the strong convergence of the algorithm is obtained. Furthermore, when the correlation function has a special structure, the sublinear and linear convergence rates of the algorithm are ensured. Finally, numerical experiments are conducted to show that the algorithm is effective.



    加载中


    [1] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. https://doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692
    [2] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441–453. https://doi.org/10.1088/0266-5611/18/2/310 doi: 10.1088/0266-5611/18/2/310
    [3] A. Moudafi, A. Gibali, $I_1-I_2$ regularization of split feasibility problems, Numer. Algor., 78 (2018), 739–757. https://doi.org/10.1007/s11075-017-0398-6 doi: 10.1007/s11075-017-0398-6
    [4] B. Qu, C. Y. Wang, N. H. Xiu, Analysis on Newton projection method for the split feasibility problem, Comput. Optim. Appl., 67 (2017), 175–199. https://doi.org/10.1007/s10589-016-9884-3 doi: 10.1007/s10589-016-9884-3
    [5] B. Tan, X. L. Qin, J.-C. Yao, Strong convergence of self-adaptive inertial algorithms for solvingsplit variational inclusion problems with applications, J. Sci. Comput., 87 (2021), 20. https://doi.org/10.1007/s10915-021-01428-9 doi: 10.1007/s10915-021-01428-9
    [6] A.-S. O.-E. Owolabi, A. Taiwo, L. O. Jolaoso, O. T. Mewomo, A self-adaptive hybrid inertial algorithm for split feasibility problems in Banach spaces, Int. J. Nonlinear Anal. Appl., 13 (2022), 791–812. https://doi.org/10.22075/ijnaa.2021.23402.2532 doi: 10.22075/ijnaa.2021.23402.2532
    [7] B. Tan, X. L. Qin, X. F. Wang, Alternated inertial algorithms for split feasibility problems, Numer. Algor., 95 (2024), 773–812. https://doi.org/10.1007/s11075-023-01589-8 doi: 10.1007/s11075-023-01589-8
    [8] E. C. Godwin, C. Izuchukwu, O. T. Mewomo, Image restorations using a modified relaxed inertial technique for generalized split feasibility problems, Math. Method. Appl. Sci., 46 (2023), 5521–5544. https://doi.org/10.1002/mma.8849 doi: 10.1002/mma.8849
    [9] H. Yu, F. H. Wang, A new relaxed method for the split feasibility problem in Hilbert spaces, Optimization, 73 (2024), 1417–1432. https://doi.org/10.1080/02331934.2022.2158036 doi: 10.1080/02331934.2022.2158036
    [10] G. Y. Li, T. K. Pong, Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems, Math. Program., 159 (2014), 371–401. https://doi.org/10.1007/s10107-015-0963-5 doi: 10.1007/s10107-015-0963-5
    [11] A. Moudafi, A semi-alternating algorithm for solving nonconvex split equality problems, Numer. Funct. Anal. Optim., 42 (2021), 1747–1756. https://doi.org/10.1080/01630563.2021.1933529 doi: 10.1080/01630563.2021.1933529
    [12] J. Z. Chen, M. Postolache, Y. H. Yao, S-subgradient projection methods with S-subdifferential functions for nonconvex split feasibility problems, Symmetry, 11 (2019), 1517. https://doi.org/10.3390/sym11121517 doi: 10.3390/sym11121517
    [13] J. Z. Chen, K. Chen, T. C. Yin, S-subgradient projection algorithm with inertial technique for non-convex split feasibility problems, U.P.B. Sci. Bull. Series A, 84 (2022), 3–12.
    [14] K. Guo, C. Zhu, Inexact averaged projection algorithm for nonconvex multiple-set split feasibility problems, Journal of Mathematical Research with Applications, 40 (2020), 534–542. https://doi.org/10.3770/j.issn:2095-2651.2020.05.009 doi: 10.3770/j.issn:2095-2651.2020.05.009
    [15] A. Gibali, S. Sabach, S. Voldman, Non-convex split feasibility problems: models, algorithms and theory, Open Journal of Mathematical Optimization, 1 (2020), 1. https://doi.org/10.5802/ojmo.1 doi: 10.5802/ojmo.1
    [16] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), 1–122. https://doi.org/10.1561/2200000016 doi: 10.1561/2200000016
    [17] J. C. Bai, Y. Chen, X. Yu, H. C. Zhang, Generalized asymmetric forward-backward-adjoint algorithms for convex-concave saddle-point problem, J. Sci. Comput., 102 (2025), 80. https://doi.org/10.1007/s10915-025-02802-7 doi: 10.1007/s10915-025-02802-7
    [18] J. C. Bai, K. Guo, J. L. Liang, Y. Jing, H. C. Su, Accelerated symmetric ADMM and its applications in large-scale signal processing, J. Comput. Math., 42 (2024), 1605–1626. https://doi.org/10.4208/jcm.2305-m2021-0107 doi: 10.4208/jcm.2305-m2021-0107
    [19] J. C. Bai, L. Y. Jia, Z. Peng, A new insight on augmented lagrangian method with applications in machine learning, J. Sci. Comput., 99 (2024), 53. https://doi.org/10.1007/s10915-024-02518-0 doi: 10.1007/s10915-024-02518-0
    [20] J. C. Bai, M. Zhang, H. C. Zhang, An inexact ADMM for separable nonconvex and nonsmooth optimization, Comput. Optim. Appl., in press. https://doi.org/10.1007/s10589-024-00643-y
    [21] B. S. He, F. Ma, X. M. Yuan, Convergence study on the symmetric version of ADMM with larger step sizes, SIAM J. Imaging Sci., 9 (2016), 1467–1501. https://doi.org/10.1137/15M1044448 doi: 10.1137/15M1044448
    [22] J. C. Bai, J. C. Li, F. M. Xu, H. C. Zhang, Generalized symmetric ADMM for separable convex optimization, Comput. Optim. Appl., 70 (2018), 129–170. https://doi.org/10.1007/s10589-017-9971-0 doi: 10.1007/s10589-017-9971-0
    [23] R. T. Rockafellar, Convex analysis, Princeton: Princeton University Press, 1970. https://doi.org/10.1515/9781400873173
    [24] R. T. Rockafellar, R. J. B. Wets, Variational analysis, Berlin, Heidelberg: Springer, 1998. https://doi.org/10.1007/978-3-642-02431-3
    [25] J. Bolte, A. Daniilidis, A. Lewis, The KŁojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM J. Optimiz., 17 (2007), 1205–1223. https://doi.org/10.1137/050644641 doi: 10.1137/050644641
    [26] H. Attouch, J. Bolte, B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods, Math. Program., 137 (2013), 91–129. https://doi.org/10.1007/s10107-011-0484-9 doi: 10.1007/s10107-011-0484-9
    [27] F. H. Wang, W. F. Cao, Z. B. Xu, Convergence of multi-block Bregman ADMM for nonconvex composite problems, Sci. China Inf. Sci., 61 (2018), 122101. https://doi.org/10.1007/s11432-017-9367-6 doi: 10.1007/s11432-017-9367-6
    [28] Y. Nesterov, Introductory lectures on convex optimization: a basic course, 1 Eds., New York: Springer, 2004. https://doi.org/10.1007/978-1-4419-8853-9
    [29] J. B. Jian, P. J. Liu, X. Z. Jiang, A partially symmetric regularized alternating direction method of multipliers for nonconvex multi-block optimization, (Chinese), Acta Mathematica Sinica, Chinese Series, 64 (2021), 1005–1026. https://doi.org/10.12386/A2021sxxb0084 doi: 10.12386/A2021sxxb0084
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(208) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog