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Abstract: Artificial Intelligence (AI) based computing techniques play a transformative role in enhancing 
the capabilities of modern computing systems by enabling them to learn, adapt, optimize, and make 
decisions autonomously. These techniques are applied across various fields to improve performance, 
reduce human effort, and solve complex problems more efficiently. In this article, we explored a potent 
approach of the circular q-rung orthopair fuzzy for coping with uncertain and vague type information in 
life-life dilemmas because it covers extensive information in the form of degree of membership value, 
degree of non-membership value, and radius among both membership functions. Some flexible operations 
of Frank t-norms were formulated under the circular q-rung orthopair fuzzy (Crq-ROF) context. Based on 
these operations, we developed novel approaches of circular q-rung orthopair fuzzy Frank weighted 
average (Crq-ROFFWA) and circular q-rung orthopair fuzzy Frank weighted geometric (Crq-ROFFWG) 
operators with dominant properties. Additionally, we modified a novel theory of evaluation based on 
distance from the average solution (EDAS) method for the multi-attribute decision-making (MADM) 
problem. Later, we discussed an experimental case study related to artificial intelligence for measuring 
the performance of intelligent computing techniques. Using a numerical example, we explored the 
worth and compatibility of discussed methodologies and decision support systems. Finally, utilizing a 
comparison technique, we identified the supremacy and effectiveness of proposed theories. 

Keywords: circular q-rung orthopair fuzzy sets; frank triangular norms; artificial intelligence; decision 
support system 
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1. Introduction 

Artificial intelligence (AI)-based intelligent computing techniques have become a driving force 
across industries, playing a transformative role in automation, decision-making, optimization, and 
innovation. These techniques enable machines to simulate human intelligence and autonomously 
improve system performance, revolutionizing how complex problems are solved. AI techniques also 
enhance personalization and user-centric experiences by tailoring services to individual user 
preferences and behaviors [1]. Moreover, predictive maintenance and risk management is another vital 
role where AI helps foresee issues before they occur, preventing costly equipment breakdowns and 
minimizing risks. In manufacturing, predictive maintenance systems using AI analyze sensor data to detect 
potential failures and perform timely interventions. AI-based intelligent computing systems are also 
adaptive, utilizing techniques like reinforcement learning to continuously learn and self-optimize, 
improving performance over time, as seen in self-driving cars that adjust to changing environments [2]. 

AI-based techniques also improve security and fraud detection through anomaly detection and 
pattern recognition, which are widely used in cybersecurity and finance to detect and respond to threats 
or fraudulent activities in real time [3]. For example, AI helps banks identify unusual transaction 
patterns, enhancing fraud detection capabilities. Additionally, decision support systems (DSS) rely on 
AI to provide intelligent recommendations and risk analyses, assisting decision-makers in complex 
scenarios like medical diagnosis or financial planning. Finally, the scalability and adaptability of AI-
based intelligent computing techniques enable them to be applied to large-scale systems, such as smart 
cities and IoT networks [4,5]. These systems manage and process vast amounts of data in real time, 
optimizing infrastructure such as traffic flow and energy usage to improve public services. Figure 1 
shows the characteristics of AI in computing strategies. 

 

Figure 1. Characteristics of AI-based computing techniques. 

Decision-making and AI are intricately connected, as AI technologies are designed to enhance 
and automate decision-making processes across domains. In traditional decision-making, human 
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judgment relies on experience, intuition, and analysis of available data, often limited by cognitive 
biases and time constraints. AI, however, leverages algorithms, machine learning, and vast data 
processing capabilities to provide more accurate, data-driven decisions. AI systems can identify 
patterns, predict outcomes, and recommend optimal actions, thus reducing human error and improving 
efficiency. AI-based decision support systems offer predictive insights and automate repetitive tasks 
in healthcare, finance, and logistics. 

The significance of the MADM problem in real-life situations lies in its ability to provide a 
structured approach for handling complex decisions involving multiple conflicting criteria. In real-
world scenarios, such as business, healthcare, public policy, and resource management, decision-
makers must evaluate multiple factors simultaneously. Moreover, the MADM enhances decision-
making under uncertainty and supports collaboration in group decision-making contexts. This enables 
stakeholders to work together and reach a consensus by providing a common framework to evaluate 
alternatives. Additionally, MADM offers transparency and justification in decision processes, making 
explaining and defending decisions to stakeholders easier. This is particularly valuable in public policy 
and corporate governance sectors, where clear, data-driven decision-making is essential. 

1.1. Literature review 

In real-world decision-making, many problems involve ambiguity and vagueness. To handle 
such situations, Zadeh [6] developed a theory of fuzzy set (FS) by exploring classical set theory. 
The FS plays a critical role in decision-making problems by providing a way to handle uncertainty, 
vagueness, and imprecision in situations where crisp, binary decisions are not sufficient. In 
decision-making, FSs help model uncertainty and enable a more nuanced analysis of alternatives 
by incorporating linguistic terms like ‘‘high’’, ‘‘medium’’, and ‘‘low’’ into the decision process. 
This flexibility leads to more realistic and practical solutions, especially in complex situations of 
the MADM problems. Later, Atanassov [7] proposed an efficient technique of an intuitionistic 
fuzzy set (IFS) with two grades called the DoMV 휇 ∈ [0,1]  and DoNMV  푣 ∈ [0,1]  with the 
condition 0 ≤ 휇 + 푣 ≤ 1. The IFS is a dominant and flexible model because of its wide range, whereas 
the FS is a fixed case of an IFS. Many research scholars have applied the theory of IFSs to complicated 
real-life applications and decision-making problems. Sometimes, when the grades of DoMV or DoNMV, 
such as (0.65, 0.54) then 0.65 + 0.54 = 1.19 ∉ [0,1]. To handle such a situation, Yager [8] initiated 
the concepts of a pythagorean fuzzy set (PyFS) with the relaxed condition of the sum of the square of 
the DoMV and DoNMV bounded on a closed interval [0,1]. Yager [9] extended the concepts of a q-
rung orthopair fuzzy set (q-ROFS). The mathematical shape of the q-ROFS is expressed as 0 ≤ 휇� +
푣� ≤ 1. Several strategies and mathematical approaches to q-ROFS exist in the literature. The q-ROFS 
gained a lot of attention from research scholars and became a hot research framework to cope with 
uncertain judgments of experts or decision-makers. 

However, Atanassov [10] introduced an extended version of IFS called circular IFS (Cr-IFS). The 
idea of Cr-IFS is more convenient and effective than the theory of FSs, IFSs, PyFSs, and q-ROFSs. A 
Cr-IFS has three grades such as DoMV, DoNMV, and a radius among them. Bozyigit et al. [11] initiated 
a new theory of circular (Cr-PyFS). After that, Yusoff et al. [12] proposed a dominant concept of circular 
q-ROFS (Crq-ROFS). The Crq-ROFS is a reliable and potent approach of fuzzy theory used to resolve a 
lot of complicated real-life applications and numerical examples. With the passage of time, the above-
discussed theories have gained more attention from mathematicians and research scientists. For instance, 



3065 

AIMS Mathematics  Volume 10, Issue 2, 3062–3094. 

Xu [13] discussed new distance measures for Cr-IFS and decision support systems. Chen [14] elaborated 
the theory of simple arithmetic mean to derive new mathematical approaches to Cr-IFSs and robust 
decision-making techniques. Alsattar et al. [15] assessed some sustainable smart living apartments 
considering the theory of Cr-PyFSs. For more understanding of the discussed terminologies of FSs, 
we provide the features and conditions of all discussed fuzzy terminologies in Table 1 and Figure 2. 

Table 1. A detailed overview of discussed fuzzy methodologies. 

Frameworks Conditions Descriptions 

FS by Zadeh [6] 0 ≤ 휇(ƿ) ≤ 1 ��ƿ, 휇(ƿ)��ƿ ∈ 퐸� 
IFS by Atanassov [7] 0 ≤ 휇(ƿ) + 푣(ƿ) ≤ 1 

��ƿ, � 휇(ƿ), 푣(ƿ)�� �ƿ ∈ 퐸� 

PyFS by Yager [8] 0 ≤ 휇�(ƿ) + 푣�(ƿ) ≤ 1 
��ƿ, � 휇(ƿ), 푣(ƿ)�� �ƿ ∈ 퐸� 

q-ROFS by Yager [9] 0 ≤ 휇�(ƿ) + 푣�(ƿ) ≤ 1, 휏 ≥ 1 
��ƿ, � 휇(ƿ), 푣(ƿ)�� �ƿ ∈ 퐸� 

Cr-IFS by Atanassov [10] 0 ≤ 휇(ƿ) + 푣(ƿ) ≤ 1 
��ƿ, � 휇(ƿ), 푣(ƿ); 푟(ƿ)�� �ƿ ∈ 퐸� 

Cr-PyFS by Bozyigit et al. [11] 0 ≤ 휇�(ƿ) + 푣�(ƿ) ≤ 1 
��ƿ, � 휇(ƿ), 푣(ƿ); 푟(ƿ)�� �ƿ ∈ 퐸� 

Crq-ROFS by Yusoff et al. [12] 0 ≤ 휇�(ƿ) + 푣�(ƿ) ≤ 1, 휏 ≥ 1 
��ƿ, � 휇(ƿ), 푣(ƿ); 푟(ƿ)�� �ƿ ∈ 퐸� 

 

Figure 2. Extension of fuzzy frameworks. 

The aggregation operators and mathematical terminologies play an effective role in the decision-
analysis process. We studied theories about many mathematical approaches and terminologies. For 
example, Ahmmad [16] utilized entropy measures to investigate the unknown degree of weights for 
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classifying renewable energy sources. Bibi and Ali [17] exposed the theory of Neutrosophic fuzzy 
rough sets to resolve decision analysis applications. Hussain et al. [18] applied properties of Schweizer-
Sklar t-norms to derive aggregation operators of Maclaurin symmetric mean models and decision-
making processes. Hussain et al. [19] developed aggregation operators of a picture fuzzy framework 
to compute the degree of criterion and reliable optimal option. A family of Aczel Alsina aggregation 
models was developed by Hussain et al. [20]. An application related to digital security systems based 
on Sugeno-Weber aggregation operators was discussed by Hussain et al. [21]. Hussain et al. [22] 
exposed aggregation operators of Dombi Hamy mean models for exploring the theory of decision 
analysis problems. Hussain et al. [23] evaluated construction materials under some characteristics and 
derived Aczel Alsina aggregation operators. Hussain et al. [24] expanded the properties of Heronian 
mean models considering the theory of a t-spherical fuzzy framework. Senapati [25] introduced a 
robust ranking method based on a decision analysis process. Senapati and Yager [26] proposed a family 
of convincing mathematical approaches of weighted averaging operators taking into account 
Farmateen fuzzy situations. Senapati et al. [27] developed geometric aggregation models for 
intuitionistic fuzzy situations and decision-making applications. Garg [28] stated theories of 
exponential-logarithm and q-rung orthopair fuzzy domains. Garg [29] modified concepts of single-
valued Neutrosophic sets with properties of exponential-logarithms. Garg [30] exposed a robust theory 
of Linguistic interval-valued pythagorean fuzzy fields and decision-making models. We also studied 
different mathematical approaches and decision-making terminologies in the literature [31–33].  

Riaz and Farid [34] investigated reliable green supply chain enterprises using linear Diophantine 
fuzzy soft sets and the decision algorithm of the MADM problem. Riaz et al. [35] evaluated some 
appropriate third-party logistic providers under consideration of prioritized operators and q-rung 
orthopair fuzzy situations. Riaz et al. [36] exposed the theory of the VIKOR method for the q-ROFSs 
and real-life applications. Saeed and Shafique [37] investigated some sustainable agricultural 
techniques using relations between Farmatean and Neutrosophic soft theory. Saeed et al. [38] defined 
the properties of refined pythagorean fuzzy theory and formulated some axiomatic results. Zulqarnain 
et al. [39] enhanced the theory of the TOPSIS method under the concepts of an intuitionistic fuzzy 
environment. Ihsan et al. [40] integrated some robust mathematical approaches for evaluating human 
resource management enterprises and advanced optimization techniques of the TOPSIS method. 
Akram and Ali [41] demonstrated hybrid mathematical models of pythagorean fuzzy bipolar soft sets 
for handling ambiguous information of human opinions. Another extended version of the decision-
making technique of the CRITIC-EDAS method was developed by Akram et al. [42]. Ashraf et al. [43] 
discussed a novel theory of the EDAS method and Aczel Alsina aggregation operators for resolving 
complicated real-life problems. Keshavarz Ghorabaee et al. [44] introduced a feasible decision-making 
approach of the EDAS method for choosing a suitable optimal option under consideration of different 
characteristics. Furthermore, positive distance average solution (PDAS) and negative distance average 
solution (NDAS) are discussed to define the relationship among estimated information. Based on the 
robustness of the EDAS method, several real-life applications resolved using the theory of the EDAS 
method, such as Dhumras and Bajaj [45] capturing various characteristics of robotic agri-farming 
systems using the Dombi aggregation operators and EDAS approach. Fan et al. [46] conducted a 
comprehensive Meta-analysis with bipolar fuzzy theory and power aggregation operators. Akram et al. [47] 
determined disease symptoms through the medical diagnosis process and advanced optimization 
techniques of the ELECTRE-I method. Al-Barakati et al. [48] discussed a novel theory WASPAS method 
for selecting sustainable renewable energy sources. Rao and Sujatha [49] discussed dominant techniques 
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of reliable healthcare waste management considering theory of Farmatean fuzzy situations. Ali et al. [50] 
elaborated the TOPSIS technique for resolving real-life applications with Bonferroni Mean models. 

1.2. Problem statement 

In today’s rapidly evolving technological landscape, AI-based computing tools are increasingly 
used to enhance decision-making across various domains, including healthcare, finance, education, 
and transportation. However, evaluating these tools effectively remains a critical challenge due to the 
complexity and subjectivity of performance metrics. Traditional evaluation methods often fail to 
address uncertainty, imprecision, and vagueness inherent in real-world decision-making environments. 
Therefore, we propose the application of fuzzy decision-making approaches to assess AI-based 
computing tools under multiple criteria. By incorporating fuzzy logic, the approach can model 
uncertainty more effectively and account for the varying degrees of importance and subjective 
preferences associated with different evaluation criteria. For this framework, we aim to provide a more 
comprehensive and nuanced assessment, facilitating better selection, optimization, and deployment of 
AI-driven solutions in complex, dynamic decision-making contexts. 

1.3. Motivation behind the research work 

The motivation behind the Crq-ROFS lies in addressing the complexities of decision-making 
under uncertainty. Traditional fuzzy sets often struggle to capture the full spectrum of vagueness and 
ambiguity that decision-makers face, especially when dealing with multiple criteria or conflicting 
information. The Crq-ROFS is designed to extend the capabilities of fuzzy systems by providing a 
more flexible and comprehensive framework for representing and processing uncertainty. This 
structure provides a powerful way to handle situations where uncertainty is high and cyclical or 
rotational, enabling more accurate decision support in dynamic environments where conditions evolve 
over time. 

The aggregation operators based on Frank t-norms and t-conorms stem from the need to 
effectively combine individual preferences, criteria, or pieces of information in multi-criteria decision-
making (MCDM) problems. Frank t-norms and t-conorms offer a way to model the interaction between 
decision criteria by combining them in a non-linear fashion that accounts for both optimism and 
pessimism in decision-making. These operators are particularly useful in scenarios where decision-
makers exhibit varying degrees of risk tolerance and address conflicting criteria. The EDAS method 
in MADM problems is to offer a simple, yet effective approach for ranking and selecting alternatives 
in complex decision-making scenarios. The MADM problems often involve multiple alternatives 
evaluated against various criteria, with each criterion potentially having different importance and 
levels of uncertainty. The EDAS method is motivated by the need for an intuitive and computationally 
efficient technique that does not require complex mathematical operations or expert judgment, making 
it more accessible for real-world applications. By comparing alternatives based on their distance from an 
average solution, the EDAS method captures the relative performance of each alternative without the need 
for precise weight assignments, making it suitable for situations with limited or uncertain information. 
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1.4. Contributions of the article 

mainour major objectives are as follows: 
a) Expose a novel theory of Crq-ROFSs with feasible operations for the development of advanced 

methodologies. 
b) Construct dominant operations of Frank triangular norms under the system of the Crq-ROF framework. 
c) Derive Frank aggregation operators based on Crq-ROF information, namely Crq-ROFFWA and Crq-

ROFFWG operators, with reasonable idempotency, monotonicity, and boundedness properties. 
d) Based on initiated theories and mathematical strategies, expand the theory of the EDAS method 

with reliable methodologies for Crq-ROF information. We state real-life applications to prove the 
worth and compatibility of advanced decision-making techniques of the EDAS method and derived 
approaches. A numerical example discusses investigating suitable AI-based computing techniques 
under consideration for specific characteristics or attribute information. 

e) Finally, a comparison technique shows the worth and reliability of pioneered approaches with existing 
terminologies. Some remarkable advantages and features of derived approaches are also mentioned. 

1.5. Structure of the manuscript 

The outline of this paper is as follows: In Section 2, we recall some fundamental concepts and 
basic preliminaries for the development of new theories. In Section 3, we state some feasible operations 
of Frank triangular norms in the light of the Crq-ROF context. In Section 4, we propose a family of 
new mathematical approaches based on formulated operations of Crq-ROF information. In Section 5, 
we demonstrate a novel technique of the EDAS method for the MADM problem and complex real-life 
problems. Section 6 contains the importance of AI in computing techniques. We also discuss an 
experimental case study with the help of numerical examples to evaluate an appropriate AI-based 
intelligent computing technique. In Section 7, we compare approaches to prove the validity and 
supremacy of diagnosed theories and decision-making problems. Finally, we state some concluding 
remarks in Section 8. Figure 3 illustrates the major contributions of this paper. 
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Figure 3. The outline of this paper. 

2. Preliminaries 

In this section, we define some basic terminologies of C-IFS for further development of this 
research work. 
Definition 1. [9] The q-ROFS B on universe of discourse E is expressed as follows: 

B = � (ƿ, � μ�(ƿ), v�(ƿ)�)�ƿ ∈ E�. 

It is clear that  μ�(ƿ) ∈ [0,1] and v�(ƿ) ∈ [0,1] indicate the degree of membership value (DoMV) 
and degree of non-membership value (DoNMV) subject to the condition: 

0 ≤ μ�
� (ƿ) +  v�

� (ƿ) ≤ 1, τ ≥ 1. 

Furthermore, the hesitancy value of an element is denoted by π�(ƿ) = �1 − � μ�
� (ƿ) + v�

� (ƿ)�
�

. 

Definition 2. [10] For the universal set E, the Cr-IFS is invented by: 

A = { (ƿ, μ�(ƿ), v�(ƿ), r�)|ƿ ∈ E}. 

Note that μ�(ƿ) and v�(ƿ) denote DoMV and DoNMV, respectively, with subject to condition 0 ≤
μ�(ƿ) + v�(ƿ) ≤ 1, where the radius of the circle denoted by r is the point (μ�(ƿ), v�(ƿ)) on the 
place. Additionally, π�(ƿ) = 1 −  μ�(ƿ) − v�(ƿ) (∀ƿ ∈ E) indicates the hesitancy value of ƿ in A. 
Moreover, a circular-intuitionistic fuzzy value (Cr-IFV) is expressed by β = (μ�(ƿ), v�(ƿ): r�). 
Definition 3. [12] The Crq-ROFS A on a universe of discourse E is given by: 

A = { (ƿ, μ�(ƿ), v�(ƿ), r�)|ƿ ∈ E}. 

Note that μ�(ƿ) and v�(ƿ) denote the DoMV and DoNMV, respectively, with subject to condition 
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0 ≤ μ�
� (ƿ) + v�

� (ƿ) ≤ 1, where the radius of the circle denoted by r� is the point (μ�(ƿ), v�(ƿ)) on 

the place. Additionally, π�(ƿ) = �1 − � μ�
� (ƿ) + v�

� (ƿ)�
�

  indicates the hesitancy value of ƿ  in A . 

Additionally, a circular q-rung orthopair fuzzy value (Crq-ROFV) is expressed by β = (μ�(ƿ), v�(ƿ): r�). 
Definition 4. [10] Suppose that β is a Crq-ROFV. The mathematical shape of score function 풮(β) 
and accuracy function 풮(풜) is given by: 

풮(β) =
1
2

�μ�(ƿ) − v�(ƿ) + √2r�, 

풜(β) = μ�(ƿ) + v�(ƿ), 풜(β) ∈ [0,1]. 

For simplification, we have some rules: 
 If 풮(훽�) > 풮(훽�), then 훽� > 훽�; 
 if 풮(훽�) = 풮(훽�), then: 

1) if 풜(훽�) < 풜(훽�), then 풜� < 풜�, 
2) if 풜(훽�) > 풜(훽�), then 풜� > 풜�. 

Definition 5. [14] Consider any two Crq-ROFVs, α� = (μ�, v�, r�) (i = 1, 2). Then: 
1) 훼� ⊕� 훼� = (휇� + 휇� − 휇�휇�, 푣�푣�, 푟� + 푟� − 푟�푟�); 
2) 훼� ⊕�� 훼� = (휇� + 휇� − 휇�휇�, 푣�푣�, 푟�푟�); 
3) 훼� ⊗� 훼� = (휇�휇�, 푣� + 푣� − 푣�푣�, 푟�푟�); 
4) 훼� ⊗�� 훼� = (휇�휇�, 푣� + 푣� − 푣�푣�, 푟� + 푟� − 푟�푟�); 
5) 휆훼�� = (1 − (1 − 휇�)�, 푣�

�, 1 − �1 − 푟�)��, 휆 > 0; 
6) 휆훼��� = (1 − (1 − 휇�)�, 푣�

�, 푟�
�), 휆 > 0; 

7) 훼��
� = (휇�

�, 1 − (1 − 푣�)�, 푟�
�), 휆 > 0; 

8) 훼���
� = (휇�

�, 1 − (1 − 푣�)�, 1 − �1 − 푟�)��, 휆 > 0. 
Definition 6. [51] Consider two real numbers a and b. The Frank t-norm and t-conorm can be written as: 

Fra(a, b)� = logℶ �1 +
(ℶ� − 1)�ℶ� − 1�

ℶ − 1
�, 

Fra(a, b)�� = 1 − logℶ �1 +
(ℶ��� − 1)�ℶ��� − 1�

ℶ − 1
 �, 

where (a, b) ∈ [0,1] × [0,1] and ℶ ≠ 1. 

3. Frank operations for circular q-rung orthopair fuzzy information 

This section illustrates some flexible operations of Frank triangular norms in the light Crq-ROFVs. 
Definition 7. Let 훼 = �휇(ƿ), 푣(ƿ);  푟(ƿ)�,   훼� = �휇�(ƿ), 푣�(ƿ); 푟�(ƿ)�  and 훼� =
�휇�(ƿ), 푣�(ƿ); 푟�(ƿ)� be the three Crq-ROFVs, ℶ > 1 and 휓 > 0 be any real number. Then, we have: 
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1) 훼� ⊕� 훼� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 +

�ℶ����
�

����ℶ����
�

���

ℶ��
�

�
,

�푙표푔ℶ �1 +
�ℶ��

�
����ℶ��

�
���

ℶ��
�

�
,

�1 − 푙표푔ℶ �1 +
�ℶ����

�
����ℶ����

�
���

ℶ��
�

�
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⎠
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3) 훼� ⊗� 훼� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛ �푙표푔ℶ �1 +

�ℶ��
�

����ℶ��
�

���

ℶ��
�

�
,

�1 − 푙표푔ℶ �1 +
�ℶ����

�
����ℶ����

�
���

ℶ��
�

�
,

�푙표푔ℶ �1 +
�ℶ��

�
����ℶ��

�
���

ℶ��
�

�
.

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

4) 훼� ⊗�� 훼� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛ �푙표푔ℶ �1 +

�ℶ��
�

����ℶ��
�

���

ℶ��
�

�
,

�1 − 푙표푔ℶ �1 +
�ℶ����

�
����ℶ����

�
���

ℶ��
�

�
,

�1 − 푙표푔ℶ �1 +
�ℶ����

�
����ℶ����

�
���

ℶ��
�

�
.
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

5) 휓 훼� =
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�

(ℶ��)��� �
�

,

�푙표푔ℶ �1 + �ℶ�����
�

(ℶ��)����
�

,

�1 − 푙표푔ℶ �1 + �ℶ�������
�

(ℶ��)��� �
�

.
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞
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6) 휓 훼�� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 + �ℶ�������

�

(ℶ��)��� �
�

,

�푙표푔ℶ �1 + �ℶ�����
�

(ℶ��)����
�

,

�푙표푔ℶ �1 + �ℶ������

(ℶ��)����
�

.
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

7) 훼�
� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛ �푙표푔ℶ �1 + �ℶ�����

�

(ℶ��)����
�

,

�1 − 푙표푔ℶ �1 + �ℶ�������
�

(ℶ��)��� �
�

,

�푙표푔ℶ �1 + �ℶ�����
�

(ℶ��)����
�

.
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

8) 훼��
� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛ �푙표푔ℶ �1 + �ℶ�����

�

(ℶ��)����
�

,

�1 − 푙표푔ℶ �1 + �ℶ�������
�

(ℶ��)��� �
�

,

�1 − 푙표푔ℶ �1 + �ℶ�������
�

(ℶ��)��� �
�

.
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

4. Circular q-rung orthopair fuzzy frank aggregation operators 

Besides the theory of Cr-IF information, we delve into advanced arithmetic aggregation operators by 
utilizing operational laws of Frank triangular norms, including Crq-ROFFWA and Crq-ROFWG operators. 
Definition 8. Consider a set of Crq-ROFVs α� = �μ�(ƿ), v�(ƿ); r�(ƿ)� (i = 1,2, … , n) . The Crq-
ROFFWA operator is characterized by a specific function of α� → α as follows: 

Crq − ROFFWA(α�, α�, … , α�)� =⊕�
���

�
(w�α�), 

Crq − ROFFWA(α�, α�, … , α�)�� = ⊕��
���

�
(w�α�), 

where w = (w�, w�, … , w�)� is the weight vector of α�(i = 1,2, … , n), w� ∈ [0,1] and ∑ w�
�
��� = 1. 

Theorem 1. Consider a set of Crq-ROFVs 훼� = �휇�(ƿ), 푣�(ƿ); 푟�(ƿ)� (푖 = 1,2, … , 푛) . The values 
investigated by the Crq-ROFFWA operators are also Crq-ROFVs, such that: 
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퐶푟푞 − 푅푂퐹퐹푊퐴(훼�, 훼�, … , 훼�)� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �1 − 푙표푔ℶ �1 + ��ℶ����

� − 1�
��  

�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ��
� − 1)��

�

���

�
�

,

�1 − 푙표푔ℶ �1 + ��ℶ����
� − 1�

��  
�

���

�
�

 .

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

퐶푟푞 − 푅푂퐹퐹푊퐴(훼�, 훼�, … , 훼�)�� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 + ��ℶ����

� − 1�
��  

�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ��
� − 1)��

�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ��
� − 1)��

�

���

�
�

 .

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

Proof. Based on mathematical induction, we can prove 푛 = 2, and we have: 

퐶푟푞 − 푅푂퐹퐹푊퐴(훼�, 훼�)� = ⊕�
���

�
(푤�훼�)(푤�훼�) = 푤�훼� ⊕� 푤�훼�

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 +

�ℶ����
� − 1�

��

(ℶ − 1)���� �
�

,

�푙표푔ℶ �1 +
�ℶ��

� − 1�
��

(ℶ − 1)�����
�

,

�푙표푔ℶ �1 +
�ℶ��

� − 1�
��

(ℶ − 1)�����
�

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞
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⊕�

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 +

�ℶ����
� − 1�

��

(ℶ − 1)���� �
�

,

�푙표푔ℶ �1 +
�ℶ��

� − 1�
��

(ℶ − 1)�����
�

,

�푙표푔ℶ �1 +
�ℶ��

� − 1�
��

(ℶ − 1)�����
�

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 + ��ℶ����

� − 1�
��  

�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ��
� − 1)��

�

���

�
�

,

�1 − 푙표푔ℶ �1 + ��ℶ����
� − 1�

��  
�

���

�
�

 
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, �∵  � 푤�

�

���

= 1� . 

Hence, the result is valid for 푛 = 2. 
Now, suppose that the given result is true for 푛 = 푠, so we have: 

퐶푟푞 − 푅푂퐹퐹푊퐴(훼�, 훼�, … 훼�)� =⊕�
���

�
(푤�훼�) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �1 − 푙표푔ℶ �1 + ��ℶ����

� − 1�
��  

�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ��
� − 1)��

�

���

�
�

,

�1 − 푙표푔ℶ �1 + ��ℶ����
� − 1�

��  
�

���

�
�

 .

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

Now, for 푛 = 푠 + 1: 
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퐶푟푞 − 푅푂퐹퐹푊퐴(훼�, 훼�, … 훼�, 훼���)� =⊕�
���

���
(푤�훼�) =⊕�

���

�
푤�훼� ⊕� 푤���훼���

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 +

∏ �ℶ����
� − 1�

��  �
���

(ℶ − 1)∑ ��
�
��� ��

�
�

,

�푙표푔ℶ �1 +
∏ (ℶ��

� − 1)���
���

(ℶ − 1)∑ ��
�
��� �� �

�
,

�1 − 푙표푔ℶ �1 +
∏ �ℶ����

� − 1�
��  �

���

(ℶ − 1)∑ ��
�
��� ��

�
�

 
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

⊕�

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 +

�ℶ������
� − 1�

����

(ℶ − 1)������ �
�

,

�푙표푔ℶ �1 +
(ℶ����

� − 1)����

(ℶ − 1)������ �
�

,

�1 − 푙표푔ℶ �1 +
�ℶ������

� − 1�
����

(ℶ − 1)������ �
�

 
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 + ��ℶ����

� − 1�
��  

���

���

�
�

,

�푙표푔ℶ �1 + �(ℶ��
� − 1)��

���

���

�
�

,

�1 − 푙표푔ℶ �1 + ��ℶ����
� − 1�

��  
���

���

�
�

 
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, �∵  � 푤�

���

���

= 1�. 

The result is true for 푛 = 푠 + 1 if it is true for 푛 = 푠, and true for 푛 = 2. Hence, by the method of 
induction, the given result is true for any natural number 푛. 
Similarly, we can prove t-conorm: 
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퐶푟푞 − 푅푂퐹퐹푊퐴(훼�, 훼�, … , 훼�)�� = ⊕��
���

�
(푤�훼�) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 + ��ℶ����

� − 1�
��  

�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ��
� − 1)��

�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ��
� − 1)��

�

���

�
�

 .

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

Property 1. Let 훼� = �휇�(ƿ), 푣�(ƿ); 푟�(ƿ)� (푖 = 1,2, … , 푛) be a family of identical Crq-ROFVs. Then, 

we can easily delve into the following expression:  

퐶푟 − 퐼퐹퐹푊퐴���(훼�, 훼�, … , 훼�) = 훼, 

퐶푟 − 퐼퐹퐹푊퐴��ƿ(훼�, 훼�, … , 훼�) = 훼. 

Proof. Since 훼� = �휇�(ƿ), 푣�(ƿ); 푟�(ƿ)� (푖 = 1,2, … , 푛) is a family of identical Crq-ROFVs, then we 

can prove the above expression as follows: 

퐶푟푞 − 푅푂퐹퐹푊퐴(훼�, 훼�, … , 훼�)� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 + ��ℶ����

� − 1�
��  

�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ��
� − 1)��

�

���

�
�

,

�1 − 푙표푔ℶ �1 + ��ℶ����
� − 1�

��  
�

���

�
�

 

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞
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=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 + �(ℶ���� − 1)��  

�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ�� − 1)��

�

���

�
�

,

�1 − 푙표푔ℶ �1 + �(ℶ���� − 1)��  
�

���

�
�

 

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛�1 − 푙표푔ℶ �1 + �(ℶ���� − 1)∑ ��

�
���  

�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ�� − 1)∑ ��
�
���

�

���

�
�

,

�1 − 푙표푔ℶ �1 + �(ℶ���� − 1)∑ ��
�
���  

�

���

�
�

 

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

�1 − 푙표푔ℶ�1 + (ℶ���� − 1)�
�

,

�푙표푔ℶ�1 + (ℶ�� − 1)�
�

,

�1 − 푙표푔ℶ�1 + (ℶ���� − 1)�
�

 ⎠

⎟
⎟
⎟
⎞

 

= (휇, 푣, 푟) = 훼. 

Property 2. Let 훼� = �휇�(ƿ), 푣�(ƿ); 푟�(ƿ)� (푖 = 1,2, … , 푛)  be the system of Crq-ROFVs. 
If (훼�

�)��� = (푚푖푛{휇�}, 푚푎푥{푣�} , 푚푎푥{푟�}), (훼�
�)��� = (푚푖푛{휇�}, 푚푎푥{푣�} , 푚푖푛{푟�}) and 

 (훼�
�)��� = (푚푎푥{휇�}, 푚푖푛{푣�} , 푚푎푥{푟�}), (훼�

�)��� = (푚푎푥{휇�}, 푚푖푛{푣�} , 푚푖푛{푟�}), then the 
following axiom is expressed as follows: 

(훼�
�)��� ≤ 퐶푟푞 − 푅푂퐹퐹푊퐴���(훼�, 훼�, … , 훼�) ≤ (훼�

�)���, 

(훼�
�)��� ≤ 퐶푟푞 − 푅푂퐹퐹푊퐴���(훼�, 훼�, … , 훼�) ≤ (훼�

�)���. 

Property 3. Suppose two sets of Crq-ROFVs 훼� 푎푛푑 훼�
� (푖 = 1,2, … , 푛), if 훼�  ≤  훼�

�. Then, we have:  

퐶푟푞 − 푅푂퐹퐹푊퐴���(훼�, 훼�, … , 훼�) ≤  퐶푟푞 − 푅푂퐹퐹푊퐴���(훼�
� , 훼�

� , … , 훼�
� ), 

퐶푟푞 − 푅푂퐹퐹푊퐴���(훼�, 훼�, … , 훼�) ≤  퐶푟푞 − 푅푂퐹퐹푊퐴���(훼�
� , 훼�

� , … , 훼�
� ). 

Definition 9. Consider a set of Crq-ROFVs α� = �μ�(ƿ), v�(ƿ); r�(ƿ)� (i = 1,2, … , n) . The Crq-
ROFFWG operators are characterized by a specific function of α� → α as follows: 

Crq − ROFFWG(α�, α�, … , α�)� = ⨂�
���

�
α�

�� , 

Crq − ROFFWG(α�, α�, … , α�)�� =  ⨂��
���

�
α�

�� , 
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where w = (w�, w�, … , w�)� is the weight vector of α�(i = 1,2, … , n), w� ∈ [0,1] and ∑ w�
�
��� = 1. 

Theorem 2. Consider a set of Crq-ROFVs 훼� = �휇�(ƿ), 푣�(ƿ); 푟�(ƿ)� (푖 = 1,2, … , 푛) . The values 

investigated by the Crq-ROFFWG operators are also Crq-ROFVs such that: 

퐶푟푞 − 푅푂퐹퐹푊퐺(훼�, 훼�, … , 훼�)� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �푙표푔ℶ �1 + �(ℶ��

� − 1)��

�

���

�
�

,

�1 − 푙표푔ℶ �1 + ��ℶ����
� − 1�

��  
�

���

�
�

,

�1 − 푙표푔ℶ �1 + ��ℶ����
� − 1�

��  
�

���

�
�

 .

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

퐶푟푞 − 푅푂퐹퐹푊퐺(훼�, 훼�, … , 훼�)�� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �푙표푔ℶ �1 + �(ℶ��

� − 1)��

�

���

�
�

,

�1 − 푙표푔ℶ �1 + ��ℶ����
� − 1�

��  
�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ��
� − 1)��

�

���

�
�

 .

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

Property 4. Let 훼� = �휇�(ƿ), 푣�(ƿ); 푟�(ƿ)� (푖 = 1,2, … , 푛) be a family of identical Crq-ROFVs. Then, 
we can easily delve into the following expression:  

퐶푟 − 퐼퐹퐹푊퐺���(훼�, 훼�, … , 훼�) = 훼, 

퐶푟 − 퐼퐹퐹푊퐺���(훼�, 훼�, … , 훼�) = 훼. 

Property 5. Let 훼� = �휇�(ƿ), 푣�(ƿ); 푟�(ƿ)� (푖 = 1,2, … , 푛)  be the system of Crq-ROFVs. 
If (훼�

�)��� = (푚푖푛{휇�}, 푚푎푥{푣�} , 푚푎푥{푟�}), (훼�
�)��� = (푚푖푛{휇�}, 푚푎푥{푣�} , 푚푖푛{푟�}) and 

 (훼�
�)��� = (푚푎푥{휇�}, 푚푖푛{푣�} , 푚푎푥{푟�}), (훼�

�)��� = (푚푎푥{휇�}, 푚푖푛{푣�} , 푚푖푛{푟�}). Then, the 
following axiom is expressed as follows: 

(훼�
�)��� ≤ 퐶푟푞 − 푅푂퐹퐹푊퐺���(훼�, 훼�, … , 훼�) ≤ (훼�

�)���, 

(훼�
�)��� ≤ 퐶푟푞 − 푅푂퐹퐹푊퐺���(훼�, 훼�, … , 훼�) ≤ (훼�

�)���. 

Property 6. Suppose two sets of Crq-ROFVs 훼� 푎푛푑 훼�
� (푖 = 1,2, … , 푛), if 훼�  ≤  훼�

�. Then, we have:  



3079 

AIMS Mathematics  Volume 10, Issue 2, 3062–3094. 

퐶푟푞 − 푅푂퐹퐹푊퐺���(훼�, 훼�, … , 훼�) ≤  퐶푟푞 − 푅푂퐹퐹푊퐺���(훼�
� , 훼�

� , … , 훼�
� ), 

퐶푟푞 − 푅푂퐹퐹푊퐺���(훼�, 훼�, … , 훼�) ≤  퐶푟푞 − 푅푂퐹퐹푂푊퐺���(훼�
� , 훼�

� , … , 훼�
� ). 

5. Advanced decision-making problem based on circular q-rung orthopair fuzzy environments 

Due to its balanced and intuitive approach, the EDAS method holds significant value in decision-
making, particularly for the MADM problems. This approach enables decision-makers to consider how 
each option performs relative to a central benchmark, offering a more nuanced and realistic evaluation. 

5.1. Algorithm of the EDAS method for the MADM problem 

Consider a finite class of alternatives {Ð�, Ð�, … , Ð퓂} and a collection of attributes �Ğ�, Ğ�, … , Ğ퓃� 
with degree of weight to each attribute (ŵ�, ŵ�, … , ŵ퓃) such that ŵℓ > 0 and ∑ ŵℓ = 1퓃

ℓ�� . The 
decision maker presents their opinion for the evaluation of each alternative under different types 
of attribute information. In this decision algorithm, we consider the information in the form of 
Crq-ROFVs 훼풿ℓ = �휇풿ℓ(ƿ), 푣풿ℓ(ƿ); 푟풿ℓ(ƿ)�  and list in a decision matrix 픚 = �훼풿ℓ�

퓂×퓃
, 풿 =

1,2, … , 퓂 & ℓ = 1,2, … , 퓃. The advanced decision algorithm for the EDAS method is constructed 
as follows: 
Step 1. The professional expert collects information for each alternative based on various types of 
attributes information, and the decision matrix is given by: 

픚 = �훼풿ℓ�
퓂×퓃

, 풿 = 1,2, … , 퓂 & ℓ = 1,2, … , 퓃, 

where 훼풿ℓ  indicate the Crq-ROFVs with alternatives and attributes Ð풿  and Ğℓ, 풿 = 1,2, … , 퓂 & ℓ =
1,2, … , 퓃, respectively. 
Step 2. Normalize the decision matrix as follows: 

픚 = �훼풿ℓ�
퓂×퓃

= �
�휇�(ƿ), 푣�(ƿ); 푟�(ƿ)� 푖푓 푏푒푛푒푓푖푐푖푎푙 푎푡푡푟푖푏푢푡푒푠,
�푣�(ƿ), 휇�(ƿ); 푟�(ƿ)� 푖푓 푛표푛 − 푏푒푛푒푓푖푐푖푎푙 푎푡푡푟푖푏푢푡푒푠.

 

Step 3. Compute averaging solutions using the following expression of the derived approach: 

퐶푟푞 − 푅푂퐹퐹푊퐴(훼�, 훼�, … , 훼�)� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �1 − 푙표푔ℶ �1 + ��ℶ����

� − 1�
��  

�

���

�
�

,

�푙표푔ℶ �1 + �(ℶ��
� − 1)��

�

���

�
�

,

�1 − 푙표푔ℶ �1 + ��ℶ����
� − 1�

��  
�

���

�
�

 .

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

Step 4. Based on the above theory of averaging solution and score values of each attribute, we compute 
the results of positive distance average solution (PDAS) and negative distance average solution (NDAS) 
as follows: 
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푃퐷퐴푆풿ℓ =
max �0, �풮�ℝ풿ℓ� − 풮�ℚ풿���

풮�ℚ풿�
, 

and  

푁퐷퐴푆풿ℓ =
max �0, �풮�ℚ풿� − 풮�ℝ풿ℓ���

풮�ℚ풿�
. 

Step 5. Here, we calculate the positive weighted distance (PWD) and negative weighted distance (NWD) 
based on the following expressions: 

푃푊퐷ℓ = ∑ 픴ℓ푃퐷퐴푆풿ℓ
퓃
ℓ��  and 푁푊퐷ℓ = ∑ 픴ℓ푁퐷퐴푆풿ℓ

퓃
ℓ�� . 

Step 6. Obtain normalized results of 푃푊퐷ℓ and 푁푊퐷ℓ based on the following expressions: 

푁푃푊퐷ℓ = ���ℓ
���(���ℓ) and 푁푁푊퐷ℓ = 1 − ���ℓ

���(���ℓ). 

Step 7. Apply the following theory to investigate the results of the appraisal solution as follows: 

 퐴푆� =
1
2

(푁푃푊퐷ℓ + 푁푁푊퐷ℓ). 

Step 8. Rank the obtained values of the appraisal solution; the highest value is known as the superior one.  

5.2. Decision algorithm for the MADM problem 

To evaluate an appropriate optimal option from the group of alternatives, an algorithm of the 
MADM problem is constructed under the system of the Crq-ROF framework. Some essential steps of 
the MADM problem are initiated as follows: 
Step 1. First, the decision maker arranges their judgments using alternatives based on various attributes 
and information under the Crq-ROF context. 
Step 2. Before integrating experts’ opinions, types of attributes should be the same as beneficial or 
non-beneficial under the following expression: 

픚 = �훼풿ℓ�
퓂×퓃

= �
�휇�(ƿ), 푣�(ƿ); 푟�(ƿ)� 푖푓 푏푒푛푒푓푖푐푖푎푙 푎푡푡푟푖푏푢푡푒푠,
�푣�(ƿ), 휇�(ƿ); 푟�(ƿ)� 푖푓 푛표푛 − 푏푒푛푒푓푖푐푖푎푙 푎푡푡푟푖푏푢푡푒푠.

 

Step 3. Apply strategies derived from the Frank aggregation operators considering the theory of Crq-
ROF information. 
Step 4. Obtain score values of all alternatives based on Definition 4. 
Step 5. Rank alternatives based on the estimated score values of each alternate and the highest value 
of the alternate known as the best optimal option. In order to provide clarity in the proposed methods, 
we have provided a flow chart in Figure 4. 
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Figure 4. Flow chart of decision algorithms. 

6. AI-based computing intelligence techniques 

AI plays a transformative role across fields of life by enhancing efficiency, accuracy, and 
decision-making capabilities. In healthcare, AI algorithms analyze patient data to assist in diagnostics, 
predict disease outbreaks, and develop personalized treatment plans. In finance, AI-driven analytics 
streamline risk assessment, fraud detection, and quicker enabling [52]. Furthermore, AI enhances 
customer experience in retail and marketing by providing personalized recommendations based on 
consumer behavior and preferences. In transportation, AI optimizes logistics, enhances route planning, 
and supports the development of autonomous vehicles, leading to safer and more efficient travel. 

In data computing, AI significantly improves how organizations manage and analyze large 
volumes of information. Traditional data analysis methods can be time-consuming and often struggle 
to derive meaningful insights from complex datasets [53]. However, AI techniques like machine 
learning and deep learning enable automated data processing and predictive analytics, enabling 
businesses to uncover patterns and trends that inform strategic decisions. By leveraging AI for data 
computing, organizations can achieve real-time insights, optimize operations, and drive innovation, 
enhancing their competitiveness in the market. This powerful synergy between AI and data computing is 
reshaping industries and paving the way for more innovative, data-driven solutions in everyday life. 
Furthermore, Figure 5 demonstrates the features and reliability of AI in computing strategies. 



3082 

AIMS Mathematics  Volume 10, Issue 2, 3062–3094. 

 

Figure 5. Reliability of AI in computing techniques. 

6.1. Numerical example 

Intelligent computing techniques offer several compelling advantages that enhance efficiency, 
decision-making, and innovation across domains. These techniques automate repetitive and time-
consuming tasks, enabling human resources to focus on more complex and creative activities. To 
integrate reliable computing techniques, we discuss some dominant AI-based intelligent computing 
techniques as follows: 
Hybrid Intelligent Systems ℚퟏ: 
Hybrid Intelligent Systems are advanced computational models that integrate multiple artificial 
intelligence (AI) techniques to leverage the strengths of different methods in solving complex 
problems. Hybrid Intelligent Systems are applied in robotics, decision-making, control systems, and 
optimization problems. In practical applications, a hybrid system might combine machine learning 
algorithms with expert systems to provide recommendations or integrate genetic algorithms with 
neural networks to optimize learning in dynamic environments. 
Deep Reinforcement Learning (DRL) ℚퟐ: 
Deep Reinforcement Learning (DRL) combines deep learning and reinforcement learning, where 
neural networks approximate the complex decision-making process in environments where an agent 
learns to maximize rewards through trial and error. In reinforcement learning, an agent interacts with 
an environment, making decisions that influence future states and receives feedback through rewards 
or penalties. 
Machine Learning (ML) ℚퟑ: 
ML is a branch of artificial intelligence that focuses on enabling machines to learn from data and 
improve their performance on tasks without being explicitly programmed. It involves the development 
of algorithms that can recognize patterns, make predictions, and adapt based on experience. 
Artificial Neural Networks (ANNs) ℚퟒ: 
ANNs are computational models inspired by the structure and function of the human brain. They 
consist of interconnected layers of nodes (or neurons) that work together to process information and 
make decisions. Each neuron receives inputs, applies weights, and passes the result through an 
activation function to determine its output, which is then passed on to the next layer of neurons. The 
most common architecture involves an input layer, one or more hidden layers, and an output layer. 
Quantum Computing for AI ℚퟓ: 
Quantum Computing for AI refers to applying quantum computing principles to enhance artificial 
intelligence algorithms, particularly in solving complex problems that are challenging for classical 
computers. Quantum computers operate based on the principles of quantum mechanics, using quantum 
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bits (qubits) that can represent and process multiple states simultaneously due to superposition and 
entanglement. Additionally, quantum machine learning is an emerging field that seeks to develop 
quantum algorithms capable of outperforming traditional methods for tasks like data classification, 
regression, and anomaly detection. 

To assess the above-discussed computing techniques, we discuss some characteristics as follows: 
Data-Driven and Data Management ℝퟏ: 
AI techniques rely heavily on data for training and decision-making, using large datasets to identify 
patterns, trends, and insights. Advanced computing techniques enable storing, retrieving, and 
analyzing vast amounts of data to facilitate a better decision-making process. 
Natural Interaction ℝퟐ: 
AI systems often incorporate natural language processing (NLP) and computer vision, enabling more 
intuitive user interactions through voice, text, and visual inputs. 
Enhanced Decision-Making ℝퟑ: 
AI algorithms can quickly analyze vast amounts of data, providing insights and recommendations that 
aid in informed decision-making. 
Enhanced Security and Advanced Problem-Solving ℝퟒ: 
AI can quickly detect anomalies and potential threats, improving cybersecurity measures and 
protecting sensitive data. AI can tackle complex problems that are difficult for humans to solve, such 
as optimizing logistics, supply chains, and manage resources. 
Simulation and Modeling ℝퟓ: 
Computing enables the simulation of complex systems, enabling researchers and engineers to test 
scenarios without the need for physical prototypes. 

The evaluation processes for the suitable optimal option are completed under the following 
decision algorithms of the EDAS method and MADM problem. 

6.2. Evaluation procedure based on the EDAS method 

To assess an appropriate optimal option under-discussed attributes or characteristics in the case 
study, we utilize the steps of an algorithm from the EDAS method as follows. 
Step 1. The expert organizes their opinion in the form of Crq-ROFVs, where this information has 
different attributes corresponding to each alternative. We arrange Cqr-ROFVs in the decision matrix 
of Table 2. Here, ith and jth indicate alternatives and criteria. 

Table 2. Expert opinion in the form of Crq-ROFVs. 

 ℝퟏ ℝퟐ ℝퟑ ℝퟒ ℝퟓ 

ℚퟏ (0.37, 0.65, 0.42) (0.37, 0.36, 0.73) (0.81, 0.28, 0.14) (0.28, 0.38, 0.29) (0.23, 0.47, 0.17) 
ℚퟐ (0.38, 0.53, 0.27) (0.34, 0.54, 0.65) (0.73, 0.36, 0.29) (0.36, 0.87, 0.39) (0.34, 0.64, 0.32) 
ℚퟑ (0.76, 0.34, 0.36) (0.27, 0.43, 0.84) (0.81, 0.45, 0.54) (0.65, 0.54, 0.32) (0.42, 0.56, 0.39) 
ℚퟒ (0.65, 0.65, 0.76) (0.54, 0.87, 0.54) (0.72, 0.27, 0.25) (0.43, 0.49, 0.29) (0.54, 0.32, 0.54) 
ℚퟓ (0.43, 0.32, 0.55) (0.43, 0.64, 0.42) (0.54, 0.54, 0.35) (0.37, 0.54, 0.53) (0.18, 0.58, 0.38) 

Step 2. In the discussed case study, the decision maker organized their opinion in the form of beneficial 
attributes. Thus, there is no need to normalize given information for the same type of attributes.  
Step 3. Compute averaging solutions associated with each alternative under different attribute 
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information using the expression of Crq-ROFFWAt operator. Table 3 presents the evaluated 
information. We also copmute score values of each averaging solution and attribute information, which 
are also listed in Table 3. 

Table 3. Results by the Crq-ROFFWAt operator and score values of each attribute. 

 Results of averaging solution 퓢(ℚ풊) 퓢(ℝퟏ) 퓢(ℝퟐ) 퓢(ℝퟑ) 퓢(ℝퟒ) 퓢(ℝퟓ) 

ℚퟏ (0.5385, 0.4123, 0.4784) 0.5321 0.3463 0.6062 0.5193 0.3643 0.2457 
ℚퟐ (0.4976, 0.5695, 0.4419) 0.4393 0.3204 0.5110 0.5520 0.1357 0.2886 
ℚퟑ (0.6616, 0.4575, 0.5907) 0.6403 0.6241 0.6182 0.7398 0.4586 0.3908 
ℚퟒ (0.5979, 0.4804, 0.5548) 0.5781 0.6164 0.2691 0.5303 0.3617 0.5820 
ℚퟓ (0.4227, 0.5120, 0.4617) 0.4511 0.5478 0.3669 0.41830 0.4614 0.3412 

Step 4. Based on the above-computed results of averaging solution and score values of each attribute 
information, the obtained results of PDAS and NDAS based on the following expression are: 

푃퐷퐴푆풿ℓ =
max �0, �풮�ℝ풿ℓ� − 풮�ℚ풿���

풮�ℚ풿�
, 

and  

푁퐷퐴푆풿ℓ =
max �0, �풮�ℚ풿� − 풮�ℝ풿ℓ���

풮�ℚ풿�
. 

Step 5. Now, we calculate the PWD and NWD based on the following expressions. The results are 
shown in Table 4.  

푃푊퐷ℓ = ∑ 픴ℓ푃퐷퐴푆풿ℓ
퓃
ℓ��  and 푁푊퐷ℓ = ∑ 픴ℓ푁퐷퐴푆풿ℓ

퓃
ℓ�� . 

Table 4. Representation of PDAS and NDAS matrices. 

 Outcomes of the PDAS matrix Outcomes of the NDAS matrix 

 ℝ� ℝ� ℝ� ℝ� ℝ� ℝ� ℝ� ℝ� ℝ� ℝ� 
ℚퟏ 0.0000 0.1391 0.0000 0.0000 0.0000 0.3493 0.0000 0.0241 0.3154 0.5382 
ℚퟐ 0.0000 0.0000 0.0373 0.0000 0.0000 0.3979 0.0397 0.0000 0.7451 0.4577 
ℚퟑ 0.1728 0.1616 0.3902 0.0000 0.0000 0.0000 0.0000 0.0000 0.1382 0.2656 
ℚퟒ 0.1584 0.0000 0.0000 0.0000 0.0936 0.0000 0.4943 0.0034 0.3203 0.0000 
ℚퟓ 0.0294 0.0000 0.0000 0.0000 0.0000 0.0000 0.3104 0.2139 0.1330 0.3587 

Step 6. Normalized results of 푃푊퐷ℓ and 푁푊퐷ℓ based on the following expressions (the aggregated 
output is listed in Table 5): 

푁푃푊퐷ℓ = ���ℓ
���(���ℓ) and 푁푁푊퐷ℓ = 1 − ���ℓ

���(���ℓ). 
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Table 5. Normalized results and appraisal values. 

 푺푷풊 푺푵풊 푵푺푷풊 푵푺푵풊 푨푺풊 Ranking 

ℚퟏ 0.0278 0.2454 0.1919 0.2520 0.2220 3 
ℚퟐ 0.0075 0.3281 0.0514 0.0000 0.0257 5 
ℚퟑ 0.1449 0.0808 1.0000 0.7538 0.8769 1 
ℚퟒ 0.0504 0.1636 0.3478 0.5013 0.4246 2 
ℚퟓ 0.0059 0.2032 0.0405 0.3806 0.2106 4 

Step 7. Based on the above results, we compute the results of appraisal solution 퐴푆�. Theaggregated 
outcomes are listed in Table 5. 

Using the above procedure, we also investigate the results of all alternatives based on other derived 
approaches like Crq − ROFFWA��, Crq − ROFFWG�, and Crq − ROFFWG�� operators. Table 6 carries 
the ranking of all individuals based on computed results by the derived terminologies. Furthermore, 
the graphic representation also demonstrates the results of all individuals in Figure 6. This figure offers 
more understanding of the aggregated outcomes shown in Table 6. 

Table 6. Ranking of preferences. 

Aggregation Operators Ranking of preferences by EDAS method 

푪풓풒 − 푹푶푭푭푾푨풕 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푭푾푨풕풄 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푭푾푮풕 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푭푾푮풕풄 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 

 

Figure 6. The results of score values corresponding to each alternative. 

6.3. Evaluation procedure based on the MADM method 

To prove the validity and effectiveness of the derived mathematical terminologies, we also 



3086 

AIMS Mathematics  Volume 10, Issue 2, 3062–3094. 

investigate an ideal solution using the discussed algorithm of the MADM problem. 
Step 1. Aggregate judgments of the expert’s opinion listed in Table 2 using proposed methodologies 
and the steps of the MADM problem. Table 7 contains aggregated outputs by the derived approaches. 

Table 7. Representation of accumulated outcomes. 

 푪풓풒 − 푹푶푭푭푾푨풕 푪풓풒 − 푹푶푭푭푾푨풕풄 푪풓풒 − 푹푶푭푭푾푮풕 푪풓풒 − 푹푶푭푭푾푮풕풄 

ℚퟏ (0.5385,0.4123,0.4784) (0.5385,0.4123,0.2944) (0.3758,04703,0.4784) (0.3758,0.4703,0.2944) 
ℚퟐ (0.4976,0.5695,0.4419) (0.4976,0.5695,0.3650) (0.4119,0.6598,0.4419) (0.4119,0.6598,0.3650) 
ℚퟑ (0.6616,0.4575,0.5907) (0.6616,0.4575,0.4634) (0.5456,0.4786,0.5907) (0.5456,0.4786,0.4634) 
ℚퟒ (0.5979,0.4804,0.5548) (0.5979,0.4804,0.4415) (0.5688,0.6372,0.5548) (0.5688,0.6372,0.4415) 
ℚퟓ (0.4227,0.5120,0.4617) (0.4227,0.5120,0.4395) (0.3680,0.5467,0.4617) (0.3680,0.5467,0.4395) 

Step 2. Obtain score values of all individuals using the theory of score function discussed in Definition 4. 
The estimated results are shown in Table 8. 

Table 8. Score functions by the derived methodologies. 

 푪풓풒
− 푹푶푭푭푾푨풕 

푪풓풒
− 푹푶푭푭푾푨풕풄 

푪풓풒
− 푹푶푭푭푾푮풕 

푪풓풒
− 푹푶푭푭푾푮풕풄 

ℚퟏ 0.5321 0.4267 0.4636 0.3582 
ℚퟐ 0.4393 0.3965 0.3614 0.3185 
ℚퟑ 0.6403 0.5782 0.5698 0.5077 
ℚퟒ 0.5781 0.5213 0.4894 0.4325 
ℚퟓ 0.4511 0.4394 0.4237 0.4120 

Step 3. In this step, we maintain the ranking of alternatives in descending order, as shown in Table 9. 
From Table 9, the most preferable decision is ℚ�, which represents the reliable, optimal option. 

Furthermore, we also list all computed results in a graphical representation in Figure 7. 

Table 9. Ordering of preferences. 

Aggregation operators Ranking of preferences 

푪풓풒 − 푹푶푭푭푾푨풕 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푭푾푨풕풄 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푭푾푮풕 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푭푾푮풕풄 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
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Figure 7. The results of score values corresponding to each alternative. 

From the above analysis, we conclude that the machine learning  ℚ�  is an appropriate 
computing technique based on the discussed methodologies. Machine learning ℚ�  is a feasible 
computing technique investigating both decision-making techniques of the EDAS method and 
MADM problem using derived mathematical approaches. Thus, proposed theories and terminologies 
are superior to existing approaches. 

6.4. Impact of different variables on the results of decision-making problems 

In this subsection, we illustrate the validation and compatibility of mathematical approaches and 
decision-making problems. To serve this purpose, we apply different parametric variables during the 
aggregation process using algorithms of the MADM problem. By setting various variables from 2 to 100 
in discussed aggregation operators and decision-making problems, we obtain results of score 
functions corresponding to each alternative. To better explain this, we demonstrate the results of 
score functions as geometric representations in Figures 8–11. From geometric representations, we 
see consistency in aggregated results and ranking of preferences. This consistency shows the 
reliability and efficiency of the derived mathematical methodologies and optimization techniques. 
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Figure 8. Results obtained by the  퐶푟푞 −
푅푂퐹퐹푊퐴푡 operator. 

0.35

0.40

0.45

0.50

0.55

0.60

40

25

15

5

2

 Q1
 Q2
 Q3
 Q4
 Q5

50

65

75

90

100

 

Figure 9. Results obtained by the  퐶푟푞 −
푅푂퐹퐹푊퐴�� operator. 
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Figure 10. Results obtained by the  퐶푟푞 −
푅푂퐹퐹푊퐺푡 operator. 

0.30

0.35

0.40

0.45

0.50

0.55

0.60

40

25

15

5

2

 Q1
 Q2
 Q3
 Q4
 Q5

50

65

75

90

100

 

Figure 11. Results obtained by the  퐶푟푞 −
푅푂퐹퐹푊퐺푡푐 operator. 

7. Comparative study 

To prove the validation and supremacy of discussed theories, we compare the ranking of results 
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obtained by terminologies and pioneered aggregation operators. In this section, we also explore some 
feasible advantages of advanced and robust decision-making problems like the EDAS method for the 
MADM problem. To serve this purpose, we apply existing approaches [54–57] for the judgment of 
expert opinions listed in Table 2. Ali and Yang [54] proposed mathematical methodologies of Dombi 
t-norms considering the theory of the Crq-ROF situation, including Crq-ROF Dombi weighted 
averaging (Crq-ROFDWA) and Crq-ROF Dombi weighted geometric (Crq-ROFDWG) operators. 
Hussain et al. [55] proposed Aczel Alsina aggregation operators for a complex spherical fuzzy theory 
and real-life applications. Ma et al. [56] utilized the properties of Bonferroni mean models to derive a 
new family of picture-fuzzy approaches with the decision support system. Garg et al. [57] developed 
Aczel Alsina aggregation operators to investigate the unknown degree of weights by considering bipolar 
fuzzy information. We applied existing mathematical approaches on given information of Table 2 strategies, 
and Table 10 presents the ranking of alternatives based on the estimated output from previous 
mathematical approaches. 

Table 10. Results of previous methodologies. 

Aggregation Operators Ranking of preferences 

푪풓풒 − 푹푶푭푭푾푨풕 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푭푾푨풕풄 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푭푾푮풕 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푭푾푮풕풄 ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푫푾푨풕 [54] ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푫푾푨풕풄 [54] ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푫푾푮풕 [54] ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
푪풓풒 − 푹푶푭푫푾푮풕풄 [54] ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� ≻ ℚ� 
Hussain et al. [55] Limited structure 
Ma et al. [56] Limited structure 
Garg et al. [57] Limited structure 

From Table 10, we observe some theories that failed due to the limited structures of fuzzy models. 
However, the Crq-ROFS is an effective and robust model for accurately handling vague information 
because this model has extensive information about any object with the DoMV, DoNMV, and the radius 
of both terms. The EDAS method is also a reliable optimization decision-making technique based on 
Crq-ROFS. Keeping in mind the significance of the proposed models, we concluded that the diagnosed 
methodologies are compatible and superior to existing mathematical models. 

Advantages of diagnosed mathematical methodologies: 

a) The terminologies of Crq-ROFS are a more efficient approach to coping with uncertain and vague 
expert judgments. The IFSs and q-ROFSs are restricted environments and may lose information 
during aggregation. 

b) Mathematical approaches of Frank aggregation operators are used to integrate expert’s opinions 
more accurately than others. 

c) The theory of the EDAS method is applied to investigate the ranking of alternatives based on the 
MADM problem and different criteria. This approach investigates ranking alternatives using 
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positive and negative solutions using different criteria or attribute information. 
d) In this article, we discuss different AI computing techniques under consideration of various criteria 

and beneficial key features. 

8. Conclusions 

We propose some robust mathematical strategies of the Crq-ROF framework to handle incomplete 
and redundant human information using advanced optimization theories. The Crq-ROFS is more 
convenient and effective than IFSs, q-ROFSs, and Cr-IFSs. Further, we discuss the drawbacks of 
existing operations and terminologies of Frank triangular norms. Based on modified operations of 
Frank triangular norms, we develop appropriate mathematical models of the Crq-ROF context, such 
as the Crq-ROFFWA and Crq-ROFFWG operators. Some novel properties and special cases also prove 
the worth and applicability of discussed approaches. In this article, we discuss two decision-making 
approaches, the EDAS method and the MADM problem, for resolving real-life applications and 
enhancing the worth of diagnosed theories. Some numerical examples show the reliability and 
effectiveness of the presented optimization models. Finally, we evaluate an appropriate optimal option 
from different artificial intelligence techniques to measure the performance of intelligent computing. 
Furthermore, a robust comparison method is conducted to compare the results of existing 
terminologies with pioneered approaches. 

From the discussed evaluation process and decision-making problems, we investigate machine 
learning and artificial intelligence neural networks as the best and 2nd best AI-based computing tools, 
respectively. The experimental case study is examined under some criteria and diagnosed mathematical 
terminologies. 

In the future, we can modify the theory of circular q-rung orthopair fuzzy Hamacher operators, 
Bonferroni mean models, and fuzzy graph theory. Furthermore, we can apply derived mathematical 
approaches to resolve real-life applications related to artificial intelligence, healthcare systems, and 
supplier selection to enhance the worth and applicability of the discussed theories. 
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