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Abstract: Semi-open queueing networks are suitable for modeling complex manufacturing, health
care, and logistics systems. Such networks are different from more well-known open queueing
networks because the number of users, that can be serviced in the network simultaneously is restricted
by a finite constant. The network loses customers who arrive when its capacity reaches its limit. This
paper examined an analytical model characterized by features like the possibility to capture potential
correlations in the arrival process by assuming the marked Markov arrival process and modify service
rates in the network’s nodes depending on the number of users currently processed in the network.
A hysteresis strategy for dynamic service rate selection was assumed. Fixing the thresholds of this
strategy, the behavior of the network was determined by a continuous-time multidimensional Markov
chain with a finite state that is a quasi-birth-and-death process. An explicit formula for the generator
of this process was obtained. Expressions for the computation of network performance measures were
derived. Numerical results highlight the dependence of some measures on thresholds defining the
control policy, and their use to optimize the system is illustrated.
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1. Introduction

Semi-open queueing networks (SOQNs), also referred to as open queues with restricted capacity,
have garnered the attention of the stochastic modeling research community in recent years; see the
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survey [1] and the paper [2]. SOQNs are characterized by users, who would like to receive service,
arriving from an infinite population of sources and permanently departing from the network after
service, as in open queueing networks. However, only a restricted number of users can receive service
in the network at the same time, as in closed networks.

A SOQN can be organized into a complex consisting of a set of orders (permissions, windows,
threads, tokens, operators, robots, automated guided vehicles, etc.) required to begin service and a core
(inner) network, whose nodes are dedicated to providing service for an admitted user. If an arriving
user finds an available order in the set, the user enters the core network and sequentially receives
service in its nodes. After the end of service in the required sequence of nodes, the user leaves the core
network and returns the order, that was received at the entrance to the set of orders. If the set is empty
at a user arrival instant, then the user joins a buffer and waits for an order release (this kind of service
organization is called back-ordering SOQN, see [3]) or is lost (called user loss SOQN).

As stated in [1], the utilization of SOQNs originates from the study [4] conducted by Avi-Itzhak
and Heyman, who examined the efficacy of a multi-programming computer system. In that system,
multiple tasks can be executed concurrently, with the central processor managing one task while
peripheral devices attend to other tasks.

Brief overviews of the research on SOQN analysis may be found, for example, in [1, 5–7] and
more recent publications [3, 8–13] and references therein. Examples of possible applications of
SOQNs are listed in [1], as follows: manufacturing material control rules commonly implemented in
manufacturing shops to manage the inventory of both finished goods and work-in-process; modeling
the operation of vehicle rental providers, where users borrow vehicles from rental depots and return
them after the rental time; modeling systems for storage and retrieval based on autonomous vehicles;
modeling communication networks based on window flow control; and modeling health-care systems
to accurately depict the dynamics of patient-resource waiting, see also [14]. Unmanned
manufacturing factories (UMFs) and robotic mobile fulfillment systems (RMFSs) are also very
common applications of SOQNs; see, for example, [3, 15–24].

The vast bulk of analytical models of SOQNs currently available in the literature, as well as open
and closed queueing networks, assume that the arrival flow of users is determined by the stationary
Poisson process. However, it is widely acknowledged that modern real-world arrival processes are
poorly fitted by such process. It may be too optimistic to predict real-world systems’ performance
metrics assuming that the stationary Poisson process describes the arrival flow. This is due to its
constant arrival rate, relatively low variance, and zero coefficient of correlation for the sequential inter-
arrival periods. Therefore, any irregularity in the arrival process, which is the inherent feature of the
majority of real flows, is ignored. Namely, the existence of periods of peak rates leads to congestion
and worsens the performance characteristics of the system.

As a much more adequate model of real-world arrival processes, M. Neuts [25] introduced the
versatile arrival process, later called the Markov arrival process (MAP), see [26]. More information
about the MAP and its extension, such as the batch Markov arrival process (BMAP), can be found,
e.g., in [27–31]. To our knowledge, a SOQN with the MAP is only taken into consideration in a small
number of articles; see the corresponding references in [7–9].

The MAP assumes that arriving users are of the same type. A more general model of the arrival
process is the MMAP (marked Markov arrival process), in which arriving users are heterogeneous;
see, e.g., [32]. A SOQN with multi-server nodes and the MMAP, where the type of user predefines the
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node in the network where the first service of the user is performed, was recently considered in [10].
In this paper, we analyze a SOQN with the MMAP and single-server nodes. The novelty of the

model, compared to all existing literature that examines SOQN, consists of the possibility of changing
the rate of service in the nodes of the network depending on the number of users admitted to the
network.

The literature devoted to the analysis of various controlled queues, including control by the arrival
rate, service rate, or number of active servers, is huge. This is easily explained by the fast
technological development and consequent possibilities to monitor the state of a real-world system or
network and dynamically change the service regime correspondingly. Such control can provide a
significant economic effect due to the possibility of regime management in such a way that fast but
expensive service regimes are temporarily used only in the case of high system congestion.

Control by the service rate in the nodes can be implemented via the use of equipment with distinct
performance (e.g., leasing of channels or routers with different bandwidths in telecommunication
networks) or the use of various numbers of workers providing service in a node. High-performance
equipment and (or) more staff can be used when the quantity of users receiving service in the network
is large, which may imply a long delay of the user in the network, possible dissatisfaction with the
quality of service, and possible choice of another service provider in the future. When the network
is less congested, it makes sense to use lower-performance equipment and (or) less staff to spend less
money on service provision.

As early papers that examine queues with controlled service rates, we can mention [33, 34]. When
the system has several available service regimes listed in ascending order of service rate (and,
correspondingly, increased cost), it is proved that the optimal control policy is monotone, i.e., of the
multi-threshold type. This policy is defined by the set of integer numbers (thresholds). Selection of
the service rate at decision moments is performed based on the relationship between the system’s
current user count and the predetermined thresholds. An application of such a type of policy to the
BMAP/G/1 queue with a controlled service time, which can be varied at moments of service
completion, was implemented in [35]. The BMAP/SM/1-type queueing system with a multi-threshold
control by the service rate, semi-Markov service process, and user retrials in the case of a busy server
was analyzed in [36].

One drawback of the threshold policy is that when the current number of users in the system
approaches a certain threshold, there is a chance that the service rate will fluctuate often, a
phenomenon known as oscillation. To overcome this negative phenomenon (due to the possible time
loss or charge for the switching), the so-called hysteresis strategy has been offered. This type of
strategy assumes that each policy threshold can be split into two thresholds. The rate of service
increases when the larger of these two thresholds is exceeded. When the length of a queue drops to a
smaller threshold, the service slows. The system stays in the prior regime when the queue length falls
between the thresholds. This delay in switching (called hysteresis in Greek) leads to a decrease in the
frequency of regime switching.

The Mx/G/1-type queueing system with two available service regimes, a batch stationary Poisson
arrival process, a general distribution of service time, an account of switch-over times, and a
hysteresis policy of control was considered in [37, 38]. The result was generalized to the
BMAP/G/1-type queueing system in [39]. An analysis of the queue with hysteresis control is more
tricky than that of the same type of queue with threshold control. This is because, given the fixed

AIMS Mathematics Volume 10, Issue 2, 3095–3123.



3098

values of the thresholds of the threshold policy, the choice of a service rate at a decision instant is
uniquely determined by the current number of users in the network. In the case of the hysteresis
policy of control, selection depends also on the service rate used before the moment of
decision-making.

In this paper, we consider a user loss SOQN with arbitrary topology, an arriving flow defined by
the MMAP, the availability of a finite number L, L ≥ 2, of service regimes, stochastic routing, and
the hysteresis type of control by the service rates in the nodes. An exact algorithmic study of the
steady-state dynamic of the network is implemented and numerically illustrated.

The structure of the paper is as follows. The description of the SOQN under study is presented
in Section 2. The topology of the network is explained, a necessary notation is presented, and the
hysteresis-type control policy is defined in detail. In Section 3, a multidimensional continuous-time
Markov chain defining the system behavior under the fixed set of thresholds of the control strategy is
introduced. The methodology tracing back to [40] is used here for keeping track of the number of users
residing in all nodes of the network. The explicit form of the infinitesimal generator of this Markov
chain is derived. Formulas for the calculation of a variety of performance measures of the network via
the vectors of the steady-state probabilities of the Markov chain are given in Section 4. A numerical
illustration of how the algorithmic results can be used for the analysis of the network consisting of 3
nodes, having 3 different service regimes, and an opportunity to simultaneously accommodate up to 40
users is presented in Section 5. Section 6 summarizes the results of the implemented study and briefly
discusses possible directions for further research.

2. An explanation of the model

Let us consider a SOQN that consists of K nodes. The illustration of the network structure is
presented in Figure 1.

Figure 1. Structure of the network.

Arrivals of users follow a marked Markov arrival process (MMAP). The irreducible underlying
Markov chain {vt, t ≥ 0} with the state space {1, . . . ,V} governs this process. The generator H of this
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chain is represented by the form

H =
K∑

k=0

Hk

where the diagonal entries of the matrix H0 are negative. The rates at which the chain {vt, t ≥ 0}
exits the appropriate states are determined by their moduli. The non-diagonal entries of the matrix H0

are nonnegative and specify the rates at which the chain {vt, t ≥ 0} makes transitions without users
arriving. The nonnegative entries in the matrix Hk specify the rates at which the chain {vt, t ≥ 0}
transits when a user arrives at the network’s k-th node, k = 1,K. The expression k = 1,K indicates that
the integer variable k takes values in the set {1, 2, . . . ,K}.

The average rate of arrivals to the k-th node of the network is calculated as λk = θHke, k = 1,K,
where the row vector θ defines the stationary probability distribution of the states of the chain {vt, t ≥
0}. The vector θ satisfies the equations θH = 0, θe = 1. Here, 0 represents the row vector with 0s, and

e represents the column vector with 1s. The total rate of arrivals is defined as λ =
K∑

k=1
λk.

Various details on the MMAP, its properties, and attributes, such as the distribution of moments of
inter-arrival times, the coefficients of variation, and the correlation of inter-arrival times, can be found,
for example, in [27–30, 32].

The network can process a maximum of N users simultaneously. When there are N users on the
network, the user who arrives is regarded as lost. Every network’s node functions as a queueing system
having a single-server and a buffer with a capacity that is large enough to ensure that users are never
lost.

The network can serve users in L, L ≥ 2, regimes. If the current service regime is l, the distribution
of service time in the k-th node is exponential with intensity µ(l)

k , l = 1, L. After service completion at
the k-th node, with probability pk,k′ the user transits for service to the k′-th node, k′ = 1,K, k′ , k, or

with probability pk,0 ends service in the network. Here, pk,k = 0,
K∑

k′=0
pk,k′ = 1 for all k, k = 1,K.

The switching between the available service regimes is implemented by the following control
strategy.

Let two sets of integer numbers (thresholds), {L+1 , L
+
2 , . . . , L

+
L−1} and {L−1 , L

−
2 , . . . , L

−
L−1}, such that

0 ≤ L−1 ≤ L+1 < L−2 ≤ L+2 < · · · < L−L−1 ≤ L+L−1 < N

be fixed.
We assume that the network instantly transitions to operating in the (l + 1)-th regime if the number

of users exceeds the threshold L+l and the current regime is l. For example, if the network operates in
the first service regime, the number of users in the network is L+1 , a new user is admitted to the network,
and the service is immediately switched to the second regime.

If some user leaves the network when it operates in the l-th regime, 2 ≤ l ≤ L, and the number
of users in the network drops to the value L−l−1, the network immediately switches to operation in the
(l − 1)-th regime.

Let us present the sets listed below:

W1 = {0, 1, . . . , L−1 }, Wl = {L+l−1 + 1, L+l−1 + 2, . . . , L−l }, l = 2, L − 1,

WL = {L+L−1 + 1, L+L−1 + 2, . . . ,N},
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Fl = {L−l + 1, L−l + 2, . . . , L+l }, l = 1, L − 1.

The network functions in the l-th regime if the quantity of users in the network equals n and n ∈
Wl, l = 1, L, as stated in the model description. If n ∈ Fl, l = 1, L − 1, the network can operate in both
the l-th and (l + 1)-th regime, and the used regime has to specified.

The impatience of users (leaving the queue without receiving service because they waited in the
buffer for too long) is an essential feature of many real-world systems. For a survey of the literature
dealing with queues with impatient users, see, e.g., [41]. To take the impatience phenomenon into
account, we assume the impatience of the users waiting in the buffers of the nodes of the network. A
user in the k-th buffer reneges after an amount of time that is exponentially distributed with intensity
βk, k = 1,K, independently from other users who are waiting. Such a user permanently reneges from
the network (is lost).

We aim to analyze the invariant distribution of the network states and derive expressions for the
calculation of the main performance characteristics of the network under the arbitrarily fixed values of
the thresholds. As a result, a variety of optimization issues can be formulated and resolved.

3. The process that describes the network states’ dynamics

The continuous-time Markov chain

ζt = {nt, it, vt,m
(1)
t , . . . ,m

(K)
t }, t ≥ 0,

can be used to define the behavior of the considered network.
Here, during the instant t,

• the component nt defines the quantity of users in the network, nt = 0,N;
• the component it is an indicator of the current regime of the network operation. It is defined only

for the values nt such that nt ∈ Fl, l = 1, L − 1. It admits values 0 or 1. Namely, the value it = 0
indicates the operation in the l-th regime, and it = 1 indicates the operation in the (l+1)-th regime;
• the component vt specifies the status of the underlying process of the MMAP, vt = 1,V;

• the component m(k)
t defines the quantity of users in the k-th node, m(k)

t = 0, nt,
K∑

k=1
m(k)

t = nt,

k = 1,K.

Let us call the set {nt, it, vt,m
(1)
t , . . . ,m

(K)
t } of the states of Markov chain ζt, t ≥ 0 enumerated in the

reverse lexicographic order of the processes m(1)
t , . . . ,m

(K)
t and the direct lexicographic order of the

processes (it, vt) as level nt.

The Markov chain {ζt, t ≥ 0} is regular and irreducible. Its state space is finite. Therefore, the
invariant probabilities of the states of this chain

π(n, i, v,m(1), . . . ,m(K)) = lim
t→∞

P{nt = n, it = i, vt = v,m(1)
t = m(1), . . . ,m(K)

t = m(K)}

exist for all possible values of the queuing network’s parameters.
The probability of the states that correspond to the level n, n = 0,N, can be formed as row vectors

πn. The probability vectors πn, n = 0,N, can be computed as the solution of the system of linear
algebraic equations (known as Chapman-Kolmogorov, balance, or equilibrium equations):

(π0,π1, . . . ,πN)Q = 0, (π0,π1, . . . ,πN)e = 1 (1)
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where the matrix Q represents the generator of the Markov chain {ζt, t ≥ 0}.
To calculate the vectors πn, n = 0,N, the exact expression for the generator Q must be obtained.
Let us present the following notation for future use in this paper:

• O is a zero matrix of the suitable size, and I is the identity matrix. If the size is not clear from
context, it is indicated by a suffix, e.g., IK is the identity matrix of size K;
• the symbols ⊗ and ⊕ represent the Kronecker product and sum of matrices, respectively; refer

to [42];
• b(k) is a vector of size K defined as b(k) = {0, 0, . . . , 0, 1︸         ︷︷         ︸

k

, 0, . . . , 0}, k = 1,K;

• diag{. . . } denotes the diagonal matrix with the diagonal entries shown in brackets;
• Ω(l), l = 1, L, is the square matrix of dimension K defined as:

Ω(l) = diag{µ(l)
k , k = 1,K}(−I + P), l = 1, L,

where the matrix P with the entries pk,k′ , k, k′ = 1,K, defines the one-step transition probabilities
of a user within the network;
• p(l), l = 1, L, is the column vector defined as p(l) = (p(l)

1 , p
(l)
2 , . . . , p

(l)
K )T where

p(l)
k = pk,0µ

(l)
k , k =1,K;

• β is the column vector defined as β = (β1, β2, . . . , βK)T .

Let us first introduce the set of matrices that describe the behaviour of the K-dimensional stochastic
process mt = {m

(1)
t , . . . ,m

(K)
t }, t ≥ 0, defining the quantity of users in each node of the network. To

define the transition rates of this process, conditioned on the knowledge that n users are present in the
network working in the l-th regime at instant t, we need the following matrices:

a) the matrix Tn(Ω(l)) establishes the process mt, t ≥ 0, of transition intensities at the precise instant
when a user ends the service in one network’s node and moves on to another node, n = 1,N, l =
1, L.
The following six steps make up the procedure for calculating the matrices Tn(Ω(l)), n = 1,N, l =
1, L :

(1) Determine the matrices Ω(l)
k , k = 1,K − 2, that result from subtracting the K −2− k first rows

and columns from the matrix Ω(l).

(2) Calculate the set of matrices X(r,l)
n,k using the recursive formulas:

X(0,l)
n,k = ω

k,l
r(l)

k ,1
, n = 1,N, k = 1,K − 2,

X(r,l)
n,k =



ωk,l
r(l)

k −r,1
I O · · · O

X(r−1,l)
1,k ωk,l

r(l)
k −r,1

I · · · O

O X(r−1,l)
2,k · · · O

...
...

. . .
...

O O · · · ωk,l
r(l)

k −r,1
I

O O · · · X(r−1,l)
n,k


,
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r = 1, r(l)
k − 2, n = 1,N, k = 1,K − 2, l = 1, L,

where ωk,l
i1,i2

is the (i1, i2)th entry of the matrix Ω(l)
k , and r(l)

k represents how many rows there
are in the matrix Ω(l)

k .
(3) Utilizing the recursive formulas, determine the set of the matrices Y (r,l)

n,k :

Y (0,l)
n,k = ω

k,l
1,r(l)

k

, n = 0,N − 1, k = 1,K − 2,

Y (r,l)
n,k =



ωk,l
1,r(l)

k −r
I Y (r−1,l)

0,k O · · · O O

O ωk,l
1,r(l)

k −r
I Y (r−1,l)

1,k · · · O O
...

...
...

. . .
...

...

O O O · · · ωk,l
1,r(l)

k −r
I Y (r−1,l)

n,k


,

r = 1, r(l)
k − 2, n = 0,N − 1, k = 1,K − 2, l = 1, L.

(4) Calculate the matrices X(l)
n,k = X(rk−2,l)

n,k , n = 1,N, and Y (l)
n,k = Y (rk−2,l)

n,k , n = 0,N − 1, k =
1,K − 2, l = 1, L.

(5) Calculate the matrices T (k,l)
n = T

(k,l)
n (Ω(l)) using the recursive formulas:

T (0,l)
n =



O Ω
(l)
K−1,K O · · · O O

Ω
(l)
K,K−1 O Ω

(l)
K−1,K · · · O O

O Ω
(l)
K,K−1 O · · · O O

...
...

...
. . .

...
...

O O O · · · O Ω
(l)
K−1,K

O O O · · · Ω
(l)
K,K−1 O


,

n = 1,N, l = 1, L,

T (k,l)
n =



O Y (l)
0,k O · · · O O

X(l)
1,k T

(k−1,l)
1 Y (l)

1,k · · · O O

O X(l)
2,k T

(k−1,l)
2 · · · O O

...
...

...
. . .

...
...

O O O · · · T
(k−1,l)
n−1 Y (l)

n−1,k

O O O · · · X(l)
n,k T

(k−1,l)
n


,

n = 1,N, k = 1,K − 2, l = 1, L.

(6) Calculate the matrices Tn(Ω(l)) as

Tn(Ω(l)) = T (K−2,l)
n , n = 1,N.

b) The matrix Sn(p(l)) defines the intensities of the process mt, t ≥ 0, of transitions that occur at
the moment of a user service completion in some node and its departure from the network, n =
1,N, l = 1, L.
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The matrices Sn(p(l)), n = 1,N, l = 1, L, can be found as

Sn(p(l)) = S(K−1,l)
n (p(l)), n = 1,N, l = 1, L,

where the matrices S(K−1,l)
n (p(l)) are recursively computed as:

S(0,l)
n (p(l)) = p(l)

K ,

S(k,l)
n (p(l)) =



p(l)
K−kI O · · · O

S
(k−1,l)
1 (p(l)) p(l)

K−kI · · · O
O S

(k−1,l)
2 (p(l)) · · · O

...
...

. . .
...

O O · · · p(l)
K−kI

O O · · · S
(k−1,l)
n (p(l))


,

k = 1,K − 1, n = 1,N, l = 1, L.

c) The matrix In(β) defines the intensities of the process mt, t ≥ 0, of transitions that happen at the
moment of some user loss due to impatience, n = 2,N. The matrices In(β), n = 2,N, can be
found as In(β) = I(K−1)

n (β), n = 2,N, where the matrices I(K−1)
n (β), n = 2,N, are recursively

obtained as
I(0)

n (β) = max{0, n − 1}βK ,

I(k)
n (β) =



max{0, n − 1}βK−kI O · · · O

I
(k−1)
1 (β) max{0, n − 2}βK−kI · · · O

O I
(k−1)
2 (β) · · · O

...
...

. . .
...

O O · · · max{0, 0}βK−kI

O O · · · I
(k−1)
n (β)


,

k = 1,K − 1, n = 2,N.

Hereinafter, we assume that I1(β) is a zero matrix.
d) The probabilities of the process mt transition at the time of a type-k user admittance to the network

are defined by the matrix Pn(b(k)), k = 1,K, n = 0,N − 1. The paper [43] contains the algorithm
for computing matrices Pn(b(r)). Using the denotations of our paper, we represent that algorithm
below for the benefit of the reader. The matrices Pn(b), n = 0,N − 1, where b = (b1, . . . , bK), b ∈
{b(1),b(2), . . . ,b(K)}, can be computed as

P0(b) = b, Pn(b) = P(K−2)
n , n = 1,N − 1,

where the matrices P(k)
n of size (n + 1) × (n + 2), n = 1,N − 1, are defined as

P(0)
n =


bK−1 bK 0 · · · 0 0

0 bK−1 bK · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · bK−1 bK

 ,
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P(k)
n =



bK−k−1 b̃(k) 0 0 · · · 0 0
0T bK−k−1I P

(k−1)
1 O · · · O O

0T O bK−k−1I P
(k−1)
2 · · · O O

...
...

...
...

. . .
...

...

0T O O O · · · bK−k−1I P
(k−1)
n


, k = 1,K − 2,

Here, the vectors b̃(k) are defined as

b̃(k) = (bK−k, bK−k+1, . . . , bK), k = 1,K − 2.

e) The overall rate at which the process mt exits the respective state is given by the moduli of the
diagonal components of the diagonal matrix E(l)

n , n = 1,N, l = 1, L. The matrices E(l)
n are given

by the formula
E(l)

n = −diag{Tn(Ω(l))e + Sn(p(l))e + In(β)e}, n = 1,N.

The presented formulas and algorithms used for the description of transition rates and probabilities
of the process mt are based on the ideas presented in [40] for the simultaneous description of the
phase-type service processes in several independent servers.

Remark 1. A fact worth mentioning is that here, we compute the superfluous number of matrices
T

(l)
n (Ω(l)), E(l)

n , and S(l)
n (p(l)) because if the network operates in the l-th regime, then the number n of

users in the network should admit not an arbitrary value in the range from 0 to N but should belong to
the interval [0, L+1 ], if l = 1, [L−l−1+1, L+l ], if l = 2, L − 1, and [L−L−1+1,N], if l = L.However, because we
intend to build up the surfaces illustrating certain dependencies of the network performance indicators
on the thresholds and solve the optimization problem, we would like to compute the generator Q of the
Markov chain ζt, t ≥ 0, for all possible sets of the thresholds L+l and L−l , l = 1, L − 1. Therefore, if
we compute all the matrices T (l)

n (Ω(l)), E(l)
n , and S(l)

n (p(l)) for every value of n in the range from 0 to N
and all values of l in the range from 1 to L from the early beginning, we will avoid redundant repeated
computations during the building of the surfaces and the solution of the optimization problem. If it is
required to make calculations only for the fixed set of the thresholds, computation of these matrices
can be implemented only for the values on N from the corresponding diapason.

After calculating the matrices mentioned above, which completely characterize the service process
of users mt, t ≥ 0, in all nodes of the network, we are ready to formulate the following statement.

Theorem 1. The infinitesimal generator Q of the Markov chain ζt, t ≥ 0, under study has a block-
tridiagonal structure.

The diagonal blocks Qn,n, n = 0,N, of the generator are given by formulas:

Q0,0 = H0,

Qn,n = H0 ⊕ (Tn(Ω(l)) + E(l)
n ), for n , 0, n , N, n ∈ Wl, l = 1, L,

Qn,n =

(
H0 ⊕ (Tn(Ω(l)) + E(l)

n ) O
O H0 ⊕ (Tn(Ω(l+1)) + E(l+1)

n )

)
, for n ∈ Fl, l = 1, L − 1,

QN,N = H ⊕ (TN(Ω(L)) + E(L)
N ).
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The subdiagonal blocks Qn,n−1, n = 1,N, are given by formulas:

Qn,n−1 =
(

O IV ⊗ (Sn(p(l+1)) + In(β))
)
, for n = L+l + 1 , L−l + 1, l = 1, L − 1.

Qn,n−1 = IV ⊗ (Sn(p(l+1)) + In(β)), for n = L+l + 1 = L−l + 1, l = 1, L − 1.

Qn,n−1 = IV ⊗ (Sn(p(l)) + In(β)), n ∈ Wl, l = 1, L, if n , L+l + 1, l = 1, L − 1.

Qn,n−1 =

(
IV ⊗ (Sn(p(l)) + In(β)) O

O IV ⊗ (Sn(p(l+1)) + In(β))

)
,

n ∈ Fl, for n , L−l + 1, l = 1, L − 1,

Qn,n−1 =

(
IV ⊗ (Sn(p(l)) + In(β))

IV ⊗ (Sn(p(l+1)) + In(β))

)
, for n = L−l + 1 , L+l + 1, l = 1, L − 1.

The updiagonal blocks Qn,n+1, n = 0,N − 1, are given by formulas:

Qn,n+1 =

K∑
k=1

Hk ⊗ Pn(bk), n ∈ Wl, for n , L−l , l = 1, L, or n = L−l = L+l , l = 1, L − 1,

Qn,n+1 =

(
K∑

k=1
Hk ⊗ Pn(bk) O

)
, for n = L−l , L+l , l = 1, L − 1,

Qn,n+1 =


K∑

k=1
Hk ⊗ Pn(bk) O

O
K∑

k=1
Hk ⊗ Pn(bk)

 , for n ∈ Fl, n , L+l , l = 1, L − 1,

Qn,n+1 =


K∑

k=1
Hk ⊗ Pn(bk)

K∑
k=1

Hk ⊗ Pn(bk)

 , for n = L+l , L−l , l = 1, L − 1.

Proof. To implement the theorem’s proof, every potential transition of the Markov chain ζt over an
infinitesimally short interval is analyzed, and the transition intensities are rewritten in block matrix
form. The simultaneous transition rates of two independent Markov chains, vt and mt, are defined via
the Kronecker product of matrices.

The meaning of the blocks of the generator is transparent taking into account the described above
probabilistic meaning of the matrices H0, H1 and T (l)

n (Ω(l)), E(l)
n , and S(l)

n (p(l)). The off-diagonal
components of the diagonal blocks Qn,n define the rates of transition of the Markov chain ζt inside the
level n. The modules of the negative diagonal entries of the blocks Qn,n define the rates of the
departure of the Markov chain ζt from the states that belong to the level n. The entries of the blocks
Qn,n−1 define transition intensities of the Markov chain ζt from the level n to the level n − 1. Such
transitions can occur during service completion of some user in the network or user loss due to
impatience. The entries of the blocks Qn,n+1 define transition intensities of the Markov chain ζt from
the level n to the level n + 1. Such transitions can occur at the moments of a new user arrival and
admission. Different sizes of some blocks are explained by the possibility of transitions of the number
n of a level between the sets Wl and Fl, which imply the change (between one and two) of the
cardinality of the state space of the component it. □
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Remark 2. The number of blocks in the matrix Q depends on the maximum quantity N of users in
the network but does not depend on the number L of the available service regimes. But the size of
these blocks may depend on L and the relations between the thresholds L+l and L−l , l = 1, L − 1. This
size is minimal when the service rate control strategy is of the threshold, but not the hysteresis, type,
i.e., L+l = L−l , l = 1, L − 1. The square matrix Q may have a huge size. Even in the simpler case of

the threshold strategy, it is equal to V
N∑

n=0
Jn where Jm is the quantity of variants to distribute m users

among K existing nodes, which is defined by the formula

Jm =

(
m + K − 1

K − 1

)
=

(m + K − 1)!
m!(K − 1)!

, m = 1,N, J0 = 1. (2)

Therefore, certain efficient algorithms that use the generator’s sparse structure are required to solve the
system (1). Specifically, the approach from [44] can be suggested to determine the queueing network’s
and Markov chain’s stationary probability distribution.

4. Performance measures

Following the computation of the probability vectors πn, n = 0,N, we may compute various
performance metrics of the queuing network under study.

The mean number of users in the network is given by the following expression

Nnetwork =

N∑
n=1

nπne.

The intensity of the output flow of successfully serviced users in the network can be found as

λout =

L∑
l=1

∑
n∈Wl/{0}

πn(IV ⊗ Sn(p(l)))e +
L−1∑
l=1

∑
n∈Fl

1∑
i=0

π(n, i)(IV ⊗ Sn(p(l+i)))e.

The output rate of users successfully serviced in the network from the k-th node is equal to

λout
k =

L∑
l=1

∑
n∈Wl/{0}

πn(IV ⊗ Sn(p(l,k)))e +
L−1∑
l=1

∑
n∈Fl

1∑
i=0

π(n, i)(IV ⊗ Sn(p(l+i,k)))e, k = 1,K,

where p(l,k) is a column vector of dimension K that has all zero entries except the k-th entry (p(l,k))k,
which is equal to p(l)

k . The matrices Sn(p(l,k)) can be found using the same algorithm as for the
matrices Sn(p(l)).

The average quantity of users in the k-th node, k = 1,K, is given by the following expression

Nnode
k =

L∑
l=1

∑
n∈Wl/{0}

πn(IV ⊗ Jn(b(k)))e +
L−1∑
l=1

∑
n∈Fl

1∑
i=0

π(n, i)(IV ⊗ Jn(b(k)))e

where the matrices Jn(b), n = 1,N, for the vectors b = (b1, . . . , bK), which take values from the set
b ∈ {b(1),b(2), . . . ,b(K)}, can be found as

Jn(b) = J (K−1)
n (b), n = 1,N,
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with the matrices J (K−1)
n (b), n = 1,N, recursively obtained as

J (0)
n (b) = nbK ,

J (k)
n (b) =



nbK−kI O · · · O

J
(k−1)
1 (b) (n − 1)bK−kI · · · O

O J
(k−1)
2 (b) · · · O

...
...

. . .
...

O O · · · bK−kI

O O · · · J
(k−1)
n (b)


, k = 1,K − 1, n = 1,N.

The average quantity of busy servers in the k-th node, k = 1,K, is obtained using the formula

N serv
k =

L∑
l=1

∑
n∈Wl/{0}

πn(IV ⊗ Sn(b(k)))e +
L−1∑
l=1

∑
n∈Fl

1∑
i=0

π(n, i)(IV ⊗ Sn(b(k)))e.

The average quantity of busy servers in the network is given by the following expression

N serv =

K∑
k=1

N serv
k .

The average quantity of users in the k-th node’s buffer, k = 1,K, is given by the following expression

Nbu f
k =

L∑
l=1

∑
n∈Wl/{0}

πn(IV ⊗ In(b(k)))e +
L−1∑
l=1

∑
n∈Fl

1∑
i=0

π(n, i)(IV ⊗ In(b(k)))e = N(k)
node − N(k)

serv.

The average quantity of users waiting in all buffers of the network can be calculated using the
formula

Nbu f =

K∑
k=1

Nbu f
k .

The probability that the network operates in the l-th regime at an arbitrary epoch is determined by
the following expression

Pregime
l =

∑
n∈Wl

πne +
∑

n∈Fl, l,L

π(n, 0)e +
∑

n∈Fl−1, l,1

π(n, 1)e, l = 1, L.

The intensity of the regime increase is given by the formula

ϕ+ =

L−1∑
l=1

π(L+l , 0)
K∑

k=1

Hk ⊗ IJL+l
.

The intensity of the regime decrease is given by the following expression

ϕ− =

L−1∑
l=1

Φl = ϕ
+
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where

Φl =

{
π(L−l + 1, 1)(IV ⊗ (IL−l +1(β) + SL−l +1(p(l+1))) if L−l , L+l ,
πL−l +1(IV ⊗ (IL−l +1(β) + SL−l +1(p(l+1))) if L−l = L+l .

The average intensity of regime switching is equal to

ϕ = ϕ+ + ϕ− = 2ϕ+ = 2ϕ−.

The probability of an arbitrary user loss upon arrival caused by the residence of N users in the
network is calculated by the expression

Pent−loss = λ−1πN((H − H0) ⊗ IJN )e.

The probability of an arbitrary type-k user loss upon arrival due to the residence of N users in the
network is computed as

Pent−loss
k = λ−1

k πN(Hk ⊗ IJN )e, k = 1,K.

The probability of an arbitrary user loss upon arrival at the k-th node due to the residence of N users
in the network is given by the following expression

Pent−loss−arb
k = λ−1πN(Hk ⊗ IJN )e, k = 1,K.

The probability of an arbitrary user loss due to impatience is equal to

Pimp−loss = λ−1
K∑

k=1

Nbu f
k βk

= λ−1
( L∑

l=1

∑
n∈Wl/{0}

πn(IV ⊗ In(β))e +
L−1∑
l=1

∑
n∈Fl

1∑
i=0

π(n, i)(IV ⊗ In(β))e
)
.

The probability of an arbitrary user loss due to impatience in the k-th node is computed as

Pimp−loss
k = λ−1Nbu f

k βk

= λ−1
( L∑

l=1

∑
n∈Wl/{0}

πn(IV ⊗ In(β(k)))e +
L−1∑
l=1

∑
n∈Fl

1∑
i=0

π(n, i)(IV ⊗ In(β(k)))e
)
, k = 1,K,

where β(k) is a column vector of size K with all zero entries except the k-th entry (β(k))k, which is equal
to βk.

The probability of an arbitrary user loss is given by the following expression

Ploss = Pent−loss + Pimp−loss = 1 −
λout

λ
.

Controlling the accuracy of the calculation of the stationary distribution of the network states is made
easier by the existence of two distinct expressions for computing the probability Ploss and the average
intensity of regime switching.

An arbitrary user’s loss probability in the k-th node is determined as

Ploss
k = Pent−loss−arb

k + Pimp−loss
k , k = 1,K.

An arbitrary user’s probability of receiving successful service within the network is determined by
the formula

Psucc = 1 − Ploss =
λout

λ
.
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5. Numerical example

Let us show the numerical example that verifies the viability of the suggested methods and formulas,
and partially highlights the impact of variation of the thresholds on the value of the key performance
indicators of the system and the potential to apply the outcomes to managerial objectives.

In this example, we examine a queueing network with K = 3 nodes.
The MMAP flow of users arriving at the network is determined by the following matrices:

H0 =

(
−9.3 0.3
0.3 −2.7

)
, H1 =

(
3.3 0.03

0.009 0.579

)
,

H2 =

(
2.4 0.15

0.012 1.2

)
, H3 =

(
3.06 0.06

0 0.6

)
.

The average arrival rate for this arrival flow is λ = 4.8606. The average arrival rate λk and
the coefficients of variation c(k)

var and correlation c(k)
cor of successive inter-arrival times to the k-th node,

k = 1, 2, 3, have the following values:

λ1 = 1.6103, c(1)
var = 1.77393 c(1)

cor = 0.181652,

λ2 = 1.7108, c(2)
var = 2.05727 c(2)

cor = 0.148899,

λ3 = 1.5395, c(3)
var = 1.16264 c(3)

cor = 0.0462668.

We assume that there are L = 3 possible service regimes of the network operation. Under the first
regime, the service times in the nodes are exponentially distributed with parameters

µ(1)
1 = 1.5, µ(1)

2 = 1, µ(1)
3 = 0.9,

respectively. Under the second regime, the parameters of the exponential distribution of the service
time are

µ(2)
1 = 2µ(1)

1 , µ
(2)
2 = 2µ(1)

2 , µ
(2)
3 = 2µ(1)

3 ,

and under the third regime, the parameters are

µ(3)
1 = 3µ(1)

1 , µ
(3)
2 = 3µ(1)

2 , µ
(3)
3 = 3µ(1)

3 .

The transition probabilities of users after the service completion in the nodes are defined as

p1,0 = 3/5, p1,2 = 2/15, p1,3 = 4/15, p2,0 = 0.7,

p2,1 = 0.1, p2,3 = 0.2, p3,0 = 2/3, p3,1 = 2/9, p3,2 = 1/9.

The rates of the users’ departure from the buffers of the nodes due to impatience are defined as
follows:

β1 = 0.01, β2 = 0.02, β3 = 0.015.

In this numerical example, we assume that up to N = 40 users can obtain service in the network at
the same time. The regime switching is defined by the four parameters L−1 , L−2 , L

+
1 and L+2 .
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The purpose of the numerical example is to show the dependence of the main network’s
performance measures on the switching parameters. However, there is no opportunity to build 5 D
figures. Therefore, for better visualization of the results, let us fix the thresholds defining the rule of
the switching between the first and the second regimes as L−1 = 5 and L+1 = 10 and vary the thresholds
L−2 and L+2 , defining the rule of the switching between the second and third regimes as follows: The
threshold L+2 varies in the interval [L+1 + 1,N), and the threshold L−2 varies over the interval
[L+1 + 1, L+2 ] with the same step 1.

Figures 2 and 3 illustrate the dependence of the average quantity Nnetwork and the average total
number Nbu f of users in buffers on the parameters L−2 and L+2 .

10
15

20
25

30
35

40 10
15

20
25

30
35

40

18

20

22

24

26

28

30

32

L
+

2

L
−

2

N
network

18

20

22

24

26

28

30

32

Figure 2. Nnetwork as function of L−2 and L+2 .
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Figure 3. Nbu f as function of L−2 and L+2 .

Complementary to Figure 2, the dynamics of Nnetwork are illustrated in Table 1 where values of
Nnetwork are presented for values of L−2 and L+2 in some smaller range.

It is seen from these figures that the minimal values of Nnetwork and Nbu f are achieved for small
values of the thresholds L−2 and L+2 .When these thresholds increase (this means that the third regime is
used only for a larger number of users in the network), the values of Nnetwork and Nbu f increase quite
sharply.

This is easily understandable, as the service rate during the use of the third regime is three times
higher than during the use of the first regime and is 1.5 times higher than during the use of the second
regime.
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Table 1. Values of Nnetwork for different values of L−2 and L+2 .

L+2

L−2 11 12 13 14 15 16 17 18 19 20

11 19.089
12 19.256 19.451
13 19.422 19.627 19.834
14 19.587 19.801 20.019 20.237
15 19.753 19.973 20.199 20.428 20.655
16 19.921 20.146 20.378 20.615 20.853 21.088
17 20.090 20.319 20.556 20.799 21.044 21.290 21.532
18 20.263 20.494 20.735 20.981 21.233 21.486 21.738 21.986
19 20.438 20.673 20.915 21.164 21.419 21.678 21.938 22.195 22.447
20 20.617 20.853 21.097 21.349 21.606 21.868 22.132 22.397 22.659 22.914
21 20.798 21.037 21.283 21.535 21.794 22.057 22.325 22.594 22.863 23.128
22 20.982 21.222 21.470 21.724 21.983 22.248 22.516 22.788 23.061 23.333
23 21.168 21.410 21.659 21.914 22.174 22.439 22.708 22.981 23.256 23.532
24 21.355 21.599 21.850 22.106 22.367 22.632 22.902 23.174 23.450 23.727
25 21.543 21.790 22.042 22.299 22.561 22.827 23.096 23.368 23.643 23.921
26 21.733 21.981 22.235 22.493 22.756 23.022 23.291 23.563 23.838 24.114
27 21.923 22.172 22.428 22.688 22.951 23.218 23.487 23.759 24.033 24.308
28 22.112 22.364 22.621 22.882 23.146 23.414 23.683 23.955 24.228 24.502
29 22.302 22.555 22.813 23.075 23.3413 23.609 23.878 24.150 24.422 24.696
30 22.490 22.745 23.005 23.268 23.534 23.802 24.073 24.344 24.616 24.889
31 22.677 22.934 23.194 23.459 23.726 23.995 24.265 24.536 24.808 25.08
32 22.863 23.120 23.382 23.647 23.915 24.184 24.455 24.726 24.997 25.269
33 23.046 23.304 23.567 23.833 24.101 24.371 24.642 24.913 25.184 25.455
34 23.226 23.485 23.749 24.016 24.284 24.554 24.825 25.096 25.367 25.637
35 23.402 23.663 23.927 24.194 24.463 24.733 25.004 25.275 25.545 25.814
36 23.574 23.835 24.101 24.368 24.637 24.907 25.178 25.448 25.718 25.986
37 23.741 24.003 24.268 24.535 24.805 25.075 25.345 25.615 25.884 26.152
38 23.901 24.163 24.429 24.697 24.966 25.235 25.505 25.774 26.042 26.309
39 24.054 24.317 24.582 24.85 25.118 25.387 25.656 25.925 26.192 26.457

Figures 4–6 illustrate the dependence of the probabilities Pregime
l on the fact that, at any arbitrary

moment, the network operates in the l-th regime, l = 1, 2, 3, on the parameters L−2 and L+2 .
The maximum value of Pregime

1 is achieved for small values of L−2 and L+2 because such small values
imply a more frequent use of the fastest, the third, regime of operation (this is confirmed by Figure 6)
and higher chances that the number of users in the network will drop below the value L−1 + 1 and,
therefore, the first regime will be used. The maximum value of Pregime

2 is achieved for large values of
L−2 and L+2 because the second regime is used until the number of users in the network drops below the
value L−2 + 1, which implies the longer use of the second regime.

Figure 7 illustrates the dependence of the average intensity ϕ of regime switching on the parameters
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L−2 and L+2 .
Figures 8–11 illustrate the dependence of the probabilities Pent−loss of a user loss at the entrance

to the network and the probabilities Pent−loss−arb
l of a user loss at the entrance to the l-th node of the

network, l = 1, 2, 3, on the parameters L−2 and L+2 .
Figures 12–15 illustrate the dependence of the probabilities Pimp−loss of a user loss due to impatience

in the network and the probabilities Pimp−loss
l of a user loss due to impatience from the buffer of the l-th

node of the network, l = 1, 2, 3, on the parameters L−2 and L+2 .
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Figure 16 illustrates the dependence of the loss probability Ploss of an arbitrary user (due to all
reasons) on the parameters L−2 and L+2 .

Complementary to Figure 16, the dynamics of Ploss are illustrated in Table 2.
Because we have fixed L+1 = 10, and the thresholds L−2 and L+2 have to satisfy the inequalities

L+1 < L−2 ≤ L+2 < N, the possible values of the thresholds L−2 and L+2 range from 11 to 39. The loss
probability Ploss reaches its minimum value of 0.07887 when L−2 = L+2 = 11. When L−2 = L+2 = 39,
the maximum value of the loss probability Ploss is reached and equals 0.23454. This fact is obvious
because when L−2 = L+2 = 11, the network starts operation in the fastest, the third, service regime as
soon as possible. When L−2 = L+2 = 39, the third regime is switched on only when the number of
users in the system is equal to the maximum admissible value of 40. Therefore, many users are lost
at the entrance to the network and due to impatience. However, when deciding on the selection of the
values of the thresholds, it is necessary to take into account that the use of faster service regimes by
default is more costly compared to slower service regimes. Also, it is undesirable to frequently change
service regimes because such a change in a real-world network can require some expenditures related
to switching to another equipment or inviting or dismissing staff.

Therefore, optimization of the operation of the network requires an exact definition of the cost
criterion. Let us assume that the following cost criterion is used to define the network’s operational
quality:

E = E(L−2 , L
+
2 ) = aλout − bλPent−loss − cλPimp−loss −

L∑
l=1

elP
regime
l − dϕ. (3)
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Table 2. Values of Ploss for different values of L−2 and L+2

L+2

L−2 11 12 13 14 15 16 17 18 19 20

11 0.0788
12 0.0797 0.0807
13 0.0806 0.0817 0.0828
14 0.0815 0.0826 0.0838 0.0850
15 0.0824 0.0836 0.0848 0.0861 0.0873
16 0.0833 0.0845 0.0858 0.0871 0.0885 0.0899
17 0.0843 0.0855 0.0869 0.0882 0.0896 0.0911 0.0925
18 0.0853 0.0866 0.0879 0.0893 0.0908 0.0923 0.0938 0.0953
19 0.0863 0.0876 0.0890 0.0905 0.0920 0.0935 0.0951 0.0967 0.0983
20 0.0874 0.0888 0.0902 0.0916 0.0932 0.0947 0.0964 0.0981 0.0998 0.1015
21 0.0886 0.0899 0.0913 0.0928 0.0944 0.0960 0.0977 0.0994 0.1012 0.1030
22 0.0897 0.0911 0.0926 0.0941 0.0957 0.0973 0.0990 0.1008 0.1026 0.1045
23 0.0909 0.0924 0.0939 0.0954 0.0970 0.0987 0.1004 0.1022 0.1041 0.1060
24 0.0922 0.093 0.0952 0.0968 0.0984 0.1001 0.1019 0.1037 0.1056 0.1075
25 0.0935 0.0950 0.0966 0.0982 0.0998 0.1016 0.1034 0.1052 0.1071 0.1091
26 0.0949 0.0964 0.0980 0.0996 0.1013 0.1031 0.1049 0.1068 0.1088 0.1108
27 0.0963 0.0979 0.0995 0.1012 0.1029 0.1047 0.1066 0.1085 0.1105 0.1125
28 0.0978 0.0994 0.1011 0.1028 0.1045 0.1064 0.1083 0.1102 0.1122 0.1143
29 0.0994 0.1010 0.1027 0.1044 0.1062 0.1081 0.1100 0.1120 0.1141 0.1162
30 0.1010 0.1027 0.1044 0.1062 0.1080 0.1099 0.1119 0.1139 0.1160 0.1182
31 0.1027 0.1044 0.1062 0.1080 0.1099 0.1118 0.1139 0.1159 0.1181 0.1203
32 0.1045 0.1062 0.1080 0.1099 0.1118 0.1138 0.1159 0.1180 0.1202 0.1225
33 0.1063 0.1081 0.1100 0.1119 0.1139 0.1159 0.1180 0.1202 0.1225 0.1248
34 0.1083 0.1101 0.1120 0.1140 0.1160 0.1181 0.1203 0.1225 0.1248 0.1272
35 0.1104 0.1122 0.1142 0.1162 0.1183 0.1205 0.1227 0.1250 0.1274 0.1298
36 0.1125 0.1145 0.1165 0.1186 0.1207 0.1229 0.1252 0.1276 0.1300 0.1325
37 0.1148 0.1168 0.1189 0.1211 0.1233 0.1256 0.1279 0.1303 0.1328 0.1354
38 0.1173 0.1194 0.1215 0.1237 0.1260 0.1283 0.1308 0.1333 0.1359 0.1385
39 0.1199 0.1220 0.1242 0.1265 0.1289 0.1313 0.1338 0.1364 0.1391 0.1418

Here, a is a profit obtained by the system via the service of one user, b is a penalty paid by the
network for one user loss upon arrival, c is a penalty paid by the network for one user loss due to
impatience, el, l = 1, L, is the cost of maintaining the l-th operation regime per unit time, and d is a
charge paid by the network for one switch of an operation regime.

Thus, the cost criterion E represents the average network’s revenue per unit of time. Our aim is to
find the values of the thresholds L−2 and L+2 providing the maximum to the function E(L−2 , L

+
2 ).
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The cost coefficients in this numerical example are fixed at the following values:

a = 3, b = 3, c = 6, e1 = 1, e2 = 2, e3 = 8, d = 0.5.

Figure 17 shows how the thresholds L−2 and L+2 affect the cost criteria E.
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Figure 17. E as function of L−2 and L+2

When L+2 = 20 and L−2 = 15, the cost criterion reaches its optimal value of E∗ = 5.19909. Thus, to
obtain the maximal revenue under the fixed above values of the network parameters, it is necessary to
switch from the second to the third service regime when the number of users in the network becomes
equal to (L+2 ) + 1 = 21 and switch back to the second service regime when the number of users drops
to L−2 = 15.

All figures presented above illustrate the dependence of the cost criterion E on the thresholds L−2 and
L+2 under the fixed values of the thresholds L−1 = 5 and L+1 = 10. Let us now assume that L−1 = L+1 = L1

and L−2 = L+2 = L2, i.e., the hysteresis strategy turns into the threshold strategy. This means that if the
number nt of users in the network does not exceed L1, then the network operates in the first regime. If
the number nt belongs to the interval (L1 + 1, L2], then the network operates in the second regime. If
the number nt exceeds L2, then the network operates in the third regime.

Figures 18 and 19 illustrate the dependence of the loss probabilities Pent−loss of an arbitrary user
upon arrival and Pimp−loss of an arbitrary user due to impatience on the parameters L1 and L2.

Figure 20 illustrates the dependence of the cost criterion E(L1, L2) on the parameters L1 and L2.
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The optimal values of the thresholds are as follows: L1 = 0 and L2 = 15. This means that the
network uses the first regime only when it is empty; once a user arrives, it is serviced in the second
regime. When the number of users in the network reaches the value of 16, the network starts operation
in the third regime and maintains this regime until the number of users in the network drops to the
value of 15. The maximal value of the cost criterion is 5.13969.

Let us return to the hysteresis-type control by the network operation. A numerical solution to the
problem of determining the optimal value of the cost criterion under the network’s fixed parameters
can be found using the results obtained for the computation of the stationary distribution of the network
states, the primary performance characteristics, and the cost criterion value. In our example, the value
of the cost criterion is the function of four thresholds, L−1 , L+1 , L−2 , and L+2 . It can be computed that the
maximum value of the cost criterion is equal to 5.31252 and is achieved for the following values of the
thresholds: L−1 = 0, L+1 = 2, L−2 = 13, L+2 = 18. The achieved value of 5.31252 of the cost criterion is
higher than the optimal value of 5.13969 of the criterion under the use of the optimal threshold strategy
due to the more seldom switching of regimes and the presence of a charge for the switch of the regimes
in the cost criterion.

In a more general case, when the number L of available regimes is higher than two (and the
number of the thresholds is 2L), the problem of finding the maximal value of the criterion and the
optimal values of the corresponding thresholds can be deeply complicated by the existence of a huge
number of possible combinations of the threshold values. Therefore, this problem deserves a separate
consideration. The use of some derivative-free methods of optimization, see, e.g., [45, 46], can be
recommended. As mentioned above, the value of our results consists in providing the possibility to
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exactly compute the value of the cost criterion for any fixed set of control strategies during the
implementation of the search for the optimal values of the thresholds.

It is worth noting that we assumed that the values of the service rates µ(l)
k , k = 1,K, l = 1, L, in the

nodes of the network under the fixed regimes of the network operation are fixed. In potential real-world
applications, these values can also not be fixed but have to be chosen from some set. Our results can
be used to optimize the selection of these rates’ values and the corresponding threshold values.

Remark 3. Described above computations were implemented using Wolfram Mathematica on a
Lenovo notebook with an Intel(R) Core(TM) i7-1165G7 2.80GHz and 16 GB RAM. Running time for
computation of the optimal value of the cost criterion E(L−2 , L

+
2 ) defined by formula (3) was equal

to 8419 seconds, i.e., 18 seconds for one point (L−2 , L
+
2 ) (the total number of points is 465). Because

this computation time was acceptable for preparation of the presented examples, no optimization of
the code was made. Computation time can be significantly reduced via such an optimization and the
use of a more powerful notebook or PC.

A quite long computation time is explained by the large size of the generator Q. As mentioned

above in the simplest case of the threshold strategy, this size is equal to V
N∑

n=0
Jn, where the numbers

Jn, n = 0,N, are defined by formula (2). In the considered example of S OQN, where we assume K = 3
nodes and admission of up to N = 40 customers to the network simultaneously, the number JN is equal
to 861. If we consider the network consisting of four nodes and decreased N to 15, we will have about
the same (816) size of the block JN and a similar computation time.

6. Conclusions

We considered a user loss SOQN with the bursty MMAP-type arrival process, single-server nodes
with a controlled service regime, a hysteresis-type control policy, and impatient users. Under the fixed
parameters of the control policy, the stationary behavior of this SOQN is described by a
multidimensional Markov chain, whose components define the total number of users in the network,
the used service regime (if it is not uniquely defined by the number of users in the network), the state
of the underlying process of the MMAP, and the number of users in each node of the network. The
generator of this chain is obtained as a block tridiagonal matrix. Formulas for computation of the key
performance measures of the network are derived. Numerical illustrations of the algorithmic and
analytical results obtained are provided.

The results can be applied to managerial objectives, such as the selection of possible variants of
service organization in the nodes, including the choice of the suitable equipment and the corresponding
staff; routing of users in the network; pricing; and the optimal dynamical scheduling of the variants of
service organization depending on the current load of the network.

The results can be generalized into several directions, such as the consideration of back-ordering
SOQNs having an infinite or finite buffer for storing users who did not succeed in entering the core
network upon arrival because it was completely busy; an account of possible user’s impatience during
waiting in this buffer; the presence of an orbit for user retrials; or the arrival and impatience rate control.
The results from [47] are planned to be used for implementing these generalizations.
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