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1. Introduction

The split feasibility problem (SFP) [1] is formulated as

to find x ∈ C such that Ax ∈ Q, (1.1)

where C and Q are both non-emepty closed convex sets.
The SFP was first introduced by Censor and Elfving [1], which was used in modeling various inverse

problems arising from signal processing [2], medical image reconstruction [3], and further studied by
many researchers [4, 5]. Additionally, a variety of iterative algorithms have been employed to tackle
the convex SFP [6–9].
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When at least one of C and Q in Eq (1.1) is a non-convex set, it is called a non-convex SFP.
The application of non-convex SFP is becoming increasingly widespread in various fields. Li and
Pong [10] proposed the Douglas-Rachford algorithm for this type of problem. Moudafi introduced
a semi-alternating algorithm in [11] to solve non-convex split equation problems and proved its
global convergence under mild conditions. Chen et al. [12] developed S-Subgradient projection
methods utilizing S-Subdifferential functions. Furthermore, Chen et al. [13] proposed an S-Subgradient
projection algorithm incorporating an inertial technique for solving non-convex SFP, and proved the
weak convergence of the algorithm in these two papers. Additionally, Guo proposed an inexact
averaged projection algorithm for non-convex multiple sets SFP [14], and established the convergence
of the proposed algorithm through the Kurdyka Lojasiewicz inequality.

Currently, there is a limited number of references to discuss this kind of problem. For solving non-
convex SFP, Gibali et al. [15] presented four different optimization formulations and corresponding
iterative algorithms. One of the fomulations is as follows:

min d2
C(x) + δQ(y)

s.t. Ax = y,
(1.2)

where C is a closed convex set and Q is a closed non-convex set. This optimization problem is the
sum of two non-negative functions, and when the optimal value of (1.2) is zero, then the achieved
optimization solution is the solution of non-convex SFP.

By applying the augument Lagrangian method, Gibali [15] processed the proximal alternating
directions method (ADMM), linearized proximal ADMM, and weighted proximal ADMM to
solve (1.2), which are the continuation of classic ADMM [16]. The iterative form of the weighted
proximal ADMM (WPADMM) is the following:

yk+1 ∈ arg min
{
δQ(y) + ⟨λk, Axk − y⟩ + β

2∥Axk − y∥2
}
,

xk+1 ∈ arg min
{
d2

C(x) + ⟨λk, Ax − yk+1⟩ +
β

2∥Ax − yk+1∥2 + 1
2∥x − xk∥2G

}
,

λk+1 = λk + β(Axk+1 − yk+1).

(1.3)

As the original problem can be reformuated as a seperable nonconvex optimization problem (1.2),
there are many advanced accelerated ADMM-type methods for solving the reformulation, such as [17]
and [18]. Moreover, the last inexact one had been shownto be convergent with linear convergence
rate and performed surprisingly efficient than some existing ADMM-type methods. In addition, some
primal-dual splitting methods can also be used to solve it, such as [19] and [20]. However, the proposed
methods invovled in the last two references lacks theoretical assurance since they focused on the
convex case. And, due to the focus of [21] and [22] on convex problems, it is necessary to study
the convergence of partially symmetric regularized ADMM in non-convex cases.

Furthermore, due to the slow convergence speed of existing ADMM, based on the above analysis
and problem (1.2), we use the weighted proximal ADMM algorithm and add updates of Lagrangian
multipliers to demonstrate global convergence.

In this article, the models for the functions and non-convex split feasibility problems are different,
and the results of ADMM cannot be directly applied. And, we have added updates to the Lagrangian
multiplier term to improve the convergence speed of the algorithm.

The structure of the paper is as follows. The basic concepts, definitions, and related results are
described in the second part. The third section presents the algorithm and its proof. The fourth part
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proves the convergence rate of the algorithm. The fifth section provides the corresponding numerical
experiment, which verifies the feasibility and effectiveness of the algorithm.

2. Preliminaries

In this article, Rn represents an n-dimensional Euclidean space, Rm×n denotes m × n real matrices,
N denotes the set of natural number, and ∥ · ∥ represents the Euclidean norm. For any x, y ∈ Rn,
⟨x, y⟩ = xT y. The G-norm ∥x∥G =

√
xTGx of x, where G≻

−
(≻)0 is a symmetric positive semidefinite

matrix. λmin(G) and λmax(G) represent the minimum and maximum eigenvalues of the symmetric
matrix G, respectively. Then, λmin(G)∥y∥2 ≤ ∥y∥2G ≤ λmax(G)∥y∥2, ∀y ∈ Rn.

To prove the partially symmetric regularized alternating direction multiplier algorithm for non-
convex split feasibility problems, two functions play a crucial role which are the indicator function and
the distance function. Mathematically speaking, given a non-empty closed set Q in the n-dimensional
Euclidean space Rn, the indicator function is defined as

δQ(y) =

0, if y ∈ Q,

+∞, otherwise.

When Q is a closed non-convex set, the indicator function is proper, lower semi-continuous. The
definition of proper function can be seen in reference [23].

The distance function of the set C, represented by dC : Rn → R, is given by

dC(x) = min{∥u − x∥ : u ∈ C}.

In this article, we also write dC(x) as d(x,C).
When C is a closed convex set, the square of the distance function is smooth. Specifically, if C = ∅,

then dC(x) = +∞. Let g : Rn → R ∪ {+∞}. Define

dom g = {y ∈ Rn : g(y) < +∞}.

Given a non-empty closed subset C of Euclidean space, the orthogonal projection on set C is the
operator PC(x) : Rn → C, defined as

PC(x) = arg min{∥u − x∥ : u ∈ C}.

Definition 1. [24] If the function g : Rn → R ∪ {+∞} satisfies g(y0) ≤ lim infy→y0g(y) at y0, then
function g is said to be lower semi-continuous at y0. If g is lower semi-continuous at every point, then
g is called a lower semi-continuous function.
Definition 2. [24] Let the function g : Rn → R ∪ {+∞} be proper lower semi-continuous.

(1) The Fréchet subdifferential of g at y ∈ dom g is defined as

∂̂g(y) = {y∗ ∈ Rn : lim
x,y

inf
x→y

g(x) − g(y)− < y∗, x − y >
∥x − y∥

≥ 0}.

(2) The limit subdifferential of g at y ∈ dom g is defined as

∂g(y) = {y∗ ∈ Rn : ∃yk → y, g(yk)→ g(y), ŷk ∈ ∂̂g(y), ŷk → y∗}.
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By definition, the closure of ∂g can be obtained, which means that {(yk, uk)} is a sequence in Rn×Rn

that satisfies the condition, for any k ∈ N,

(yk, uk) ∈ Graph ∂g = {(y, u) ∈ Rn × Rn : u ∈ ∂g(y))},

and if (yk, uk) converges to (y, u) and g(yk) converges to g(y), then (yk, uk) ∈ Graph ∂g.
Based on the first-order optimality condition of nonsmooth functions, the critical point set of g is

defined as
crit g = {y ∈ Rn : 0 ∈ ∂g(y)}.

Remrk 1. According to the definition of subdifferentials, we can obtain the following properties (see
reference [24]):

(1) ∀y ∈ Rn, ∂̂g(y) ⊆ ∂g(y) and ∂̂g(y) is a closed convex set, ∂g(y) is a closed set.
(2) If y∗k ⊆ ∂̂g(y) and lim

k→∞
(yk, y∗k) = (y, y∗) , then y∗ ∈ ∂g(y), i.e., ∂g(y) is closed.

(3) If y ∈ Rn is the minimum point of g, then 0 ∈ ∂g(y); if 0 ∈ ∂g(y), then y is the critical point of
the function g.

(4) If g : Rn → R ∪ {+∞} is proper lower semi-continuous and f : Rn → R ∪ {+∞} is continuously
differentiable, then for any y ∈ dom g, we have ∂( f (x) + g(y)) = ∇ f (x) + ∂g(y).
Definition 3. [25] (Kurdyka-Lojasiewicz property) The function g : Rn → R ∪ {+∞} is a proper lower
semi-continuous function, and g is said to have KL property in y∗ ∈ dom ∂g if there exists η ∈ (0,+∞],
a certain neighborhood U of y∗, and a continuous concave function φ : [0, η)→ R+, such that
(1) φ(0) = 0;
(2) φ is continuously differentiable on (0, η) and φ is also continuous at 0;
(3) ∀s ∈ (0, η), φ

′

(s) > 0;
(4) ∀y ∈ U ∩ [g(y∗) < g < g(y∗) + η], all KL inequalities hold, that is

φ
′

(g(y) − g(y∗))d(0, ∂g(y)) ≥ 1.

Lemma 1. [26] (Consistent KL property) Let ϕn be the set of functions which satisfies the KL property.
Assuming Ω is a compact set, and the function g : Rn → R ∪ {+∞} is a proper lower semi-continuous
function. If the function g is a constant on Ω and satisfies the KL property at every point in Ω, then
there exist ε > 0, η > 0, φ ∈ ϕn such that for any y ∈ Ω and all y belonging to the intersection

{y ∈ Rn : d(y,Ω) < ε} ∩ [g(y) < g < g(y) + η],

the following inequality holds true:

φ
′

(g(y) − g(y))d(0, ∂g(y)) ≥ 1.

In some practical applications, many functions satisfy the KL property, such as semi-algebraic
functions, real analytic functions, subanalytic functions, and strongly convex functions, etc., as seen in
reference [27].
Lemma 2. [28] If ψ : Rn → R ∪ {+∞} is a continuous differentiable function and ∇ψ is Lipschitz
continuous, then there exists a Lipschitz constant Lψ > 0, such that for any x, y ∈ Rn, there is

|ψ(x) − ψ(y) − ⟨∇ψ(y), x − y⟩| ≤
Lψ
2
∥x − y∥2.
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Definition 4. (Semi-algebraic sets and functions) (1) A subset S of Rn is a real semi-algebraic set, if
there exists a finite number of real polynomial functions gi j, hi j : Rn → R such that

S =
p⋃

j=1

q⋂
i=1

{u ∈ Rn : gi j(u) = 0 and hi j(u) < 0}.

(2) A function f : Rn → (−∞,+∞] is called semi-algebraic if its graph{
(u, t) ∈ Rn+1 : f (u) = t

}
is a semi-algebraic subset of Rn+1.

3. Non-convex split feasibility problems

In this section, we study the solving method for problem (1.2), where C is a non-empty closed
convex set of Rn and Q is a non-empty closed non-convex set of Rm. According to the structure of C,
the following conclusions hold.

(1) The function d2
C( · ) is continuously differentiable.

(2) The gradient of d2
C( · ) is Lipschitz continuous, i.e., there is a constant L such that∥∥∥∇d2

C(y) − ∇d2
C(x)
∥∥∥ ≤ L ∥y − x∥.

Now, we give the algorthim.
Algorithm 1. Partial symmetric regularized alternating direction method of multipliers for non-
convex split feasibility problems (PSRADMM)

Given three initial points x0, y0, and λ0, G ∈ Rn×n is a symmetric positive definite matrix. β, γ, and
s are constants. Iteratively update the sequence {ωk = (xk, yk, λk)} as follows:

yk+1 ∈ arg min
{
δQ(y) − ⟨λk, Axk − y⟩ +

β

2
∥Axk − y∥2 +

1
2

∥∥∥y − yk
∥∥∥2

G

}
, (3.1a)

λk+ 1
2 = λk − γβ(Axk − yk+1), (3.1b)

xk+1 = arg min
{
d2

C(x) − ⟨λk+ 1
2 , Ax − yk+1⟩ +

β

2
∥Ax − yk+1∥2

}
, (3.1c)

λk+1 = λk+ 1
2 − sβ(Axk+1 − yk+1). (3.1d)

Based on the optimality conditions for each subproblem in Algorithm 1, we have

0 ∈ ∂δQ(yk+1) + λk + β(Axk − yk+1) +G(yk+1 − yk), (3.2a)

λk+ 1
2 = λk − γβ(Axk − yk+1), (3.2b)

0 = ∇d2
C(xk+1) − ATλk+ 1

2 + βAT (Axk+1 − yk+1), (3.2c)

λk+1 = λk+ 1
2 − sβ(Axk+1 − yk+1). (3.2d)

Assumption 1. Some assumptions and conditions regarding Algorithm 1 are provided below.
(1) γ + s > 0 and γ(1 − 2s) + s − 6(1 − s)2 > 0.

(2) β > β0 =
(γ+s)+

√
(γ+s)2+24[γ(1−2s)+s−6(1−s)2]
2[γ(1−2s)+s−6(1−s)2] .
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(3) δ = min{δ1, δ2}, where

δ1 = −
4(L + ∥A∥2(1 − s)β)

2
+ sγβ∥A∥4

∥A∥2(γ + s)β
−

L − β∥A∥2

2
> 0,

δ2 = −
4β(1 − s)2

s + γ
+

1
2
λmin(G) > 0.

(4) C,Q are both semi-algebraic sets.
Remark 2. The solution set of this inequality system (1) in Assupmtion 1 is represented as (γ, s) ∈
D = D1 ∪ D2, where

D1 = (
6(1 − s)2 − s

1 − 2s
,+∞) × (−∞,

1
2

)

and

D2 = (−s,
6(1 − s)2 − s

1 − 2s
) × (

3 −
√

3
2

,
3 +
√

3
2

).

It can be seen that (γ, s) has a wide range of choices. Specifically, when s ∈ (3
4 , 1) occurs, (γ =

s, s) ∈ D2, which means that the parameters γ and s of PSRADMM can take the same value in this
interval.

The augmented Lagrangian function for problem (1.2) is

Lβ(ω) = d2
C(x) + δQ(y) − ⟨λ, Ax − y⟩ +

β

2
∥Ax − y∥2,

where ω = (x, y, λ), λ ∈ Rm is a Lagrangian multiplier, and β > 0 is a penalty parameter.
Without loss of generality, we assume that {ωk = (xk, yk, λk)} produced by Algorithm 1 is bounded.

The reason to do this will be explained in Lemma 7.
Lemma 3. The {ω∗ = (x∗, y∗, λ∗)} is the critical point of the augmented Lagrangian function Lβ(x, y, λ)
for problem (1.2), i.e., 0 ∈ ∂Lβ(ω∗), if and only if

− λ∗ ∈ ∂δQ(y∗),
∇d2

C(x∗) = ATλ∗,

Ax∗ − y∗ = 0.

Proof. Due to the simplicity of the proof, it is omitted here. □
Similar to the approach in reference [29], Lemma 4 below indicates that the sequence {Lβ(ωk)}

monotonically decreases. For ease of analysis, let z = (x, y) and zk = (xk, yk).
Lemma 4. If Assumption 1 holds, then

Lβ(ωk+1) ≤ Lβ(ωk) − δ
∥∥∥zk+1 − zk

∥∥∥2 . (3.3)

Proof. First, based on the iterative formulas (3.2a), (3.2d), and (3.2b), one has

Lβ(xk+1, yk+1, λk+1) = Lβ(xk+1, yk+1, λk+ 1
2 ) + sβ

∥∥∥Axk+1 − yk+1
∥∥∥2 (3.4)

and
Lβ(xk, yk+1, λk+ 1

2 ) = Lβ(xk, yk+1, λk) + γβ
∥∥∥Axk − yk+1

∥∥∥2. (3.5)
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On the other hand, based on the definition of the augmented Lagrangian function, Eq (3.2c), the
Lipschitz continuity of ∇d2

C, and Lemma 2, then

Lβ(xk+1, yk+1, λk+ 1
2 ) − Lβ(xk, yk+1, λk+ 1

2 )

= d2
C(xk+1) − d2

C(xk) −
β

2
∥A∥2∥xk+1 − xk∥2 − ⟨λk+ 1

2 − β(Axk+1 − yk+1), A(xk+1 − xk)⟩

= d2
C(xk+1) − d2

C(xk) −
β

2
∥A∥2∥xk+1 − xk∥2 − ⟨∇d2

C(xk+1), xk+1 − xk⟩

≤
L − β∥A∥2

2
∥xk+1 − xk∥2.

(3.6)

And, because yk+1 is the solution of (3.1a), then

Lβ(xk, yk+1, λk) − Lβ(xk, yk, λk) ≤ −
1
2

∥∥∥yk+1 − yk
∥∥∥2

G
≤ −

1
2
λmin(G)

∥∥∥yk+1 − yk
∥∥∥2. (3.7)

Therefore, adding inequalities (3.4), (3.5), (3.6), and (3.7), we have

Lβ(xk+1, yk+1, λk+1) − Lβ(xk, yk, λk)

≤ −
1
2
λmin(G)

∥∥∥yk+1 − yk
∥∥∥2 + sβ

∥∥∥Axk+1 − yk+1
∥∥∥2 + L − β∥A∥2

2

∥∥∥xk+1 − xk
∥∥∥2

+ γβ
∥∥∥Axk − yk+1

∥∥∥2.
(3.8)

Also, according to (3.1b) and (3.1d), we have

Axk − yk+1 =
1

(γ + s)β
(λk − λk+1) −

s
γ + s

(Axk+1 − Axk). (3.9)

Axk+1 − yk+1 =
1

(γ + s)β
(λk − λk+1) +

γ

γ + s
(Axk+1 − Axk). (3.10)

On the other hand, from (3.2c) and (3.2d), it can be concluded that

ATλk+1 = ∇d2
C(xk+1) + β(1 − s)AT (Axk+1 − yk+1). (3.11)

Combining the Lipschitz continuity of ∇d2
C(x), we obtain

∥AT ∥
∥∥∥λk+1 − λk

∥∥∥
≤ (L + ∥A∥2(1 − s)β)

∥∥∥xk+1 − xk
∥∥∥ + β(1 − γ)∥AT ∥

∥∥∥yk+1 − yk
∥∥∥ . (3.12)

Furthermore, using the Cauchy inequality for (3.12), we have

∥A∥2
∥∥∥λk+1 − λk

∥∥∥2
≤ 4(L + ∥A∥2(1 − s)β)

2∥∥∥xk+1 − xk
∥∥∥2 + 4β2(1 − s)2∥A∥2

∥∥∥yk+1 − yk
∥∥∥2. (3.13)

Combining Eqs (3.9), (3.10), and inequality (3.13), one has

γβ
∥∥∥Axk − yk+1

∥∥∥2 + sβ
∥∥∥Axk+1 − yk+1

∥∥∥2
=

1
(γ + s)β

∥∥∥λk+1 − λk
∥∥∥2 + sγβ

γ + s

∥∥∥Axk+1 − Axk
∥∥∥2

≤
4(L + ∥A∥2(1 − s)β)

2
+ sγβ∥A∥4

∥A∥2(γ + s)β

∥∥∥xk+1 − xk
∥∥∥2 + 4β(1 − s)2

(γ + s)

∥∥∥yk+1 − yk
∥∥∥2.

(3.14)
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Substituting inequality (3.14) into inequality (3.8), we have

Lβ(xk+1, yk+1, λk+1) − Lβ(xk, yk, λk)

≤ −(−
4β(1 − s)2

(s + γ)
+

1
2
λmin(G))

∥∥∥yk+1 − yk
∥∥∥2 − (−

4(L + ∥A∥2(1 − s)β)
2
+ sγβ∥A∥4

∥A∥2(γ + s)β

−
L − β∥A∥2

2
)
∥∥∥xk+1 − xk

∥∥∥2.
Therefore,

Lβ(ωk+1) ≤ Lβ(ωk) − δ1∥xk+1 − xk∥2 − δ2∥yk+1 − yk∥2 ≤ Lβ(ωk) − δ∥zk+1 − zk∥2.

□
Lemma 5. If Assumption 1 holds and the iteration sequence {ωk = (xk, yk, λk)} generated by
Algorithm 1 is bounded, then

∞∑
k=0

∥∥∥ωk+1 − ωk
∥∥∥2 < +∞.

Proof. Due to {ωk} being bounded, {ωk} has at least one aggregation point ω∗. Hence, there exists a
subsequence {ωk j} such that lim

k j→+∞
ωk j = ω∗. Because δQ( · ) is a lower semi-continuous function and

d2
C (·) is continuous differentiable, then Lβ (·) is lower semi-continuous. So Lβ (ω∗) ≤ lim

k j→+∞
inf Lβ (ωk j),

i.e., {Lβ (ωk j)} has a lower bound.
According to Lemma 4, Lβ(ωk j) monotonically decreases and then Lβ(ωk j) converges. Therefore,

by summing up (3.3) from k = 0 to n, we can obtain that

δ

n∑
k=0

∥∥∥zk+1 − zk
∥∥∥2 ≤Lβ(ω0) − Lβ(ωn+1) ≤ Lβ(ω0) − Lβ(ω∗) < +∞.

According to inequality (3.13), there are
∞∑

k=0

∥∥∥λk+1 − λk
∥∥∥2 < +∞, so

∞∑
k=0

∥∥∥ωk+1 − ωk
∥∥∥2 < +∞. □

LetΩ be the set of aggregation points of {ωk} and based on the results of Lemma 5. We can establish
the global convergence of Algorithm 1.
Theorem 1. (Global convergence) If Assumption 1 holds and {ωk} is bounded, then the following
conclusions hold.
(1) Ω is a non-empty compact set and

lim
k→+∞

d(ωk,Ω) = 0.

(2) {Lβ(ωk)} is convergent, and for all ω∗ ∈ Ω,

Lβ(ω∗) = inf
k∈N

Lβ(ωk) = lim
k→+∞

Lβ(ωk).

(3) Ω ⊆ critLβ.
Proof. (1) The conclusion can be drawn from the boundedness of {ωk} and the definition of Ω.

AIMS Mathematics Volume 10, Issue 2, 3041–3061.



3049

(2) Let ω∗ ∈ Ω. Therefore, there exists a subsequence {ωk j} of {ωk} which converges to ω∗.
Also, according to the lower semi-continuity of Lβ ( · ), i.e., Lβ(ω∗) ≤ lim

k j→+∞
inf Lβ(ωk j+1), then

lim
k j→+∞

Lβ(ωk j+1) = Lβ(ω∗) and Lemma 4 states that {Lβ(ω∗)} monotonically decreases. Therefore,

Lβ(ω∗) = lim
k→+∞

Lβ(ωk) = inf
k∈N

Lβ(ωk),∀ω∗ ∈ Ω.

(3) Let ω∗ = (x∗, y∗, λ∗) ∈ Ω. Therefore, there exists a subsequence {ωk j} of {ωk} that converges to
ω∗.

According to Lemma 5, lim
k j→+∞

ωk j+1 = ω∗. And, by (3.1b), {λk j+
1
2 } is covergent. Assume that

lim
k j→+∞

λk j+
1
2 = λ∗∗. Let k = k j in (3.1b) and (3.1d), and take the limit. Then, we have

λ∗∗ = λ∗ − γβ(Ax∗ − y∗), λ∗ = λ∗∗ − sβ(Ax∗ − y∗),

which, combined with (γ + s)β > 0, it can be seen that Ax∗ − y∗ = 0, λ∗∗ = λ∗.
As a result, x∗ and y∗ are the feasible points for problem (1.1). According to the following

inequality (3.1a), we can obtain

δQ(yk j+1) + ⟨λk j , yk j+1⟩ +
β

2

∥∥∥Axk j − yk j+1
∥∥∥ + 1

2

∥∥∥yk j+1 − yk j
∥∥∥2

G

≤ δQ(y∗) + ⟨λk j , y∗⟩ +
β

2

∥∥∥Axk j − y∗
∥∥∥ + 1

2

∥∥∥y∗ − yk j
∥∥∥2

G
.

Because lim
k j→+∞

ωk j = lim
k j→+∞

ωk j+1 = ω∗, we have lim
k j→+∞

δQ(yk j+1) ≤ δQ(y∗). Also, due to the lower

semi-continuity of δQ(y), one has lim
k j→+∞

δQ(yk j+1) = δQ(y∗). Furthermore, combining the closeness of

∂δQ and the continuity of ∇d2
C, and letting k = k j → +∞ in (3.1), we have

− λ∗ ∈ ∂δQ(y∗),
∇d2

C(x∗) = ATλ∗,

Ax∗ − y∗ = 0.

Therefore, according to Lemma 3, ω∗ ∈ critLβ. Hence, Ω ⊆ critLβ. □
Lemma 6. If Assumption 1 holds, then there exists a constant τ > 0, and, for all k ≥ 2,

d(0, ∂Lβ(ωk+1)) ≤ τ(
∥∥∥xk+1 − xk

∥∥∥ + ∥∥∥yk+1 − yk
∥∥∥).

Proof. Through the definition of Lβ ( · ), it can be obtained that
∂yLβ(ωk+1) = ∂δQ(yk+1) + λk+1 − β(Axk+1 − yk+1),
∂xLβ(ωk+1) = ∇d2

C(xk+1) − ATλk+1 + βAT (Axk+1 − yk+1)
∂λLβ(ωk+1) = −(Axk+1 − yk+1).

(3.15)

Let εk+1 = (εk+1
1 , εk+1

2 , εk+1
3 ) ∈ ∂Lβ(ωk+1). Combining (3.2) and (3.15), one has
εk+1

1 =
γsβ
γ + s

AT A(xk+1 − xk) −
sAT

γ + s
(λk+1 − λk),

εk+1
2 = −(λk − λk+1) − βA(xk+1 − xk) −G(yk+1 − yk)

εk+1
3 =

1
(γ + s)β

(λk+1 − λk) −
γ

γ + s
A(xk+1 − xk).
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As a result, εk+1
1 ∈ ∂xLβ(ωk+1), εk+1

2 ∈ ∂yLβ(ωk+1), εk+1
3 ∈ ∂λLβ(ωk+1), and εk+1 ∈ ∂Lβ(ωk+1).

Hence, for all k ≥ 1, there exists τ0 > 0 such that

d(0, ∂Lβ(ωk+1)) ≤
∥∥∥εk+1

∥∥∥ ≤ τ0(
∥∥∥xk+1 − xk

∥∥∥ + ∥∥∥yk+1 − yk
∥∥∥ + ∥∥∥λk+1 − λk

∥∥∥). (3.16)

According to the result of inequality (3.12), there exists a constant τ1 > 0 such that∥∥∥λk+1 − λk
∥∥∥ ≤ τ1(

∥∥∥xk+1 − xk
∥∥∥ + ∥∥∥yk+1 − yk

∥∥∥). (3.17)

Combining (3.16) and (3.17), it can be concluded that there exists a constant τ1 > 0, and, for all
k ≥ 2,

d(0, ∂Lβ(ωk+1)) ≤ τ(
∥∥∥xk+1 − xk

∥∥∥ + ∥∥∥yk+1 − yk
∥∥∥).

□
Now, we study the strong convergence of the Algorithm 1 by using Lemma 4, Lemma 6, and the

relevant conclusions in Theorem 1.
Theorem 2. (Strong convergence) Assume that {ωk} is bounded and Lβ ( ·) satisfies the KL property on
Ω. Then,
(1)lim

k→∞
∥ωk+1 − ωk∥ = 0.

(2) {ωk} converges to the critical point of Lβ ( · ).
Proof. (1) Theorem 1(2) means that lim

k→+∞
Lβ(ωk) = Lβ(ω∗) for each ω∗ ∈ Ω. Now we divide into two

cases for further analysis.
Case 1. There exists an integer k0 such that Lβ(ωk0) = Lβ(ω∗). By Lemma 4, for all k ≥ k0, we have

δ
∥∥∥zk+1 − zk

∥∥∥2 ≤ Lβ(ωk) − Lβ(ωk+1) ≤ Lβ(ωk0) − Lβ(ω∗) = 0.

As a result, xk+1 = xk, yk+1 = yk. Also, from inequality (3.17), for all k ≥ k0 + 2, we have λk+1 = λk and
ωk+1 = ωk.

Case 2. Assume for all k ≥ 1, Lβ(ωk) > Lβ(ω∗). Due to d(ωk,Ω) → 0, for any given ε > 0, there
exists k1 > 0, for k > k1, such that d(ωk,Ω) < ε. And, for any given η > 0, there exists k2 > 0, for
k > k̃ = max{k1, k2}, such that Lβ(ωk) < Lβ(ω∗) + η.
Therefore,

d(ωk,Ωk) < ε, Lβ(ω∗) < Lβ(ωk) < Lβ(ω∗) + η.

Because {ωk} is bounded, according to Theorem 1, it is known that Ω is a non-empty compact set,
and Lβ ( · ) is a constant on Ω. Therefore, using Lemma 1, for all k > k̃,

ϕ
′

(Lβ(ωk) − L(ω∗))d(0, ∂Lβ(ωk)) ≥ 1.

Because ϕ
′

(Lβ(ωk) − Lβ(ω∗)) > 0, therefore

1
ϕ′(L(ωk) − Lβ(ω∗))

≤ d(0, ∂Lβ(ωk)). (3.18)

Due to the convexity of the function ϕ, it can be concluded that

ϕ(Lβ(ωk) − Lβ(ω∗)) − ϕ(Lβ(ωk+1) − Lβ(ω∗)) ≥ ϕ
′

(Lβ(ωk) − Lβ(ω∗))(Lβ(ωk) − Lβ(ωk+1)).
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Therefore,

0 ≤ Lβ(ωk) − Lβ(ωk+1) ≤
ϕ(Lβ(ωk) − Lβ(ω∗)) − ϕ(Lβ(ωk+1) − Lβ(ω∗))

ϕ′(Lβ(ωk) − Lβ(ω∗))
. (3.19)

Combining inequalities (3.18) and (3.19) with Lemma 6, one has

Lβ(ωk) − Lβ(ωk+1) ≤ τ(
∥∥∥xk − xk−1

∥∥∥ + ∥∥∥yk − yk−1
∥∥∥)∆k,k+1. (3.20)

Note ∆p,q = ϕ(Lβ(ωp) − Lβ(ω∗)) − ϕ(Lβ(ωq) − Lβ(ω∗)).
For simplicity, let ∧k =

∥∥∥xk − xk−1
∥∥∥ + ∥∥∥yk − yk−1

∥∥∥, and combining Lemma 4 and inequality (3.20),
for all k > k̃, it can be derived that

δ
∥∥∥zk+1 − zk

∥∥∥2 ≤ τ∧k∆k,k+1. (3.21)

According to inequality (3.21), it can be concluded that∥∥∥zk+1 − zk
∥∥∥2 ≤ τ∧k∆k,k+1

δ
.

Furthermore, we have

5
∥∥∥zk+1 − zk

∥∥∥ ≤ 2 ∧1/2
k ×(

5
2

√
τ

δ
∆

1/2
k,k+1)) ≤ ∧k +

25τ
4δ
∆k,k+1. (3.22)

For inequality (3.22), summing up from k̃ + 1 to m, it can be concluded that

5
m∑

k=̃k+1

∥∥∥zk+1 − zk
∥∥∥ ≤ m∑

k=̃k+1

∧k +
25τ
4δ
∆k,k+1.

Note that ϕ
′

(L(ωm+1) − L(ω∗)) ≥ 0. According to the above inequality and by using the Cauchy
inequality, at the same time letting m→ +∞, we have

(
5
√

2
2
− 1)

m∑
k=̃k+1

∥∥∥xk+1 − xk
∥∥∥+(

5
√

2
2
− 1)
∥∥∥yk+1 − yk

∥∥∥
≤ ∥xk̃+1 − xk̃∥ + ∥ỹk+1 − ỹk∥ +

25τ
4δ

ϕ(L(ωk̃) − L(ω∗)) < +∞.

Therefore,
∞∑

k=0

∥∥∥xk+1 − xk
∥∥∥ < +∞ and

∞∑
k=0

∥∥∥yk+1 − yk
∥∥∥ < +∞. By (3.17), it can be concluded that

∞∑
k=0

∥∥∥λk+1 − λk
∥∥∥ < +∞.

Additionally, we have noticed that∥∥∥ωk+1 − ωk
∥∥∥ = (
∥∥∥xk+1 − xk

∥∥∥2 + ∥∥∥yk+1 − yk
∥∥∥2 + ∥∥∥λk+1 − λk

∥∥∥2)
1
2
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≤
∥∥∥xk+1 − xk

∥∥∥ + ∥∥∥yk+1 − yk
∥∥∥ + ∥∥∥λk+1 − λk

∥∥∥ .
Hence,

∞∑
k=0

∥∥∥ωk+1 − ωk
∥∥∥ < +∞.

In other words,
lim
k→∞
∥ωk+1 − ωk∥ = 0.

(2) From (1) we know that {ωk} is a Cauchy sequence, and therefore it converges, and then from
Theorem 1 (3), we know that {ωk} converges to the critical point of the sequence Lβ ( · ) as a whole. □

Next, we wonder if the assumption about the boundedness of {ωk} is reasonable, which will be
ensured by the following lemma.
Lemma 7. Suppose that Assumption 1 and the following conditions (1)–(3) hold.
(1) A is a row full rank matrix.
(2) The relaxation factor s ∈ (3−

√
3

2 , 3+
√

3
2 ).

(3) The function f̄ (xk) = d2
C(xk) − ∥∇d2

C(xk)∥2

2β(2s−1)∥A∥2 has a lower bound and is coercive, i.e.,

inf f (xk) > −∞ and lim inf
∥xk∥→+∞

f (xk) = +∞.

Then, the sequence {ωk} generated by Algorithm 1 is bounded.
Proof. According to Lβ(ωk) being monotonically decreasing, Lβ(ωk) ≤ Lβ(ω0), which, combined
with (3.11), we have

Lβ(ω0) ≥ Lβ(ωk)

= d2
C(xk) + δQ(yk)− < λk, Axk − yk > +

β

2

∥∥∥Axk − yk
∥∥∥2

= d2
C(xk) + δQ(yk)− < (AT )+∇d2

C(xk) + β(1 − s), Axk − yk >

=d2
C(xk) + δQ(yk) −

∥∥∥∇d2
C(xk)

∥∥∥2
2β(2s − 1)∥A∥2

+
(2s − 1)β

2

∥∥∥∥∥∥Axk − yk −
(AT )+∇d2

C(xk)
(2s − 1)β

∥∥∥∥∥∥
2

,

where (AT )+ represents the Morre-Penrose inverse of AT .
Therefore, one has

f̄ (xk) + δQ(yk) +
(2s − 1)β

2

∥∥∥∥∥∥Axk − yk −
(AT )+∇d2

C(xk)
(2s − 1)β

∥∥∥∥∥∥
2

≤ Lβ(ω0) < +∞,

inf
y
δQ(y) > −∞, inf

xk
f̄ (xk) > −∞,

s ∈
3 − √3

2
,

3 +
√

3
2

 , (s >
1
2

).

It is not difficult to deduce that Axk−yk−
(AT )+∇d2

C(xk)
(2s−1)β is bounded, so ∇d2

C(xk) is bounded. Furthermore,

combining (3.11), we can know that
{
λk
}

is bounded. Therefore, the boundedness of
{
ωk
}

has been
proven. □
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4. Convergence rate analysis

In this section, we further discuss the convergence rate of PSRADMM under the premise of strong
convergence. The main results are as follows.
Theorem 3. Assume that

{
ωk
}

is a sequence generated by PSRADMM and converges to {ω∗}. Let
Lβ(·) satisfy the KL property at ω∗ and the correlation function φ(t) = ct1−θ, θ ∈ [0, 1), c > 0. Then, the
following conclusions hold.
(1) If θ = 0, then sequence

{
ωk
}

converges after finite iterations, i.e., there exists k such that ωk = ω∗.
(2) If θ ∈ (0, 1

2 ], then there exists τ ∈ [0, 1), such that ∥ ωk − ω∗ ∥≤ O(τk), i.e., PSRADMM is linearly
convergent.
(3) If θ ∈ (1

2 , 1), then ∥ ωk − ω∗ ∥≤ O(k
1−θ
1−2θ ), i.e., PSRADMM is sublinearly convergent.

Proof. For the case that θ = 0, we have φ(t) = ct, hence φ′(t) = c. If ωk , ω∗ for all k, then for a
sufficiently large k, it is known by the KL property, and cd(0, ∂Lβ(ωk)) ≥ 1, which contradicts (3.16).

Assume θ > 0, and combine (3.22).

5
∞∑

k=̃k+1

Λk+1 ≤

∞∑
k=̃k+1

Λk +
25τ
4δ
∆k,k+1,∀k > k̃. (4.1)

Note that as Lβ ( · ) satisfies the KL property at ω∗, one has

φ
′

(Lβ(ωk) − Lβ(ω∗))d(0, ∂Lβ(ωk)) ≥ 1,∀k ≥ k̃,

and because φ(t) = ct1−θ, the above inequality is equivalent to

(Lβ(ωk) − Lβ(ω∗))
θ
≤ c(1 − θ)d(0, ∂Lβ(ωk)),∀k ≥ k̃. (4.2)

Also, due to (3.16), we have
d(0, ∂Lβ(ωk)) ≤ τΛk, (4.3)

and, combined with (4.2) and (4.3), there exists γ > 0 such that

φ(Lβ(ωk) − Lβ(ω∗)) = c(Lβ(ωk) − Lβ(ω∗))
1−θ
≤ γΛ

1−θ
θ

k ,∀k ≥ k̃.

By (4.1), it can be concluded that

5
∞∑

k=̃k+1

Λk+1 ≤

∞∑
k=̃k+1

Λk +
25τ
4δ
Λ

1−θ
θ

k ,∀k > k̃. (4.4)

Based on inequality (4.4), further proof will be completed using the relevant conclusions of Attouch
and Bolte [26].
(1) If θ ∈ [0, 1

2 ), then, according to [26], there exist c1 > 0 and τ ∈ [0, 1) such that

∥ xk − x∗ ∥≤ c1τ
k, thus ∥ xk − x∗ ∥≤ O(τk). (4.5)

(2) If θ ∈ (1
2 , 1), then, according to [26], there exists c2 > 0 such that

∥ xk − x∗ ∥≤ c2k
1−θ
θ , thus ∥ xk − x∗ ∥≤ O(k

1−θ
1−2θ ). (4.6)
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Furthermore, from the Eq (3.11), Lemma 3, and the L -Lipshitz continuity of ∇d2
C, it can be inferred

that ∥∥∥λk − λ∗
∥∥∥ = ∥∥∥(AT )+[∇d2

C(xk) − ∇d2
C(x∗)] + β(1 − s)(Axk − yk − Ax∗ + y∗)

∥∥∥
≤ O(Λk).

Finally, according to (4.4)–(4.6), it can be concluded that conclusions (1)–(3) have been verified. □

5. Numerical examples

In this section, we validated the feasibility and effectiveness of the PSRADMM compared to
the WPADMM (1.3) by comparing the number of iterations and running time. The entire code is
implemented in MATLAB R2018b. All numerical calculations were performed on the Lenovo Xiaoxin
Air 13IWL, with a CPU clock of 1.6GHz and a memory of 8.00GB.

When C is a non-convex closed set and Q is a closed convex set, the above algorithm still holds true.
For details, please see reference [29]. We consider a class of important problems that are often applied
in practical fields such as image reconstruction and signal processing, that is, compressed sensing
problems, which involves recovering a sparse signal x from a linear system Ax = b. Transform the
problem into a non-convex SFP, that is, find a vector x ∈ Rn which satisfies

x ∈ C, Ax = b,

where C = {x ∈ Rn : ∥x∥0 ≤ 1} (here, ∥x∥0 represents the number of non-zero elements in vector x),
b ∈ Rm, and the set Q = {b}. Therefore, this section starts from the perspective of solving non-convex
SFP and solves the decompression sensing problem. We transform problem (1.2) into the following
optimization problem, and take G = uI − βAT A:

min d2
C(x)

s.t. Ax = b.
(5.1)

Using WPADMM to solve (5.1), we havexk+1 =
1

1 + β
(−βAT b − ATλk),

λk+1 = λk − sβ(Axk+1 − b).

Using PSRADMM to solve (5.1), we have
λk+ 1

2 = λk − γβ(Axk − b),

xk+1 =
1

1 + β
(−βAT b − ATλk+ 1

2 ),

λk+1 = λk+ 1
2 − sβ(Axk+1 − b).

In numerical experiments, A is a randomly generated m × n matrix. The initial point x0 belongs to
rand(n, 1), and the initial point λ0 is taken as the zero vector. In addition, the selection of correlation
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coefficients in WPADMM and PSRADMM is consistent, which are β = 12, s = r = 10
12 . When

∥ωk+1 − ωk∥ < ε, the program terminates. In this section, we set ε = 10−5.

We solve problem (5.1) using WPADMM and PSRADMM, and selected six different dimensions
of A for testing. Table 1 provides a comprehensive overview of the primary test outcomes pertaining
to both algorithms, encompassing vital metrics such as iteration number and runtime. Figures 1 and 2
show the main numerical test results of the two algorithms, where iter (k) and Time/s represent the
number of iterations and CPU calculation time in seconds, respectively.

Upon thorough examination of Figures 1 and 2, we can see that the PSRADMM consistently
outperforms the WPADMM in terms of both runtime efficiency and convergence behavior, as
reflected by the iteration number. This observation suggests that the PSRADMM exhibits enhanced
computational efficiency and convergence speed compared to the WPADMM.

Table 1. Comparison of runtime and iteration number between WPADMM and PSRADMM.

WPADMM PSRADMM

m n Iter(k) Time(s) Iter(k) Time(s)
500 600 98 0.22677 89 0.15130
600 700 96 0.32404 87 0.24033
700 800 94 0.42846 86 0.33881
800 900 93 0.55322 85 0.45505
900 1000 92 0.67306 84 0.56656
1000 1000 92 0.73150 83 0.62536

Figure 1. Comparison of runtime between WPADMM and PSRADMM.
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Figure 2. Comparison of iteration number between WPADMM and PSRADMM.

Inspired by Godwin et al. [8], we apply the algorithm to image processing for deblurring. First, we
blur the original image using a Gaussian blur kernel with a size of 15*15 and a standard deviation with
a size of 2 to obtain the blurred image (See Figures 3–6).

Figure 3. From left to right: original image of Cameraman, blurred image of Cameraman,
WPADMM restored image of Cameraman, PSRADMM restored image of Cameraman.

Figure 4. From left to right: original image of Pepper, blurred image of Pepper, WPADMM
restored image of Pepper, PSRADMM restored image of Pepper.
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Figure 5. From left to right: original image of Boat, blurred image of Boat, WPADMM
restored image of Boat, PSRADMM restored image of Boat.

Figure 6. From left to right: original image of Alex, blurred image of Alex, WPADMM
restored image of Alex, PSRADMM restored image of Alex.

We can see from the Figures 3–6 that PSRADMM has a better deblurring effect than WPADMM.
However, we still need to evaluate the effectiveness of deblurring based on two indicators: peak signal-
to-noise ratio (PSNR:= 10log10

2552
√

MS E
) and structural similarity index (SSIM).

From Table 2, we can see that the PSNR of PSRADMM is better than that of WPADMM restored
images. Measure 1: A higher PSNR value indicates that the difference between the processed
image and the original image is small, usually indicating higher image quality. The PSNR value of
PSRADMM is higher. Measure 2: An SSIM value close to 1 indicates a higher similarity in brightness,
contrast, and structure between the processed image and the original image, usually indicating better
image quality. The SSIM value of the PSRADMM algorithm is closer to 1.

Table 2. The numerical results of the experiment.

Index Algorithm Value
PSNR PSRADMM 43.22

WPADMM 21.33
SSIM PSRADMM 0.7656

WPADMM 0.5274

Finally, we validate the feasibility and effectiveness of the algorithm through image enhancement.
Figures 7 and 8 show the images displayed using image enhancement techniques using the WPADMM
and PSRADMM algorithms, respectively.
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Figure 7. Image enhancement of WPADMM.

Figure 8. Image enhancement of PSRADMM.

From Table 3, we can see that the image enhancement effect of PSRADMM is better than that of
the WPADMM by comparing PSNR and SSIM.

Table 3. The numerical results of the experiment.

Index Algorithm Value
PSNR PSRADMM 40.52

WPADMM 28.42
SSIM PSRADMM 0.9093

WPADMM 0.6574

6. Conclusions

In this article, we propose a partially symmetric regularized alternating direction multiplier method
to solve non-convex split feasibility problems. A conclusion on global convergence is drawn. When
the augmented Lagrangian function satisfies the KL property, the algorithm has strong convergence.
In addition, this article provides the convergence rate of the algorithm. Finally, in the compressed
sensing problem, numerical experiments have shown that our proposed algorithm outperforms existing
weighted proximal symmetric regularized alternating direction multiplier methods for solving non-
convex SFP. And, we applied the PSRADMM to image processing with good experimental results.
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