Semi-open queueing networks are suitable for modeling complex manufacturing, health care, and logistics systems. Such networks are different from more well-known open queueing networks because the number of users, that can be serviced in the network simultaneously is restricted by a finite constant. The network loses customers who arrive when its capacity reaches its limit. This paper examined an analytical model characterized by features like the possibility to capture potential correlations in the arrival process by assuming the marked Markov arrival process and modify service rates in the network's nodes depending on the number of users currently processed in the network. A hysteresis strategy for dynamic service rate selection was assumed. Fixing the thresholds of this strategy, the behavior of the network was determined by a continuous-time multidimensional Markov chain with a finite state that is a quasi-birth-and-death process. An explicit formula for the generator of this process was obtained. Expressions for the computation of network performance measures were derived. Numerical results highlight the dependence of some measures on thresholds defining the control policy, and their use to optimize the system is illustrated.
Citation: Ciro D'Apice, Alexander Dudin, Sergei Dudin, Rosanna Manzo. Study of a semi-open queueing network with hysteresis control of service regimes[J]. AIMS Mathematics, 2025, 10(2): 3095-3123. doi: 10.3934/math.2025144
Semi-open queueing networks are suitable for modeling complex manufacturing, health care, and logistics systems. Such networks are different from more well-known open queueing networks because the number of users, that can be serviced in the network simultaneously is restricted by a finite constant. The network loses customers who arrive when its capacity reaches its limit. This paper examined an analytical model characterized by features like the possibility to capture potential correlations in the arrival process by assuming the marked Markov arrival process and modify service rates in the network's nodes depending on the number of users currently processed in the network. A hysteresis strategy for dynamic service rate selection was assumed. Fixing the thresholds of this strategy, the behavior of the network was determined by a continuous-time multidimensional Markov chain with a finite state that is a quasi-birth-and-death process. An explicit formula for the generator of this process was obtained. Expressions for the computation of network performance measures were derived. Numerical results highlight the dependence of some measures on thresholds defining the control policy, and their use to optimize the system is illustrated.
[1] |
D. Roy, Semi-open queuing networks: a review of stochastic models, solution methods and new research areas, Int. J. Product. Res., 54 (2016), 1735–1752. https://doi.org/10.1080/00207543.2015.1056316 doi: 10.1080/00207543.2015.1056316
![]() |
[2] |
Y. Dallery, Approximate analysis of general open queuing networks with restricted capacity, Perform. Evaluation, 11 (1990), 209–222, https://doi.org/10.1016/0166-5316(90)90013-9 doi: 10.1016/0166-5316(90)90013-9
![]() |
[3] |
S. Otten, R. Krenzler, L. Xie, H. Daduna, K. Kruse, Analysis of semi-open queuing networks using lost customers approximation with an application to robotic mobile fulfilment systems, OR Spectrum, 44 (2022), 603–648. https://doi.org/10.1007/s00291-021-00662-9 doi: 10.1007/s00291-021-00662-9
![]() |
[4] |
B. Avi-Itzhak, D. P. Heyman, Approximate queuing models for multiprogramming computer systems, Oper. Res., 21 (1973), 1212–1230. https://doi.org/10.1287/opre.21.6.1212 doi: 10.1287/opre.21.6.1212
![]() |
[5] |
J. Jia, S. Heragu, Solving semi-open queuing networks, Oper. Res., 57 (2009), 391–401. https://doi.org/10.1287/opre.1080.0627 doi: 10.1287/opre.1080.0627
![]() |
[6] |
B. Ekren, S. Heragu, A. Krishnamurthy, C. Malmborg, Matrix-geometric solution for semi-open queuing network model of autonomous vehicle storage and retrieval system, Comput. Ind. Eng., 68 (2014), 78–86. https://doi.org/10.1016/j.cie.2013.12.002 doi: 10.1016/j.cie.2013.12.002
![]() |
[7] |
J. Kim, A. Dudin, S. Dudin, C. Kim, Analysis of a semi-open queueing network with Markovian arrival process, Perform. Evaluation, 120 (2018), 1–19. https://doi.org/10.1016/j.peva.2017.12.005 doi: 10.1016/j.peva.2017.12.005
![]() |
[8] |
C. Kim, S. Dudin, A. Dudin, K. Samouylov, Analysis of a semi-open queuing network with a state dependent marked Markovian arrival process, customers retrials and impatience, Mathematics, 7 (2019), 715. https://doi.org/10.3390/math7080715 doi: 10.3390/math7080715
![]() |
[9] |
C. Kim, S. Dudin, Analysis of semi-open queueing network with customer retrials, J. Korean Inst. Indust. Eng., 45 (2019), 193–202. https://doi.org/10.7232/JKIIE.2019.45.3.193 doi: 10.7232/JKIIE.2019.45.3.193
![]() |
[10] |
S. Dudin, A. Dudin, R. Manzo, L. Rarità, Analysis of semi-open queueing network with correlated arrival process and multi-server nodes, Oper. Res. Forum, 5 (2024), 99. https://doi.org/10.1007/s43069-024-00383-z doi: 10.1007/s43069-024-00383-z
![]() |
[11] |
M. Amjath, L. Kerbache, A. Elomri, J. M. Smith, Queueing network models for the analysis and optimisation of material handling systems: a systematic literature review, Flex. Serv. Manuf. J., 36 (2024), 668–709. https://doi.org/10.1007/s10696-023-09505-x doi: 10.1007/s10696-023-09505-x
![]() |
[12] |
J. Mao, J. Cheng, X. Li, H. Zhao, C. Lin, Modelling analysis of a four-way shuttle-based storage and retrieval system on the basis of operation strategy, Appl. Sci., 13 (2023), 3306. https://doi.org/10.3390/app13053306 doi: 10.3390/app13053306
![]() |
[13] | P. Legato, R. M. Mazza, Queueing networks for supporting container storage and retrieval, Maritime Bus. Rev., 8 (2023) 301–317. https://doi.org/10.1108/MABR-01-2023-0009 |
[14] | H. Xie, T. J. Chaussalet, M. Rees, A semi-open queueing network approach to the analysis of patient flow in healthcare systems, In: Proceedings of the 20th IEEE International Symposium on Computer-Based Medical Systems. IEEE CBMS 2007, Maribor, Slovenia, 20–22 June 2007 Los Alamitos, USA IEEE, 2007,719–724. https://doi.org/10.1109/CBMS.2007.12 |
[15] |
P. Yang, G. Jin, G. Duan, Modelling and analysis for multi-deep compact robotic mobile fulfilment system, Int. J. Product. Res., 60 (2022), 4727–4742. https://doi.org/10.1080/00207543.2021.1936264 doi: 10.1080/00207543.2021.1936264
![]() |
[16] |
L. Luo, N. Zhao, Y. Zhu, Y. Sun, A guiding DQN algorithm for automated guided vehicle pathfinding problem of robotic mobile fulfillment systems, Comput. Indust. Eng., 178 (2023), 109112. https://doi.org/10.1016/j.cie.2023.109112 doi: 10.1016/j.cie.2023.109112
![]() |
[17] |
J. Lu, C. Ren, Y. Shao, J. Zhu, X. Lu, An automated guided vehicle conflict-free scheduling approach considering assignment rules in a robotic mobile fulfillment system, Comput. Indust. Eng., 176 (2023), 108932. https://doi.org/10.1016/j.cie.2022.108932 doi: 10.1016/j.cie.2022.108932
![]() |
[18] |
G. Jiao, H. Li, M. Huang, Online joint optimization of pick order assignment and pick pod selection in robotic mobile fulfillment systems, Comput. Indust. Eng., 175 (2023), 108856. https://doi.org/10.1016/j.cie.2022.108856 doi: 10.1016/j.cie.2022.108856
![]() |
[19] |
G. Tadumadze, J. Wenzel, S. Emde, F. Weidinger, R. Elbert, Assigning orders and pods to picking stations in a multi-level robotic mobile fulfillment system, Flex. Serv. Manuf. J., 35 (2023), 1038–1075. https://doi.org/10.1007/s10696-023-09491-0 doi: 10.1007/s10696-023-09491-0
![]() |
[20] |
H. Li, H. Zhu, D. Xu, X. Lin, G. Jiao, Y. Song, et al., Dynamic task allocation based on auction in robotic mobile fulfilment system, J. Indust. Manag. Optim., 19 (2023), 7600–7615. https://doi.org/10.3934/jimo.2023010 doi: 10.3934/jimo.2023010
![]() |
[21] |
T. Lamballais, M. Merschformann, D. Roy, M. B. M. de Koster, K. Azadeh, L. Suhl, Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand, European J. Oper. Res., 300 (2022), 937–952. https://doi.org/10.1016/j.ejor.2021.09.001 doi: 10.1016/j.ejor.2021.09.001
![]() |
[22] |
W. Chen, P. Wu, Y. Gong, Z. Zhang, K. Wang, The role of energy consumption in robotic mobile fulfillment systems: Performance evaluation and operating policies with dynamic priority, Omega, 130 (2025), 103168. https://doi.org/10.1016/j.omega.2024.103168 doi: 10.1016/j.omega.2024.103168
![]() |
[23] |
Y. Luo, M. Chen, L. Zeng, C. Zhang, Production system configuration design for an unmanned manufacturing factory, Indust. Eng. Appl., 35 (2023), 13–22. https://doi.org/10.3233/ATDE230026 doi: 10.3233/ATDE230026
![]() |
[24] |
X. R. Chen, X. P. Liu, A. L. Yu, An integrated queuing network model for optimizing multi-level AVS/RS performance in multi-floor manufacturing environments, IEEE Access, 12 (2024), 181741–181755. https://doi.org/10.1109/ACCESS.2024.3507283 doi: 10.1109/ACCESS.2024.3507283
![]() |
[25] |
M. F. Neuts, A versatile Markovian point process, J. Appl. Prob., 16 (1979), 764–779. https://doi.org/10.2307/3213143 doi: 10.2307/3213143
![]() |
[26] |
D. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Commun. Stat. Stochast. Models, 7 (1991), 1–46. https://doi.org/10.1080/15326349108807174 doi: 10.1080/15326349108807174
![]() |
[27] | S. R. Chakravarthy, The batch Markovian arrival process: A review and future work, Adv. Probab. Theory Stoch. Process, 1 (2001), 21-49. |
[28] | S. R. Chakravarthy, Introduction to matrix-analytic methods in queues 1: analytical and simulation approach-basics, In: ISTE Ltd, London and John Wiley and Sons, New York, 2022. https://doi.org/10.1002/9781394165421 |
[29] | S. R. Chakravarthy, Introduction to matrix-analytic methods in queues 2: analytical and simulation approach-queues and simulation, In: ISTE Ltd, London and John Wiley and Sons, New York, 2022. https://doi.org/10.1002/9781394174201 |
[30] | A. N. Dudin, V. I. Klimenok, V. M. Vishnevsky, The theory of queuing systems with correlated flows, Berlin: Springer, 2020. https://doi.org/10.1007/978-3-030-32072-0 |
[31] | M. Gonzalez, R. E. Lillo, J. Ramirez Cobo, Call center data modeling: a queueing science approach based on Markovian arrival processes, Qual. Technol. Quant. Manag., 2024. http://doi.org/10.1080/16843703.2024.2371715 |
[32] | Q. M. He, Queues with marked customers, Adv. Appl. Prob., 28 (1996), 567–587. |
[33] |
T. B. Crabill, Optimal control of a service facility with variable exponential service times and constant arrival rate, Manag. Sci., 18 (1972), 560–566. https://doi.org/10.1287/mnsc.18.9.560 doi: 10.1287/mnsc.18.9.560
![]() |
[34] |
H. C. Tijms, On the optimality of a switch-over policy for controlling the queue size in a $M/G/1$ queue with variable service rate, Lecture Notes Comput. Sci., 40 (1976), 736–742. https://doi.org/10.1007/3-540-07622-0_506 doi: 10.1007/3-540-07622-0_506
![]() |
[35] |
A. Dudin, Optimal multithreshold control for a $BMAP/G/1$ queue with $N$ service modes, Queueing Syst., 30 (1998), 273–287. https://doi.org/10.1023/A:1019121222439 doi: 10.1023/A:1019121222439
![]() |
[36] |
C. S. Kim, V. Klimenok, A. Birukov, A. Dudin, Optimal multi-threshold control by the $BMAP/SM/1$ retrial system, Ann. Oper. Res., 141 (2006), 193–210. https://doi.org/10.1007/s10479-006-5299-3 doi: 10.1007/s10479-006-5299-3
![]() |
[37] |
R. D. Nobel, H. C. Tijms, Optimal control for an $M^X/G/1$ queue with two service modes, European J. Oper. Res., 113 (1999), 610–619. https://doi.org/10.1016/S0377-2217(98)00085-X doi: 10.1016/S0377-2217(98)00085-X
![]() |
[38] |
A. Dudin, Optimal control for an $M^X/G/1$ queue with two operation modes, Prob. Eng. Inform. Sci., 11 (1997), 255–265. 10.1017/S0269964800004794 doi: 10.1017/S0269964800004794
![]() |
[39] |
A. N. Dudin, S. Nishimura, Optimal control for a $BMAP/G/1$ queue with two service modes, Math. Prob. Eng., 5 (1999), 255–273. https://doi.org/10.1155/S1024123X99001088 doi: 10.1155/S1024123X99001088
![]() |
[40] |
V. Ramaswami, D. M. Lucantoni, Algorithms for the multi-server queue with phase type service, Stochastic Models, 1 (1985), 393–417. https://doi.org/10.1080/15326348508807020 doi: 10.1080/15326348508807020
![]() |
[41] |
S. Sharma, R. Kumar, B. S. Soodan, P. Singh, Queuing models with customers' impatience: a survey, Int. J. Math. Oper. Res., 26 (2023), 523–547. https://doi.org/10.1504/IJMOR.2023.135546 doi: 10.1504/IJMOR.2023.135546
![]() |
[42] | A. Graham, Kronecker products and matrix calculus with applications, New York: Courier Dover Publications, 2018. |
[43] |
C. S. Kim, S. A. Dudin, O. S. Taramin, J. Baek, Queueing system $MAP/PH/N/N+R$ with impatient heterogeneous customers as a model of call center, Appl. Math. Model., 37 (2013), 958–976. https://doi.org/10.1016/j.apm.2012.03.021 doi: 10.1016/j.apm.2012.03.021
![]() |
[44] |
H. Baumann, W. Sandmann, Numerical solution of level dependent quasi-birth-and-death processes, Proc. Comput. Sci., 1 (2010), 1561–1569. https://doi.org/10.1016/j.procs.2010.04.175 doi: 10.1016/j.procs.2010.04.175
![]() |
[45] |
M. Xi, W. Sun, J. Chen, Survey of derivative-free optimization, Numer. Algebra Control Optim., 10 (2020), 537–555. https://doi.org/10.3934/naco.2020050 doi: 10.3934/naco.2020050
![]() |
[46] |
J. Larson, M. Menickelly, S. M. Wild, Derivative-free optimization methods, Acta Numer., 28 (2019), 287–404. https://doi.org/10.1017/S0962492919000060 doi: 10.1017/S0962492919000060
![]() |
[47] |
A. Dudin, S. Dudin, A. Melikov, O. Dudina, Framework for analysis of queueing systems with correlated arrival processes and simultaneous service of a restricted number of customers in scenarios with an infinite buffer and retrials, Algorithms, 17 (2024), 493. https://doi.org/10.3390/a17110493 doi: 10.3390/a17110493
![]() |