Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

An approach to the global well-posedness of a coupled 3-dimensional Navier-Stokes-Darcy model with Beavers-Joseph-Saffman-Jones interface boundary condition

  • This study focused on investigating the global well-posedness of a coupled Navier-Stokes-Darcy model with the Beavers-Joseph-Saffman-Jones interface boundary condition in the three-dimensional Euclidean space. By utilizing this approach, we successfully obtained the global strong solution of the system in the three-dimensional space. Furthermore, we demonstrated the exponential stability of this strong solution. The significance of such coupled systems lies in their pivotal role in the analysis of subsurface flow problems, particularly in the context of karst aquifers.

    Citation: Linlin Tan, Meiying Cui, Bianru Cheng. An approach to the global well-posedness of a coupled 3-dimensional Navier-Stokes-Darcy model with Beavers-Joseph-Saffman-Jones interface boundary condition[J]. AIMS Mathematics, 2024, 9(3): 6993-7016. doi: 10.3934/math.2024341

    Related Papers:

    [1] Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363
    [2] Ning Duan, Xiaopeng Zhao . On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations. AIMS Mathematics, 2020, 5(6): 6457-6463. doi: 10.3934/math.2020416
    [3] Yasir Nadeem Anjam . The qualitative analysis of solution of the Stokes and Navier-Stokes system in non-smooth domains with weighted Sobolev spaces. AIMS Mathematics, 2021, 6(6): 5647-5674. doi: 10.3934/math.2021334
    [4] Kaile Chen, Yunyun Liang, Nengqiu Zhang . Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418
    [5] Mingyu Zhang . On the Cauchy problem of 3D nonhomogeneous micropolar fluids with density-dependent viscosity. AIMS Mathematics, 2024, 9(9): 23313-23330. doi: 10.3934/math.20241133
    [6] Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607
    [7] T. Caraballo, A. M. Márquez-Durán . Long time dynamics for functional three-dimensional Navier-Stokes-Voigt equations. AIMS Mathematics, 2020, 5(6): 5470-5494. doi: 10.3934/math.2020351
    [8] Jingyuan Zhang, Ruikun Zhang, Xue Lin . A stabilized multiple time step method for coupled Stokes-Darcy flows and transport model. AIMS Mathematics, 2023, 8(9): 21406-21438. doi: 10.3934/math.20231091
    [9] Jianxia He, Ming Li . Existence of global solution to 3D density-dependent incompressible Navier-Stokes equations. AIMS Mathematics, 2024, 9(3): 7728-7750. doi: 10.3934/math.2024375
    [10] Qingkun Xiao, Jianzhu Sun, Tong Tang . Uniform regularity of the isentropic Navier-Stokes-Maxwell system. AIMS Mathematics, 2022, 7(4): 6694-6701. doi: 10.3934/math.2022373
  • This study focused on investigating the global well-posedness of a coupled Navier-Stokes-Darcy model with the Beavers-Joseph-Saffman-Jones interface boundary condition in the three-dimensional Euclidean space. By utilizing this approach, we successfully obtained the global strong solution of the system in the three-dimensional space. Furthermore, we demonstrated the exponential stability of this strong solution. The significance of such coupled systems lies in their pivotal role in the analysis of subsurface flow problems, particularly in the context of karst aquifers.



    The study of the coupling between free flow and porous media flow has garnered widespread attention in recent years, owing to its diverse applications in geosciences (e.g., karst aquifers, hyporheic flow, contaminant transport), health sciences (e.g., blood flow), and industrial processes; see [1,2,3,4,5] and the references therein. Insights derived from a comprehensive understanding of the Navier-Stokes-Darcy equations can be readily employed to tackle various engineering challenges. The typical mathematical analysis on the well-posedness of the associated initial boundary value problem has been done by Layton et al. [6] and Discacciati et al. [7]. The mathematical analysis of the miscible displacement problem in the subsurface was done in a seminal paper by Alt-Luckhaus [8] and by others such as Fabrie-Langlais [9], Fabrie-Gallouët [10], and Marpeau-Saad [11].

    We select a microelement in the fluid-structure coupling system to consider a plane as the research object, which means that the fluid flow on the cross-section of the interface is isotropic. The schematic diagram is shown in Figure 1:

    Figure 1.  Domain Ω=ΩfΩm.

    For the fluid flow in the porous medium, we employ the mass conversation law of the porosity medium and Darcy's law [12,13] to describe the system as follows:

    {v=Πμ2P2, in Ωm,v=0, in Ωm, (1.1)

    where v=v(x,t)R3 denotes the velocity of the flow in the porosity medium. Obviously, we can get that

    (Πμ2P2)=0, in Ωm, (1.2)

    where P2=P2(x,t)R3, μ2>0 represents the pressure and the viscosity of the flow in Ωm, respectively, and Π denotes the permeability tensor. We use the incompressible Navier-Stokes equations with constant viscosity μ1>0 to describe the flow in Ωf as the following equations:

    {ut(2μ1D(u)P1I)+uu=0, in Ωf,u=0, in Ωf, (1.3)

    where ΩfR3 covers the domain of the free flow, u=u(x,t)=(u1, u2, u3)R3 is the velocity of the free flow, P1=P1(x,t) represents the pressure of the flow in Ωf, and μ1 is the viscosity of the free flow.

    The interface-boundary and initial conditions are given by

    {n1(2μ1D(u)P1I)n1=P2, on Γi,τi(2D(u))n1=αtrΠτiu, on Γi,u=0, on ΓU,P2=0, on ΓL,un1=vn1, on Γi,u(x,0)=u0,Pi(x,0)=P0i,i=1,2, (1.4)

    where α is an empirically determined coefficient, τi,i={1, 2} represents two orthogonal tangent vectors in the horizontal direction, and n1 denotes the exterior unit vector normal of Ωf satisfying

    u=(u n1)n1+(u τ1)τ1+(u τ2)τ2,

    (1.4)1 is derived by the balance of force in the normal direction and Beavers-Joseph-Saffman-Jones interface boundary condition (1.4)2 states the shear force to the tangential stress of the fluid velocity along Γi.

    We acknowledge the pioneering work of researchers who have contributed to the fields of fluid dynamics in porous media, computational methods for solving coupled equations, and the development of interface-boundary conditions [14,15,16,17,18]. For the conditions at the sharp interface, a comprehensive review of these interface selections is provided in [19]. It is known that there are three options for the shear stress conditions in the tangential velocity: The BJ (Beavers-Joseph) condition [14], the BJJ (Beavers-Joseph-Jones) condition [17], and the BJSJ (Beavers-Joseph-Saffman-Jones) condition [18], which is equivalent to what is known as BJS interface condition in some other literature such as [20]. Additionally, two choices are available for the balance of force in the normal direction at the interface: The Lions interface condition and the Rankine-Hudoniot condition.

    Research in this domain primarily centers on the classical Navier-Stokes-Darcy equations with sharp interface conditions (refer to [3,6,7,21,22,23,24,25,26,27,28,29,30,31,32,33,34] and the related references), the Navier-Stokes-Darcy-Boussinesq equations involving temperature variations (refer to [35,36] and related references), and the more complex Cahn-Hilliard-Navier-Stokes-Darcy equations with interface mixing (refer to [20,37,38,39,40] and related references).

    However, there have been few achievements in the mathematical analysis, especially in the case of well-posedness of strong solutions [41,42]. This is mainly due to the strong coupling of the interface, which makes it difficult to obtain high-order estimates of the system. The convection phenomenon under consideration is notably more intricate than that in a single fluid (see [43] for the free-flow and [44,45] for fluids in a porous medium).

    In recent years, researchers have obtained results on non-stationary weak solutions [30,46,47,48]. Cui, Dong, and Guo [41] have studied the strong solutions and exponential decay in the two-dimensional case, and we have extended these results to the problem in the 3-D Euclidean space in this paper. Our primary objective is to conduct an initial analysis on the global well-posedness of a coupled Navier-Stokes-Darcy model in the context of the Beavers-Joseph-Saffman-Jones interface boundary condition and establishing their uniqueness property.

    Definition 1. For any T(0,+], we first define a function space X(0,T) as

    X(0,T)={(u,P2)|uL(0,T;H2(Ω1))L(τ,T;H4(Ω1)),utL(0,T;L2(Ω1))L2(0,T;H1(Ω1))L(τ,T;H2(Ω1)),ut,tL(τ,T;L2(Ω1))L2(τ,T;H1(Ω1)),P2L(0,T;H3(Ω2))L(τ,T;H5(Ω2)),tP2L2(0,T;H1(Ω2))L(τ,T;H1(Ω2)),2tP2L2(τ,T;H1(Ω2)),τ(0,T)}.

    (u,P2)X(0,T) is called the strong solution of (1.2)–(1.4), if it satisfies systems (1.2) and (1.3) a.e. in Ω×(0,T), and fulfills the conditions (1.2)–(1.4).

    Next, we present the main result of this paper.

    Proposition 1.1. (Local well-posedness) Let μ1,μ2 both be positive constants and assume that

    λξ2ΠξξΛξ2,ξR3, (1.5)

    the initial data u0H2(Ωf) is divergence free, and the compatibility condition holds as follows

    u0t=(2μ1D(u0)P01I)u0u0, (1.6)

    where u0t=utt=0 and P01=P1t=0. There exists a time T>0 such that the 3-D coupled Navier-Stokes-Darcy systems (1.2)–(1.4) have a unique strong solution (u,P2)X(0,T).

    Theorem 1.2. (Global well-posedness) The permeability tensor Π satisfies (1.5) and the initial divergence free velocity field u0H2(Ωf) satisfies the compatibility condition (1.6), then there exists a positive constant C depending only on μ1,Ωf, and λ, such that if

    u0L2(Ωf)ϵ0=min{μ21C2M,116C2M,18C},  M=max{1,Cu0L2(Ωf)},

    the three-dimensional coupled Navier-Stokes-Darcy systems (1.2)–(1.4) have a unique global strong solution (u,P2)X(0,+) as described in Definition 1.

    Moreover, the solution (u,P2) has a decay rate

    uHk(Ωf)+P2Hk(Ωm)Cect, k0, (1.7)

    where the positive constants are C=C(μ1,λ,Ωf,u0H2(Ωf)) and c=c(μ1,Ωf).

    Remark 1. In divergence from the findings of [41,42], this paper makes two primary contributions. First, in terms of analytical techniques, the involvement of more intricate directional derivatives under the three-dimensional model renders estimations challenging and convoluted. Second, regarding outcomes, our research is centered on a strip domain, breaking away from the conventional assumption of periodicity. This marks a pioneering achievement as the first three-dimensional outcome in the rigorous examination of robust solutions for the Navier-Stokes-Darcy system. Notably, our results extend beyond, demonstrating applicability, even in the context of periodic domains.

    Furthermore, ϵ0 in Theorem 1.2 will depend on u0L2(Ωf).

    Remark 2. The decay rate obtained in (1.7) indicates that after time t>0, the solution (u,P2) is smooth, and all its derivatives decay for any order.

    The existence and uniqueness of local solutions to this problem can be obtained similarly to the approach in [41]. Therefore, our subsequent focus will be on the a priori estimates of the global solution.

    As is well known, the global strong solution to the nonlinear partial differential equations can be obtained by combining local solutions with global a priori estimates. The local solution is proved similarly to that in [41] and is omitted here. Instead, we present the crucial a priori estimates pivotal to establishing global well-posedness below. Note that \(K = \frac{\Pi}{\mu_{2}}\) and \(\mathcal{W} = \frac{\mu_{1}\alpha}{\sqrt{\text{tr}\, \Pi}}\) for convenience in the subsequent discussion.

    Proposition 2.1. If (u,P2) is a smooth solution of the Navier-Stokes-Darcy systems (1.3) and (1.4) satisfying

    sup0tTuL2(Ωf)2u0L2(Ωf),  sup0tTuL2(Ωf)2M, (2.1)

    then the following estimates hold:

    sup0tTuL2(Ωf)u0L2(Ωf),sup0tTuL2(Ωf)M, (2.2)

    and

    sup0<t<T(u2H2(Ωf)+ut2H2(Ωf)+P22H3(Ωm))+T0(ut2H1(Ωf)+u2H1(Ωf)+tP22L2(Ωm)) dtC(u02H2(Ωf)+1)exp{u02H1(Ωf)+u04H1(Ωf)}, (2.3)

    provided

    u0L2(Ωf)ϵ0=min{μ21C2M,116C2M,18C},  M=max{1,Cu0L2(Ωf)},

    where C depends only on μ1,Ωf, and λ.

    The proof of Proposition 2.1 can be successfully summarized by the following Lemmas 2.1–2.4.

    Lemma 2.1. Under the conditions of Proposition 2.1, it holds that

    sup0tTu2L2(Ωf)+2μ1T0D(u)2L2(Ωf) dtu02L2(Ωf). (2.4)

    Proof. Multiplying (1.3)1 by u and integrating the result equation on Ωf, then multiplying (1.2) by P2 and integrating it on Ωm, we add up the two resulting equations to have

    2μ1D(u)2L2(Ωf)+W2i=1uτi2L2(Γi)+12ddtu2L2(Ωf)+λμ2P22L2(Ωm)Ωf(uu)u dxuL3(Ωf)uL2(Ωf)uL6(Ωf)Cu12L2(Ωf)u12L2(Ωf)u2L2(Ωf)Cu012L2(Ωf)M12D(u)2L2(Ωf)μ1D(u)2L2(Ωf), (2.5)

    where we have used Hölder's inequality, Young's inequality, Gagliardo-Nirenberg inequality, Korn's inequality, and (2.1). Here C depends on the domain Ωf. By integrating (2.5) over (0,t), one gets (2.4) with ϵ0μ21C2M and (2.1).

    Lemma 2.2. Under the conditions of Proposition 2.1, it holds that

    sup0tTD(u)2L2(Ωf)+T0(ut2L2(Ωf)+2u2L2(Ωf)) dtCu02L2(Ωf). (2.6)

    Proof. Multiply (1.3)1 by ut and integrate it over Ωf, while differentiating (1.2) with respect to t, then multiply by P2 and integrate it over Ωm. Now, summing up the two resulting equations yields with Hölder's inequality, Gagliardo-Nirenberg inequality, Young's inequality, Korn's inequality, and (2.1):

    ut2L2(Ωf)+ddt(μ1D(u)2L2(Ωf)+W22i=1uτi2L2(Γi)+12ΩmKP2P2 dx)Ωf(uu)ut dxuL3(Ωf)utL2(Ωf)uL6(Ωf)Cu12L2(Ωf)u12L2(Ωf)(2uL2(Ωf)+uL2(Ωf))utL2(Ωf)Cu012L2(Ωf)M12(2uL2(Ωf)+uL2(Ωf))utL2(Ωf)14ut2L2(Ωf)+Cu0L2(Ωf)M2u2L2(Ωf)+Cu0L2(Ωf)Mu2L2(Ωf)14ut2L2(Ωf)+CD(u)2L2(Ωf)+C2u2L2(Ωf), (2.7)

    where C depends on μ1 and Ωf.

    Next, we come to estimate 2uL2(Ωf). The fact that

    2uL2(Ωf)C(D(ux)L2(Ωf)+D(uy)L2(Ωf)+uz,zL2(Ωf)) (2.8)

    tells us to deduce the estimations on D(ux)L2(Ωf) minutely, we omit the details of the estimations on D(uy)L2(Ωf) due to the symmetry in the horizontal direction. We know from (2.8) and (2.23)–(2.28) that

    2uL2(Ωf)C(D(ux)L2(Ωf)+D(uy)L2(Ωf)+utL2(Ωf)+D(u)L2(Ωf)+uuL2(Ωf))C(D(ux)L2(Ωf)+D(uy)L2(Ωf)+utL2(Ωf)+D(u)L2(Ωf)+uL3(Ωf)uL6(Ωf))C(D(ux)L2(Ωf)+D(uy)L2(Ωf)+utL2(Ωf)+D(u)L2(Ωf)+u12L2(Ωf)u12L2(Ωf)uH1(Ωf))Cu012L2(Ωf)M12uH1(Ωf)+C(D(ux)L2(Ωf)+D(uy)L2(Ωf)+utL2(Ωf)+D(u)L2(Ωf)),

    thus, we can get from Cu012L2(Ωf)M1212 that

    2uL2(Ωf)C(D(ux)L2(Ωf)+D(uy)L2(Ωf)+utL2(Ωf)+D(u)L2(Ωf)). (2.9)

    Next, taking the partial derivative of (1.3)1 with respect to x, we get

    ut,x(2μ1D(ux)xP1I)+x(uu)=0 in Ωf×(0,T). (2.10)

    Multiplying (2.10) by ux and integrating the result inequality with respect to x over Ωm, then using Hölder's inequality, Gagliardo-Nirenberg inequality, Young's inequality, Korn's inequality, and (2.1), one can get

    12ddtux2L2(Ωf)+2μ1D(ux)2L2(Ωf)+W2i=1uxτi2L2(Γi)+λμ2xP22L2(Ωm)Ωfx(uu)ux dxΩf((uxu)ux+(uux)ux) dxuL3(Ωf)uxL6(Ωf)uxL2(Ωf)+ΓiKP2n1(uux) dSCu12L2(Ωf)u12L2(Ωf)ux2L2(Ωf)+CxP2L4(Γi)uL2(Γi)uxL4(Γi)Cu012L2(Ωf)M12D(ux)2L2(Ωf)+CuH1(Ωf)(uL2(Ωf)+u12L2(Ωf)u12L2(Ωf))uxH1(Ωf)Cu012L2(Ωf)M12D(ux)2L2(Ωf)+CuH1(Ωf)(u0L2(Ωf)+u012L2(Ωf)M12)Cu2H1(Ωf)(u0L2(Ωf)+u012L2(Ωf)M12), (2.11)

    and, similarly, we have

    12ddtuy2L2(Ωf)+2μ1D(uy)2L2(Ωf)+W2i=1uyτi2L2(Γi)+λμ2yP22L2(Ωm)Cu2H1(Ωf)(u0L2(Ωf)+u012L2(Ωf)M12). (2.12)

    Therefore, plugging (2.9) into (2.7) and combining (2.1), (2.11), and (2.12), one gets

    ddt(μ1D(u)2L2(Ωf)+W22i=1uτi2L2(Γi)+12ΩmKP2P2 dx+12ux2L2(Ωf)+12uy2L2(Ωf))+34ut2L2(Ωf)+2μ1D(ux)2L2(Ωf)+2μ1D(uy)2L2(Ωf)C(u0L2(Ωf)+u012L2(Ωf)M12+u0L2(Ωf)M)2u2L2(Ωf)+CD(u)2L2(Ωf)12(34ut2L2(Ωf)+2μ1D(ux)2L2(Ωf)+2μ1D(uy)2L2(Ωf))+CD(u)2L2(Ωf), (2.13)

    where we have used C(u0L2(Ωf)+u012L2(Ωf)M12+u0L2(Ωf)M)12. Integrating (2.13) over (0,t), we can obtain (2.6) with Lemma 2.1, Young's inequality, and

    ϵ0=min{μ21C2M,116C2M,18C},  M=max{1,Cu0L2(Ωf)}.

    Thus, the proof of Lemma 2.2 is completed.

    While combining Lemmas 2.1 and 2. 2, we have

    sup0tTuL2(Ωf)Cu0L2(Ωf)M.

    Therefore, the proof of (2.2) is complete.

    Lemma 2.3. Under the conditions of Proposition 2.1, it holds that

    sup0tTut2L2(Ωf)+T0(D(ut)2L2(Ωf)+tP22L2(Ωm)) dtCu02H2(Ωf)exp{u04H1(Ωf)}. (2.14)

    Proof. Differentiate (1.3)1 with respect to t, multiply by ut, then integrate over Ωf. Differentiate (1.2) with respect to t, multiply by tP2, then integrate over Ωm. Adding up the two result equations, we obtain that

    12ddtut2L2(Ωf)+2μ1D(ut)2L2(Ωf)+W2i=1utτi2L2(Γi)+λμ2tP22L2(Ωm)Ωft(uu)ut dxCuL2(Ωf)ut2L4(Ωf)+CuL6(Ωf)utL3(Ωf)utL2(Ωf)CuL2(Ωf)ut12L2(Ωf)ut32L2(Ωf)μ1D(ut)2L2(Ωf)+CD(u)4L2(Ωf)ut2L2(Ωf), (2.15)

    where we have used Hölder's inequality, Young's inequality, Gagliardo-Nirenberg inequality, and Korn's inequality, then we can obtain by Grönwall's inequality that

    sup0tTut2L2(Ωf)+T0(D(ut)2L2(Ωf)+tP22L2(Ωm)) dsut,02L2(Ωf)exp{CT0D(u)4L2(Ωf) ds}Cu02H2(Ωf)exp{sup0tTD(u)2L2(Ωf)T0D(u)2L2(Ωf) ds}Cu02H2(Ωf)exp{Cu02L2(Ωf)u02L2(Ωf)}Cu02H2(Ωf)exp{u04H1(Ωf)}.

    The proof is completed with the supports of Lemmas 2.1 and 2.2.

    Lemma 2.4. Under the conditions of Proposition 2.1, it holds that

    sup0tT(2u2L2(Ωf)+P22H3(Ωm))+T0(ut,x2L2(Ωf)+3u2L2(Ωm)) dtC(u02H2(Ωf)+1)exp{u02H1(Ωf)}. (2.16)

    Proof. Put x on (1.3)1 and multiply ut,x by both sides of it, then integrate it on Ωf; meanwhile, apply xt to (1.2), then multiply by xP2 and integrate it on Ωm. Adding up the two resulting equations gives that

    ddt(μ1D(ux)2L2(Ωf)+W22i=1uxτi2L2(Γi)+12ΩmKP2,xP2,x dx)+ut,x2L2(Ωf)Ωfx(uu)ut,x dx12ut,x2L2(Ωf)+12ux2L6(Ωf)u2L3(Ωf)+Cu2L(Ωf)ux2L2(Ωf)12ut,x2L2(Ωf)+Cux2L2(Ωf)u2L3(Ωf)+Cu2L(Ωf)ux2L2(Ωf)12ut,x2L2(Ωf)+Cux2L2(Ωf)(uL2(Ωf)2uL2(Ωf)+u2L2(Ωf))+C(u12L2(Ωf)2u32L2(Ωf)+u2L2(Ωf))ux2L2(Ωf)12ut,x2L2(Ωf)+Cux2L2(Ωf)(u2L2(Ωf)+2u2L2(Ωf)+u2L2(Ωf))12ut,x2L2(Ωf)+CD(ux)2L2(Ωf)(D(u)2L2(Ωf)+2u2L2(Ωf)), (2.17)

    where we have used Poincaré's inequality, Hölder's inequality, Young's inequality, Gagliardo-Nirenberg inequality, and Korn's inequality. Similarly, we can derive that

    ddt(μ1D(uy)2L2(Ωf)+W22i=1uxτi2L2(Γi)+12ΩmKP2,yP2,y dx)+ut,y2L2(Ωf)12ut,y2L2(Ωf)+CD(uy)2L2(Ωf)(D(u)2L2(Ωf)+2u2L2(Ωf)), (2.18)

    then we add up (2.17) and (2.18), and use Grönwall's inequality, Lemma 2.1, and Lemma 2.2 to get

    sup0tT(D(ux)2L2(Ωf)+D(uy)2L2(Ωf))+T0(ut,x2L2(Ωf)+ut,y2L2(Ωf)) dsCu02H2(Ωf)exp{T0(D(u)2L2(Ωf)+2u2L2(Ωf)) ds}Cu02H2(Ωf)exp{u02L2(Ωf)+u02L2(Ωf)}. (2.19)

    Therefore, know from (2.9) and (2.19) that

    sup0tTuz,z2L2(Ωf)CT0(D(ux)2L2(Ωf)+D(uy)2L2(Ωf)+ut2L2(Ωf)+D(u)2L2(Ωf)) dsCu02H2(Ωf)exp{u02L2(Ωf)+u02L2(Ωf)}+u02L2(Ωf)+u02L2(Ωf)C(u02H2(Ωf)+1)exp{u02H1(Ωf)}, (2.20)

    and it is easy to get that (see [42])

    P22Hk(Ωm)Cu2Hk1(Ωf),k2, (2.21)

    thus, the proof of Lemma 2.4 is complete with (2.4), (2.6), (2.9), (2.14), (2.19), and (2.20).

    The proof of Proposition 2.1 has been finished. Next, we will proceed with the higher-order estimation involving the time weighting.

    Let σ(t)=min{1,t} and, from now on, the generic positive constant is defined by the right term of (2.3) as NC(u02H2(Ωf)+1)exp{u02H1(Ωf)+u04H1(Ωf)}.

    We have the following third-order estimates.

    Lemma 2.5. It holds that

    sup0tTσ(t)(3u2L2(Ωf)+D(ut)2L2(Ωf)+tP22L2(Ωm)+4P22L2(Ωm))+T0σ(t)(D(ut,x)2L2(Ωf)+D(ut,y)2L2(Ωf)+ut,t2L2(Ωf)+D(ux,x,x)2L2(Ωf)+D(ux,x,y)2L2(Ωf)+D(ux,y,y)2L2(Ωf)+D(uy,y,y)2L2(Ωf)+txP22L2(Ωm)+tyP22L2(Ωm)) dtC(u010H2(Ωf)+1)exp{u02H1(Ωf)+u04H1(Ωf)}. (2.22)

    Proof. It follows from the fact that

    3uL2(Ωf)C(D(ux,x)L2(Ωf)+D(ux,y)L2(Ωf)+D(uy,y)L2(Ωf)+uz,zL2(Ωf)).

    First, we focus on uz,z. By (1.3)1, we have

    uz,z2L2(Ωf)1μ1(ut+uu+P1ux,xuy,y)2L2(Ωf)C(ut2L2(Ωf)+uu2L2(Ωf)+P12L2(Ωf)+ux,x2L2(Ωf)+uy,y2L2(Ωf)), (2.23)

    and taking divergence to (1.3)1, the elliptic problem can be obtained as follows:

    ΔP1=(uu) in Ωf×(0,T). (2.24)

    With the boundary condition obtained by (1.3)2 and (1.4)1, we have

    {P1n1=0     on ΓU,P1=P2+2μ1zu3=P22μ1xu12μ1yu2     on Γi. (2.25)

    It is clear to show by Lemma 2.5 [41] and the Trace theorem that

    P12L2(Ωf)CP12H1(Ωf)C((uu)2H1(Ωf)+P22μ1xu12μ1yu22H12(Γi))C(uu2L2(Ωf)+P22L2(Ωm)+xu12H1(Ωf)+yu22H1(Ωf))C(uu2L2(Ωf)+P22L2(Ωm)+D(xu1)2L2(Ωf)+D(yu2)2L2(Ωf))C(uu2L2(Ωf)+P22L2(Ωm)+D(ux)2L2(Ωf)+D(uy)2L2(Ωf)). (2.26)

    The estimation of uu2L2(Ωf) can be estimated by Hölder's inequality, Gagliardo-Nirenberg inequality, Young's inequality, and Korn's inequality as follows:

    uu2L2(Ωf)u2L(Ωf)u2L2(Ωf)CuL2(Ωf)2uL2(Ωf)u2L2(Ωf)C(ϵ)D(u)6L2(Ωf)+ϵ2u2L2(Ωf). (2.27)

    Thus, we can derive with (2.23), (2.27), and (2.21), by Young's inequality, that

    u2H1(Ωf)C(ut2L2(Ωf)+D(ux)2L2(Ωf)+D(uy)2L2(Ωf)+D(u)6L2(Ωf)+1). (2.28)

    Obviously, from (2.23) with Hölder's inequality, Young's inequality, Gagliardo-Nirenberg inequality, Poincáre's inequality, Sobolev inequality, and Korn's inequality we have

    uz,zL2(Ωf)C(utL2(Ωf)+(uu)L2(Ωf)+2P1L2(Ωf)+ux,xL2(Ωf)+uy,yL2(Ωf))C(D(ut)L2(Ωf)+D(ux,x)L2(Ωf)+D(uy,y)L2(Ωf)+D(ux,y)L2(Ωf)+ux,z,zL2(Ωf)+uy,z,zL2(Ωf)+u2H2(Ωf)),

    where we have used the estimation obtained based on (2.27) as follows:

    uuH1(Ωf)uL(Ωf)2uL2(Ωf)+u2L4(Ωf)+uuL2(Ωf)u12L2(Ωf)2u32L2(Ωf)+u2H1(Ωf)Cu2H2(Ωf), (2.29)

    and, again, using Lemma 2.5 [41] together with the Trace theorem to get that

    2P1L2(Ωf)P1H2(Ωf)(uu)L2(Ωf)+P22μ1xu12μ1yu2H32(Γi)C(u2H2(Ωf)+P22H2(Ωm)+xu1H1(Ωf)+yu2H1(Ωf))C(D(ux,x)L2(Ωf)+D(uy,y)L2(Ωf)+D(ux,y)L2(Ωf)+ux,z,zL2(Ωf)+uy,z,zL2(Ωf)+u2H2(Ωf)), (2.30)

    such that we have

    3u2L2(Ωf)C(D(ut)2L2(Ωf)+D(ux,x)2L2(Ωf)+D(uy,y)2L2(Ωf)+D(ux,y)2L2(Ωf)+ux,z,z2L2(Ωf)+uy,z,z2L2(Ωf)+u4H2(Ωf)). (2.31)

    Next, we will get the bound of each term at the righthand of (2.31) step by step.

    Step 1. Next, we apply xy to (1.3)1 and multiply ut,x,y before integrating the result equations over Ωf; meanwhile, we apply xy to (1.2) and integrate it over Ωm after multiplying P2,x,y on it. Finally, summing up the two resulting equations would come to (2.32), with the help of Hölder's inequality, Gagliardo-Nirenberg inequality, Young's inequality, and Korn's inequality,

    ddt(μ1D(ux,y)2L2(Ωf)+W22i=1ux,yτi2L2(Γi)+12ΩmKP2,x,yP2,x,y dx)+ut,x,y2L2(Ωf)Ωfxy(uu)ut,x,y dx12ut,x,y2L2(Ωf)+u2L(Ωf)ux,y2L2(Ωf)+ux2L(Ωf)uy2L2(Ωf)+uy2L(Ωf)ux2L2(Ωf)+u2L(Ωf)ux,y2L2(Ωf)12ut,x,y2L2(Ωf)+ux,y2L2(Ωf)uH1(Ωf)2uH1(Ωf)+uxH1(Ωf)uxH1(Ωf)uy2L2(Ωf)+uyH1(Ωf)uyH1(Ωf)ux2L2(Ωf)+uL2(Ωf)2uL2(Ωf)ux,y2L2(Ωf)12ut,x,y2L2(Ωf)+C(u3H2(Ωf)2uH1(Ωf)+u2H2(Ωf)D(ux,y)2L2(Ωf)). (2.32)

    Multiplying (2.32) by σ(t) and integrating the result over (0,t), with integration by parts and Young's inequality, obtains that

    σ(t)D(ux,y)2L2(Ωf)+12t0σ(s)ut,x,y2L2(Ωf) dsCt0u3H2(Ωf)2uH1(Ωf) ds+Ct0(1+u2H2(Ωf))D(ux,y)2L2(Ωf) dsC(1+N2). (2.33)

    Similarly, we can get

    σ(t)D(ux,x)2L2(Ωf)+12t0σ(s)ut,x,x2L2(Ωf) dsC(1+N2), (2.34)

    and

    σ(t)D(uy,y)2L2(Ωf)+12t0σ(s)ut,y,y2L2(Ωf) dsC(1+N2). (2.35)

    Step 2. For D(ut)2L2(Ωf), first differentiate (1.3)1 with respect to t and multiply by 2tu, then integrate it on Ωf. Meanwhile, apply 2t to (1.2) and multiply by 2tP2, then integrate it on Ωm. At last, summing up the two resulting equations with Hölder's inequality, Gagliardo-Nirenberg inequality, and Young's inequality gains that

    ut,t2L2(Ωf)+ddt(μ1D(ut)2L2(Ωf)+W22i=1utτi2L2(Γi)+12ΩmKtP2tP2 dx)Ωft(uu)ut,t dx(utuL2(Ωf)+uutL2(Ωf))ut,tL2(Ωf)ut2L4(Ωf)u2L4(Ωf)+u2L(Ωf)ut2L2(Ωf)+12ut,t2L2(Ωf)Cut2L2(Ωf)u2H1(Ωf)+12ut,t2L2(Ωf). (2.36)

    Multiplying (2.36) by σ(t) and integrating the result over (0,t), with Lemma 2.3 and Young's inequality, obtains that

    σ(t)(D(ut)2L2(Ωf)+tP22L2(Ωf))+t0σ(s)ut,t2L2(Ωf) dsCt0(1+u2H2(Ωf))D(ut)2L2(Ωf) ds+Ct0tP22L2(Ωf) dsC(1+N2). (2.37)

    Step 3. Undoubtedly, from (2.25), (2.29), and (2.30), we get that

    ux,z,z2L2(Ωf)+uy,z,z2L2(Ωf)1μ1x(ut+uu+P1ux,xuy,y)2L2(Ωf)+1μ1y(ut+uu+P1ux,xuy,y)2L2(Ωf)C(ut,x2L2(Ωf)+ut,y2L2(Ωf)+x(uu)2L2(Ωf)+y(uu)2L2(Ωf)+xP12L2(Ωf)+yP12L2(Ωf)+D(ux,x)2L2(Ωf)+D(uy,y)2L2(Ωf)C(ut,x2L2(Ωf)+ut,y2L2(Ωf)+u4H2(Ωf)+D(ux,x)2L2(Ωf)+D(uy,y)2L2(Ωf)+D(ux,y)2L2(Ωf)+1), (2.38)

    where we have used the estimation:

    x(uu)2L2(Ωf)+y(uu)2L2(Ωf)uxu2L2(Ωf)+uux2L2(Ωf)+uyu2L2(Ωf)+uuy2L2(Ωf)C(ux2L4(Ωf)u2L4(Ωf)+u2L(Ωf)ux2L2(Ωf)+uy2L4(Ωf)u2L4(Ωf)+u2L(Ωf)uy2L2(Ωf))C(ux12L2(Ωf)ux32H1(Ωf)u2H1(Ωf)+uL2(Ωf)2uL2(Ωf)ux2L2(Ωf)+uy12L2(Ωf)uy32H1(Ωf)u2H1(Ωf)+uL2(Ωf)2uL2(Ωf)uy2L2(Ωf))Cu4H2(Ωf)

    and

    xP12L2(Ωf)+yP12L2(Ωf)C(x(uu)2L2(Ωf)+xP22H1(Ωm)+2xu12H1(Ωf)+xyu12H1(Ωf))+C(y(uu)2L2(Ωf)+yP22H1(Ωm)+2yu22H1(Ωf)+xyu22H1(Ωf))C(u4H2(Ωf)+D(ux,x)2L2(Ωf)+D(uy,y)2L2(Ωf)+D(ux,y)2L2(Ωf)), (2.39)

    which are derived by Hölder's inequality, Gagliardo-Nirenberg inequality, and Young's inequality. Thus, from (2.38), we could derive that

    σ(t)(ux,z,z2L2(Ωf)+uy,z,z2L2(Ωf))C(1+N2). (2.40)

    Step 4. Apply tx to (1.3)1, then multiply σ(t)ut,x and integrate the result equation over Ωf. Meanwhile, apply tx to (1.2), then multiply σ(t)txP2 and integrate the result equation over Ωm. Summing up the two resulting equations, we obtain with Hölder's inequality, Gagliardo-Nirenberg inequality, and Young's inequality that

    ddt(σ(t)ut,x2L2(Ωf))+σ(t)W2i=1ut,xτi2L2(Γi)+σ(t)D(ut,x)2L2(Ωf)+σ(t)txP22L2(Ωm)Cut,x2L2(Ωf)+Cσ(t)Ωftx(uu)ut,x dxCut,x2L2(Ωf)+Cσ(t)ut,x2L4(Ωf)uL2(Ωf)+Cσ(t)uxL4(Ωf)utL2(Ωf)ut,xL4(Ωf)+Cσ(t)utL4(Ωf)uxL2(Ωf)ut,xL4(Ωf)+Cσ(t)uL4(Ωf)ut,xL2(Ωf)ut,xL4(Ωf)Cut,x2L2(Ωf)+Cσ(t)ut,x12L2(Ωf)ut,x32H1(Ωf)uL2(Ωf)+Cσ(t)ux14L2(Ωf)ux34H1(Ωf)utL2(Ωf)ut,x14L2(Ωf)ut,x34H1(Ωf)+Cσ(t)ut14L2(Ωf)ut34H1(Ωf)uxL2(Ωf)ut,x14L2(Ωf)ut,x34H1(Ωf)+Cσ(t)u14L2(Ωf)u34L2(Ωf)ut,xL2(Ωf)ut,x14L2(Ωf)ut,x34H1(Ωf)Cut,x2L2(Ωf)+12σ(t)D(ut,x)2L2(Ωf)+Cσ(t)(1+u8H2(Ωf))ut2H1(Ωf),

    which means that

    t0σ(s)(D(ut,x)2L2(Ωf)+txP22L2(Ωm)) dsC(1+N5), (2.41)

    and, similarly, we have

    t0σ(s)(D(ut,y)2L2(Ωf)+tyP22L2(Ωm)) dsC(1+N5). (2.42)

    Finally, conclusions can be derived from Proposition 2.1, (2.21), (2.31), (2.33), (2.34), (2.35), (2.37), (2.40), (2.41), and (2.42) that

    σ(t)(3u2L2(Ωf)+D(ut)2L2(Ωf)+tP22L2(Ωm)+4P22L2(Ωf))+t0σ(s)(D(ut,x)2L2(Ωf)+D(ut,y)2L2(Ωf)+ut,t2L2(Ωf)+txP22L2(Ωm)+tyP22L2(Ωm)) dsC(1+N5).

    So far, it's time to complete the 3-order estimates in the next step.

    Step 5. We detailedly display the estimate of t0σ(s)D(ux,x,y)2L2(Ωm) ds in this step, then the estimates of t0σ(s)D(ux,x,x)2L2(Ωm) ds, t0σ(s)D(ux,y,y)2L2(Ωm) ds, and t0σ(s)D(uy,y,y)2L2(Ωm) ds can be obtained in a similar derivation.

    Apply 2xy to (1.3)1 and multiply by σ(t)ux,x,y before integrating the resulting equations over Ωf. Meanwhile, apply 2xy to (1.2) and multiply σ(t)2xyP2 on it after that, integrate over Ωm. Finally, summing up the above two resulting equations could come to

    ddt(σ(t)ux,x,y2L2(Ωf))+σ(t)D(ux,x,y)2L2(Ωf)Cux,x,y2L2(Ωf)+Cσ(t)Ωf2xy(uu)ux,x,y dxCux,x,y2L2(Ωf)+Cσ(t)ux,x,y2L4(Ωf)uL2(Ωf)+Cσ(t)ux,xL4(Ωf)uyL2(Ωf)ux,x,yL4(Ωf)+Cσ(t)ux,yL4(Ωf)uxL2(Ωf)ux,x,yL4(Ωf)+Cσ(t)uxL4(Ωf)ux,yL2(Ωf)ux,x,yL4(Ωf)+Cσ(t)uyL4(Ωf)ux,xL2(Ωf)ux,x,yL4(Ωf)+Cσ(t)uL4(Ωf)ux,x,yL2(Ωf)ux,x,yL4(Ωf)Cux,x,y2L2(Ωf)+Cσ(t)ux,x,y32H1(Ωf)ux,x,y12L2(Ωf)uL2(Ωf)+Cσ(t)ux,x34H1(Ωf)ux,x14L2(Ωf)uyL2(Ωf)ux,x,y34H1(Ωf)ux,x,y14L2(Ωf)+Cσ(t)ux,y34H1(Ωf)ux,y14L2(Ωf)uxL2(Ωf)ux,x,y34H1(Ωf)ux,x,y14L2(Ωf)+Cσ(t)ux34H1(Ωf)ux14L2(Ωf)ux,yL2(Ωf)ux,x,y34H1(Ωf)ux,x,y14L2(Ωf)+Cσ(t)uy34H1(Ωf)uy14L2(Ωf)ux,xL2(Ωf)ux,x,y34H1(Ωf)ux,x,y14L2(Ωf)+Cσ(t)u34L2(Ωf)u14L2(Ωf)ux,x,yL2(Ωf)ux,x,y34H1(Ωf)ux,x,y14L2(Ωf)Cux,x,y2L2(Ωf)+12σ(t)D(ux,x,y)2L2(Ωf)+Cσ(t)(1+D(ux,x)2L2(Ωf)+D(ux,y)2L2(Ωf))(1+u8H2(Ωf)),

    the proof of which is reckoned from the Gagliardo-Nirenberg inequality and Young's inequality. It is easy to find that

    t0σ(s)D(ux,x,y)2L2(Ωf) dsC(1+N5),

    then, similarly, we have

    t0σ(s)D(ux,y,y)2L2(Ωf) dsC(1+N5),

    and it is more concisely to be derived that

    t0σ(s)(D(ux,x,x)2L2(Ωf)+D(uy,y,y)2L2(Ωf)) dsC(1+N5),

    so that the proof of Lemma 2.5 is completed with Young's inequality.

    Using a similar argument as that in the proof of Lemma 2.5, we can easily obtain the following fourth-order estimates.

    Lemma 2.6. It holds that

    sup0tTσ(t)2(4u2L2(Ωf)+2ut2L2(Ωf)+ut,t2L2(Ωf)+5P22L2(Ωm)+txP22L2(Ωm)+tyP22L2(Ωm))+t0σ(t)2(ut,x,x,x2L2(Ωf)+ut,x,y,y2L2(Ωf)+ut,y,y,y2L2(Ωf)+D(ut,t)2L2(Ωf)+2tP22L2(Ωm)) dsC(u018H2(Ωf)+1)exp{u02H1(Ωf)+u04H1(Ωf)}. (2.43)

    Proof. It follows from the fact that

    4u2L2(Ωf)C(D(ux,x,x)2L2(Ωf)+D(ux,x,y)2L2(Ωf)+D(ux,y,y)2L2(Ωf)+D(uy,y,y)2L2(Ωf)+2uz,z2L2(Ωf)).

    Obviously, from (2.23) with Hölder's inequality, Young's inequality, Gagliardo-Nirenberg inequality, Poincáre's inequality, Sobolev inequality, and Korn's inequality we have that

    2uz,z2L2(Ωf)C(2ut2L2(Ωf)+2(uu)2L2(Ωf)+3P12L2(Ωf)+2ux,x2L2(Ωf)+2uy,y2L2(Ωf)),

    where

    uu2H2(Ωf)2(uu)2L2(Ωf)+uu2H1(Ωf)C2uu2L2(Ωf)+u3u2L2(Ωf)+Cu4H2(Ωf),2u2L4(Ωf)u2L4(Ωf)+u2L(Ωf)3u2L2(Ωf)+Cu4H2(Ωf)C(2u2H1(Ωf)u2H1(Ωf)+u2H2(Ωf)3u2L2(Ωf)+u4H2(Ωf))C(u2H2(Ωf)3u2L2(Ωf)+u4H2(Ωf)). (2.44)

    Additionally, we leverage Lemma 2.5 [41], coupled with the Trace theorem. The methodology employed here mirrors that of (2.26). We obtain

    3P12L2(Ωf)P12H3(Ωf)(uu)2H1(Ωf)+P22μ1xu12μ1yu22H52(Γi)C(u2H2(Ωf)3u2L2(Ωf)+u4H2(Ωf)+u2H1(Ωf)+xu12H3(Ωf)+yu22H3(Ωf))C(u2H2(Ωf)3u2L2(Ωf)+u4H2(Ωf)+ux,z,z2L2(Ωf)+uy,z,z2L2(Ωf)+D(ux,x,x)2L2(Ωf)+D(ux,x,y)2L2(Ωf)+D(ux,y,y)2L2(Ωf)+D(uy,y,y)2L2(Ωf)),

    such that one gets

    4u2L2(Ωf)C(2ut2L2(Ωf)+u2H2(Ωf)3u2L2(Ωf)+u4H2(Ωf)+ux,z,z2L2(Ωf)+uy,z,z2L2(Ωf)+D(ux,x,x)2L2(Ωf)+D(ux,x,y)2L2(Ωf)+D(ux,y,y)2L2(Ωf)+D(uy,y,y)2L2(Ωf)). (2.45)

    Step 1. We detail work on σ(t)2D(ux,x,y)2L2(Ωf) in this step to get σ(t)2D(ux,x,x)2L2(Ωf), σ(t)2D(ux,y,y)2L2(Ωf), and σ(t)2D(uy,y,y)2L2(Ωf).

    Apply 2xy to the Eq (1.3)1 and multiply by 2xyut. Meanwhile, apply 2xy to (1.2) and multiply by 2xyP2, integrate the two equations with respect to x by parts, then add up the resulting formulas to get

    ut,x,x,y2L2(Ωf)+ddt(μ1D(ux,x,y)2L2(Ωf)+W22i=1ux,x,yτi2L2(Γi)+12ΩmKP2,x,x,yP2,x,x,y dx)Ωf2xy(uu)2xyut dx12ut,x,x,y2L2(Ωf)+ux,x,y2L4(Ωf)u2L4(Ωf)+ux,x2L4(Ωf)uy2L4(Ωf)+ux,y2L4(Ωf)ux2L4(Ωf)+uy2L(Ωf)ux,x2L2(Ωf)+ux2L(Ωf)ux,y2L2(Ωf)+u2L(Ωf)ux,x,y2L2(Ωf)12ut,x,x,y2L2(Ωf)+ux,x,y12L2(Ωf)ux,x,y32H1(Ωf)u2H2(Ωf)+2u2H1(Ωf)2u2L2(Ωf)+u2H2(Ωf)(ux,x2L2(Ωf)+ux,y2L2(Ωf))+u2H2(Ωf)ux,x,y2L2(Ωf), (2.46)

    then by multiplying by σ(s)2 and integrating over (0,t), one has

    σ(t)2D(ux,x,y)2L2(Ωf)+12t0σ(s)2ut,x,x,y2L2(Ωf) dsC(1+N6). (2.47)

    We can get the similar results on σ(t)2D(ux,x,x)2L2(Ωf),σ(t)2D(ux,y,y)2L2(Ωf), and σ(t)2D(uy,y,y)2L2(Ωf); thus, we have

    σ(t)2(D(ux,x,x)2L2(Ωf)+D(ux,y,y)2L2(Ωf)+D(uy,y,y)2L2(Ωf))+12t0σ(s)2(ut,x,x,x2L2(Ωf)+ut,x,y,y2L2(Ωf)+ut,y,y,y2L2(Ωf)) dsC(1+N6). (2.48)

    Step 2. For 2utL2(Ωf), we have

    2utL2(Ωf)C(ut,xL2(Ωf)+ut,yL2(Ωf)+ut,z,zL2(Ωf)). (2.49)

    First, we apply xt to the Eq (1.3)1 and multiply by ut,t,x. Meanwhile, apply xt to (1.2) and multiply by xtP2, integrate the two equations with respect to x by parts, then we add up the resulting formulas to get

    ut,t,x2L2(Ωf)+ddt(μ1D(ut,x)2L2(Ωf)+W22i=1ut,xτi2L2(Γi))+12ΩmKtxP2txP2dxΩftx(uu)ut,t,xdxΩf(ut,xu+utux+uxut+uut,x)ut,t,xdxut,x2L4(Ωf)u2L4(Ωf)+ut2L4(Ωf)ux2L4(Ωf)+ux2L(Ωf)ut2L2(Ωf)+u2L(Ωf)ut,x2L2(Ωf)+12ut,t,x2L2(Ωf)C(ut,x12L2(Ωf)ut,x32H1(Ωf)u2H2(Ωf)+ut2H1(Ωf)u2H3(Ωf)+ut,x2L2(Ωf)u2H2(Ωf))+12ut,t,x2L2(Ωf). (2.50)

    Multiplying by σ(s)2 on (2.50) and integrating over (0,t) with (2.3) and (2.22) yields:

    σ(t)2(D(ut,x)2L2(Ωf)+txP22L2(Ωm))+12t0σ(s)2ut,t,x2L2(Ωf) dsC(1+N6), (2.51)

    then, similarly, we have

    σ(t)2(D(ut,y)2L2(Ωf)+tyP22L2(Ωm))+12t0σ(s)2ut,t,y2L2(Ωf) dsC(1+N6). (2.52)

    Second, we try to get a bound of ut,z,zL2(Ωf), and differentiating (2.23) with respect to t shows that

    ut,z,z2L2(Ωf)1μ1(ut,t+t(uu)+tP1ut,x,xut,y,y)2L2(Ωf)C(ut,t2L2(Ωf)+ut2H1(Ωf)u2H2(Ωf)+tP12L2(Ωf)+ut,x,x2L2(Ωf)+ut,y,y2L2(Ωf)). (2.53)

    For ut,t2L2(Ωf), first apply 2t to (1.3)1 and multiply by σ(t)22tu. Meanwhile, apply 2t to (1.2) and multiply by σ(t)22tP2, then integrate it on Ωm. At last, integrate the two resulting equations with respect to x and t and sum them up to arrive at

    σ(t)2ut,t2L2(Ωf)+t0σ(s)2Ωf(D(ut,t)2L2(Ωf)+2tP22L2(Ωm))dxdsCt0σ(s)2ut,t2L2(Ωf)ds+Ct0σ(s)2(uu)ttut,tdsC(1+N5)+Ct0σ(s)2ut,tL2(Ωf)uL4(Ωf)ut,tL4(Ωf) ds+Ct0σ(s)2(utL4(Ωf)utL2(Ωf)+uL4(Ωf)ut,tL2(Ωf))ut,tL4(Ωf) dsC(1+N5)+12t0σ(s)2D(ut,t)2L2(Ωf) ds+Ct0σ(s)2(ut,t2L2(Ωf)(1+u8H2(Ωf))+ut4H1(Ωf)) dsC(1+N9)+12t0σ(s)2D(ut,t)2L2(Ωf) ds, (2.54)

    where we have used Lemma 2.5. Next, it's time to deal with tP1L2(Ωf). We differentiate (2.24) and (2.25) with respect to t, and then using the standard L2-estimate for the elliptic system with (2.3), (2.51), and (2.52), we have

    σ(t)2tP12L2(Ωf)Cσ(t)2(ut2H1(Ωf)u2H2(Ωf)+tP22H1(Ωm)+ut,x2H1(Ωf)+ut,y2H1(Ωf))C(1+N6). (2.55)

    Next, plugging (2.54) and (2.55) into (2.53), we can get that

    σ(t)2ut,z,z2L2(Ωf)C(1+N9), (2.56)

    Similarly, we can plug (2.56), (2.51), and (2.52) to (2.49) to obtain

    σ(t)22ut2L2(Ωf)C(1+N9). (2.57)

    Step 3. We work on ux,z,z2L2(Ωf)+uy,z,z2L2(Ωf) in this step. Applying the gradient operator to (2.38), then multiplying by σ(s)2 and integrating over (0,t) yields

    σ(t)2(ux,z,z2L2(Ωf)+uy,z,z2L2(Ωf))1μ1σ(t)2x(ut+uu+P1ux,xuy,y)2L2(Ωf)+1μ1σ(t)2y(ut+uu+P1ux,xuy,y)2L2(Ωf)C(1+N9)+σ(t)2(2xP12L2(Ωf)+2yP12L2(Ωf), (2.58)

    where we have used Proposition 2.1, (2.44), (2.47), (2.48), (2.51), and (2.52).

    We now estimate 2xP12L2(Ωf)+2yP12L2(Ωf). We apply Lemma 2.5 in [41] together with the Trace theorem on (2.24) and (2.25), similarly as (2.39), to get that

    σ(t)2(2xP12L2(Ωf)+2yP12L2(Ωf))Cσ(t)2(div(x(uu))2L2(Ωf)+div(y(uu))2L2(Ωf)+xP22H32(Γi)+yP22H32(Γi)+2xu12H32(Ωf)+xyu12H32(Ωf)+2yu22H32(Ωf)+xyu22H32(Ωf))Cσ(t)2(uu2H2(Ωf)+P22H3(Ωm)+D(ux,x,x)2L2(Ωf)+D(ux,x,y)2L2(Ωf)+D(ux,y,y)2L2(Ωf)+ux,x,z,z2L2(Ωf)+ux,y,z,z2L2(Ωf)+uy,y,z,z2L2(Ωf))C(1+N6)+Cσ(t)2(ux,x,z,z2L2(Ωf)+ux,y,z,z2L2(Ωf)+uy,y,z,z2L2(Ωf)). (2.59)

    Now, we respectively apply 2x, xy, 2y to (2.23) and multiply by σ(s)2 to get

    σ(t)2(ux,x,z,z2L2(Ωf)+ux,y,z,z2L2(Ωf)+uy,y,z,z2L2(Ωf))Cσ(t)2(D(ut,x)2L2(Ωf)+D(ut,y)2L2(Ωf)+uu2H2(Ωf)+2xP12L2(Ωf)+xyP12L2(Ωf)+2yP12L2(Ωf)+D(ux,x,x)2L2(Ωf)+D(ux,x,y)2L2(Ωf))C(1+N9)+Cσ(t)2(2xP12L2(Ωf)+xyP12L2(Ωf)+2yP12L2(Ωf)),

    where we have used Lemma 2.5, (2.44), (2.51), and (2.52), and it remains to estimate the last three terms on the righthand side. Again, we apply Lemma 2.5 [41] together with the Trace theorem on (2.24) and (2.25), similarly as (2.39), to get that

    σ(t)2(2xP12L2(Ωf)+xyP12L2(Ωf)+2yP12L2(Ωf))Cσ(t)2(2x(uu)2L2(Ωf)+xy(uu)2L2(Ωf)+2y(uu)2L2(Ωf)+2xP22H1(Ωm)+2yP22H1(Ωm)+xyP22H1(Ωm)+3xu12H1(Ωf)+2xyu12H1(Ωf)+x2yu12H1(Ωf)+2xyu22H1(Ωf)+x2yu22H1(Ωf)+3yu22H1(Ωf))Cσ(t)2(uu2H2(Ωf)+P22H3(Ωm)+D(ux,x,x)2L2(Ωf)+D(ux,x,y)2L2(Ωf)+D(ux,y,y)2L2(Ωf)+D(uy,y,y)2L2(Ωf))C(1+N6), (2.60)

    thus, combining the above steps, we can complete the proof of Lemma 2.6.

    First of all, we know that the systems (1.3) and (1.4) have a unique local strong solution (u,P2) on Ω×(0,T] for some T>0, so it's time to verify the continuity of the strong solution to extend it globally in time with counter-evidence.

    It follows from the fact that u0H2(Ωf) and Proposition 1.1 that there exists a T1(0,T] such that (2.1) holds for T=T1. Next, we set

    T=sup{T(u,P2) is a strong solution on Ω×(0,T] and (2.1) holds}, (3.1)

    then TT10. Hence, for any 0<τ<TT with T finite, we can get

    uL(τ,T;H4(Ωf)),  utL(τ,T;H2(Ωf)),

    from Proposition 2.1, and Lemmas 2.5 and 2.6. Thus one can deduce that

    uC([τ,T];C2(Ωf))C([τ,T];H3(Ωf)) (3.2)

    from

    L(τ,T;H4(Ωf))W1,(τ,T;H2(Ωf))C([τ,T];C2(Ωf))C([τ,T];H3(Ωf)).

    Now, we suppose that

    T<, (3.3)

    then T=T holds by Proposition 2.1 and (2.2). It follows from (3.2) that

    u(x,T):=limtTu(x,t)H2(Ωf), (3.4)

    thus, the initial data condition in Proposition 1.1 is satisfied, which gives that there exists a T>T such that (2.1) holds for T=T. This contradicts the definition of T in (3.1), so T=.

    Finally, to finish the proof of Theorem 1.2, we have from (2.5) that

    12ddtu2L2(Ωf)+μ1CΩfu2L2(Ωf)0. (3.5)

    According to the Poincar inequality for three-dimensional cases, we have

    u2L2(Ωf)23Ωf13u2L2(Ωf), (3.6)

    then substituting (3.6) into (3.5), we get

    ddtu2L2(Ωf)+3μ12Ωf23CΩfu2L2(Ωf)0. (3.7)

    Therefore, we have

    u2L2(Ωf)Cϵ20ect. (3.8)

    Here, the positive constants are C=C(μ1,λ,Ωf,u0H2(Ωf)) and c=c(μ1,Ωf).

    In conclusion, this study has made some progress in understanding the global well-posedness of a coupled Navier-Stokes-Darcy model with the Beavers-Joseph-Saffman-Jones interface boundary condition in three-dimensional Euclidean space. Through our investigation, we have achieved the establishment of a global strong solution for the system, marking a crucial advancement in the field. Moreover, we have demonstrated the exponential stability of this strong solution, further reinforcing its reliability. The implications of our findings extend to the analysis of subsurface flow problems, notably in the realm of karst aquifers, where such coupled systems play a pivotal role. By shedding light on the dynamics and behaviors of these systems, our research contributes to a deeper understanding of fluid flow phenomena in complex geological formations, offering valuable insights for both theoretical developments and practical applications in hydrogeology and related disciplines.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    We wish to acknowledge the support of the National Natural Science Foundation of China (Grant No. 11931013, 12061081), the Natural Science Foundation of Shaanxi Province (Grant No. 2023-JC-QN-0073), the Natural Science Foundation of Yulin (Grant No. CXY-2022-76), and the Natural Science Foundation of Yulin University (Grant No. 21GK07).

    The authors have no conflicts to disclose.



    [1] J. R. Fanchi, Principles of applied reservoir simulation, Elsevier, 2005. http://dx.doi.org/10.1016/B978-075067933-6/50014-3
    [2] J. Bear, Dynamics of fluids in porous media, Courier Corporation, 1972. http://dx.doi.org/10.1097/00010694-197508000-00022
    [3] M. Discacciati, A. Quarteroni, Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation, Rev. Mat. Comput., 2 (2009), 315–426. http://dx.doi.org/10.5209/rev_REMA.2009.v22.n2.16263 doi: 10.5209/rev_REMA.2009.v22.n2.16263
    [4] D. Han, D. Sun, X. Wang, Two-phase flows in karstic geometry, Math. Method. Appl. Sci., 37 (2014), 3048–3063. http://dx.doi.org/10.1002/mma.3043 doi: 10.1002/mma.3043
    [5] M. Alam, H. M. Byrne, G. P. R. Sekhar, Existence and uniqueness results on biphasic mixture model for an in-vivo tumor, Appl. Anal., 101 (2022), 5442–5468. http://dx.doi.org/10.1080/00036811.2021.1895122 doi: 10.1080/00036811.2021.1895122
    [6] W. Layton, F. Schieweck, I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2003), 2195–2218. http://dx.doi.org/10.1137/S0036142901392766 doi: 10.1137/S0036142901392766
    [7] M. Discacciati, E. Miglio, A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2001), 57–74. http://dx.doi.org/10.1016/S0168-9274(02)00125-3 doi: 10.1016/S0168-9274(02)00125-3
    [8] H. W. Alt, S. Luckhaus, Quasilinear elliptic-parabolic differential equation, Math. Z., 3 (1983), 311–341. http://dx.doi.org/10.1070/SM1968v006n03ABEH001065 doi: 10.1070/SM1968v006n03ABEH001065
    [9] P. Fabrie, M. Langlais, Modelling wells in porous media flows, SIAM J. Math. Anal., 23 (1992), 1375–1392. http://dx.doi.org/10.1142/S0218202500000367 doi: 10.1142/S0218202500000367
    [10] P. Fabrie, T. Gallouët, Modelling wells in porous media flows, Math. Mod. Method. Appl. Sci., 10 (2000), 673–709. http://dx.doi.org/10.1142/S0218202500000367 doi: 10.1142/S0218202500000367
    [11] F. Marpeau, M. Saad, Mathematical analysis of radionuclides displacement in porous media with nonlinear adsorption, J. Differ. Equations, 228 (2006), 412–439. http://dx.doi.org/10.1016/j.jde.2006.03.023 doi: 10.1016/j.jde.2006.03.023
    [12] K. Hans, N. Masmoudi, Well-posedness and uniform bounds for a nonlocal third order evolution operator on an infinite wedge, Commun. Math. Phys., 320 (2013), 395–424. http://dx.doi.org/10.1007/s00220-013-1708-z doi: 10.1007/s00220-013-1708-z
    [13] D. A. Nield, A. Bejan, Convection in porous media, 1 Eds., New York: Springer, 1992. http://dx.doi.org/10.1007/978-3-319-49562-0
    [14] G. S. Beavers, D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197–207. http://dx.doi.org/10.1017/s0022112067001375 doi: 10.1017/s0022112067001375
    [15] H. K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: The finite volume method, Pearson Education, 2007.
    [16] S. Whitaker, Flow in porous media I: A theoretical derivation of Darcy's law, Transport Porous Med., 1 (1986), 3–25. http://dx.doi.org/10.1007/BF01036523 doi: 10.1007/BF01036523
    [17] I. P. Jones, Low Reynolds number flow past a porous spherical shell, Math. Proc. Cambridge, 73 (1973), 231–238. http://dx.doi.org/10.1017/S0305004100047642 doi: 10.1017/S0305004100047642
    [18] P. G. Saffman, On the boundary condition at the surface of a porous medium, Stud. Appl. Math., 50 (1971), 93–101. http://dx.doi.org/10.1002/sapm197150293 doi: 10.1002/sapm197150293
    [19] M. McCurdy, N. Moore, X. Wang, Convection in a coupled free flow-porous media system, SIAM J. Appl. Math., 6 (2019), 2313–2339. http://dx.doi.org/10.1137/19M1238095 doi: 10.1137/19M1238095
    [20] D. Han, X. He, Q. Wang, Y. Wu, Existence and weak-strong uniqueness of solutions to the Cahn-Hilliard-Navier-Stokes-Darcy system in superposed free flow and porous media, Nonlinear Anal., 211 (2021), 112411. http://dx.doi.org/10.1016/j.na.2021.112411 doi: 10.1016/j.na.2021.112411
    [21] A. Çeşmelioğlu, B. Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow, J. Sci. Comput., 40 (2009), 115–140. http://dx.doi.org/10.1007/s10915-009-9274-4 doi: 10.1007/s10915-009-9274-4
    [22] V. Girault, B. Rivière, DG Approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman Interface condition, SIAM J. Numer. Anal., 47 (2009), 2052–2089. http://dx.doi.org/10.1137/070686081 doi: 10.1137/070686081
    [23] Y. Cao, Y. Chu, X. He, M. Wei, Decoupling the stationary Navier-Stokes-Darcy system with the Beavers-Joseph-Saffman interface condition, Abstr. Appl. Anal., 2013. http://dx.doi.org/10.1155/2013/136483 doi: 10.1155/2013/136483
    [24] M. Cai, M. Mu, J. Xu, Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal., 47 (2009), 3325–3338. http://dx.doi.org/10.1137/080721868 doi: 10.1137/080721868
    [25] G. Du, L. Zuo, Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions, Acta Math. Sci., 37 (2017), 1331–1347. http://dx.doi.org/10.1016/S0252-9602(17)30076-0 doi: 10.1016/S0252-9602(17)30076-0
    [26] C. Qiu, X. He, J. Li, Y. Lin, A domain decomposition method for the time-dependent Navier-Stokes-Darcy model with Beavers-Joseph interface condition and defective boundary condition, J. Comput. Phys., 411 (2020). http://dx.doi.org/10.1016/j.jcp.2020.109400 doi: 10.1016/j.jcp.2020.109400
    [27] Y, Qin, Y. Hou, Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Navier-Stokes/Darcy model, Acta Math. Sci., 38 (2018), 1361–1369.
    [28] X. He, J. Li, Y. Lin, J. Ming, A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition, SIAM J. Sci. Comput., 37 (2015), S264–S290. http://dx.doi.org/10.1137/140965776 doi: 10.1137/140965776
    [29] L. Zuo, G. Du, A parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem, Numer. Algorithms, 77 (2018), 151–165, http://dx.doi.org/10.1007/s11075-017-0308-y doi: 10.1007/s11075-017-0308-y
    [30] M. Discacciati, A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, In: F. Brezzi, A. Buffa, S. Corsaro, A. Murli, Numerical mathematics and advanced applications, Milan: Springer, 2003. http://dx.doi.org/10.1007/978-88-470-2089-4-1
    [31] B. Rivière, I. Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42 (2004), 1959–1977. http://dx.doi.org/10.1137/S0036142903427640 doi: 10.1137/S0036142903427640
    [32] B. Rivière, Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems, J. Sci. Comput., 22 (2005), 479–500. http://dx.doi.org/10.1007/s10915-004-4147-3 doi: 10.1007/s10915-004-4147-3
    [33] B. Rivière, Analysis of a multi-numerics/multi-physics problem, In: M. Feistauer, V. Doleší, P. Knobloch, K. Najzar, Numerical Mathematics and Advanced Applications, Berlin: Springer, 2004,726–735. http://dx.doi.org/10.1007/978-3-642-18775-9_71
    [34] M. Discacciati, A. Quarteroni, A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45 (2007), 1246–1268. http://dx.doi.org/10.1137/06065091X doi: 10.1137/06065091X
    [35] D. Han, Q. Wang, X. Wang, Dynamic transitions and bifurcations for thermal convection in the superposed free flow and porous media, Physica D, 414 (2020). http://dx.doi.org/10.1016/j.physd.2020.132687 doi: 10.1016/j.physd.2020.132687
    [36] X. Wang, H. Wu, Global weak solutions to the Navier-Stokes-Darcy-Boussinesq system for thermal convection in coupled free and porous media flows, Adv. Differ. Equations, 2021. http://dx.doi.org/10.57262/ade/1610420433 doi: 10.57262/ade/1610420433
    [37] Y. Gao, D. Han, X. He, U. Rüde, Unconditionally stable numerical methods for Cahn-Hilliard-Navier-Stokes-Darcy system with different densities and viscosities, J. Comput. Phys., 454 (2022). http://dx.doi.org/10.1016/j.jcp.2022.110968 doi: 10.1016/j.jcp.2022.110968
    [38] W. Chen, D. Han, X. Wang, Y. Zhang, Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq system, J. Sci. Comput., 85 (2020). http://dx.doi.org/10.1007/s00211-017-0870-1 doi: 10.1007/s00211-017-0870-1
    [39] Y. Gao, X. He, L. Mei, X. Yang, Decoupled, linear, and energy stable finite element method for the Cahn-Hilliard-Navier-Stokes-Darcy phase field model, SIAM J. Sci. Comput., 40 (2018), B110–B137. http://dx.doi.org/10.1137/16M1100885 doi: 10.1137/16M1100885
    [40] D. Han, X. Wang, H. Wu, Existence and uniqueness of global weak solutions to a Cahn-Hilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry, J. Differ. Equations, 257 (2014), 3887–3933. http://dx.doi.org/10.1016/j.jde.2014.07.013 doi: 10.1016/j.jde.2014.07.013
    [41] M. Cui, W. Dong, Z. Guo, Global well-posedness of coupled Navier-Stokes and Darcy equations, J. Differ. Equations, 388 (2024), 82–111. http://dx.doi.org/10.1016/j.jde.2023.12.044 doi: 10.1016/j.jde.2023.12.044
    [42] P. Liu, W. Liu, Global well-posedness of an initial-boundary value problem of the 2-D incompressible Navier-Stokes-Darcy system, Netherland: Springer, 1 (2019). http://dx.doi.org/10.1007/s10440-018-0197-7
    [43] C. Foias, O. Manley, R. Temam, Attractors for the Bénard problem: Existence and physical bounds on their fractal dimension, Nonlinear Anal., 11 (1987), 939–967. http://dx.doi.org/10.1016/0362-546X(87)90061-7 doi: 10.1016/0362-546X(87)90061-7
    [44] P. Fabrie, Solutions fortes et comportment asymtotique pour un modèle de convection naturelle en milieu poreux, Acta Appl. Math., 7 (1986), 49–77. http://dx.doi.org/10.1007/BF00046977 doi: 10.1007/BF00046977
    [45] H. V. Ly, E. S. Titi, Global Gevrey regularity for the Bénard convection in a porous medium with zero Darcy-Prandtl number, J. Nonlinear Sci., 9 (1999), 333–362. http://dx.doi.org/10.1007/s003329900073 doi: 10.1007/s003329900073
    [46] A. Çeşmelioğlu, B. Rivière, Existence of a weak solution for the fully coupled Navier-Stokes/Darcy-transport problem, J. Differ. Equations, 252 (2012), 4138–4175. http://dx.doi.org/10.1016/j.jde.2011.12.001 doi: 10.1016/j.jde.2011.12.001
    [47] A. Çeşmelioğlu, V. Girault, B. Rivière, Time-dependent coupling of Navier-Stokes and Darcy flows, ESAIM Math. Model. Num., 47 (2013), 540–555. http://dx.doi.org/10.1051/m2an/2012034 doi: 10.1051/m2an/2012034
    [48] Y. Hou, D. Xue, Y. Jiang, On the weak solutions to steady-state mixed Navier-Stokes/Darcy model, Acta Math. Sin., 39 (2023), 939–951. http://dx.doi.org/10.1007/s10114-022-9134-9 doi: 10.1007/s10114-022-9134-9
  • This article has been cited by:

    1. Linlin Tan, Bianru Cheng, Global well-posedness of 2D incompressible Navier–Stokes–Darcy flow in a type of generalized time-dependent porosity media, 2024, 32, 2688-1594, 5649, 10.3934/era.2024262
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1227) PDF downloads(76) Cited by(1)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog