In this paper, we introduced a new concept of generalized φ-concave-convex operator and proved the existence and uniqueness of fixed points of such operators with mixed monotonicity. As consequences, several new fixed point results about mixed monotone operators with some concavity and convexity were gained. In addition, the main results were applied to nonlinear integral equations on unbounded regions. The research findings generalized and developed recent relevant results in the literature.
Citation: Shaoyuan Xu, Li Fan, Yan Han. Fixed points of generalized φ-concave-convex operators with mixed monotonicity and applications[J]. AIMS Mathematics, 2024, 9(11): 32442-32462. doi: 10.3934/math.20241555
[1] | Muhammad Ghaffar Khan, Nak Eun Cho, Timilehin Gideon Shaba, Bakhtiar Ahmad, Wali Khan Mashwani . Coefficient functionals for a class of bounded turning functions related to modified sigmoid function. AIMS Mathematics, 2022, 7(2): 3133-3149. doi: 10.3934/math.2022173 |
[2] | Rabha W. Ibrahim, Dumitru Baleanu . Fractional operators on the bounded symmetric domains of the Bergman spaces. AIMS Mathematics, 2024, 9(2): 3810-3835. doi: 10.3934/math.2024188 |
[3] | Muhammmad Ghaffar Khan, Wali Khan Mashwani, Jong-Suk Ro, Bakhtiar Ahmad . Problems concerning sharp coefficient functionals of bounded turning functions. AIMS Mathematics, 2023, 8(11): 27396-27413. doi: 10.3934/math.20231402 |
[4] | Muhammmad Ghaffar Khan, Wali Khan Mashwani, Lei Shi, Serkan Araci, Bakhtiar Ahmad, Bilal Khan . Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function. AIMS Mathematics, 2023, 8(9): 21993-22008. doi: 10.3934/math.20231121 |
[5] | Zhen Peng, Muhammad Arif, Muhammad Abbas, Nak Eun Cho, Reem K. Alhefthi . Sharp coefficient problems of functions with bounded turning subordinated to the domain of cosine hyperbolic function. AIMS Mathematics, 2024, 9(6): 15761-15781. doi: 10.3934/math.2024761 |
[6] | Lina Ma, Shuhai Li, Huo Tang . Geometric properties of harmonic functions associated with the symmetric conjecture points and exponential function. AIMS Mathematics, 2020, 5(6): 6800-6816. doi: 10.3934/math.2020437 |
[7] | Xinghua You, Ghulam Farid, Lakshmi Narayan Mishra, Kahkashan Mahreen, Saleem Ullah . Derivation of bounds of integral operators via convex functions. AIMS Mathematics, 2020, 5(5): 4781-4792. doi: 10.3934/math.2020306 |
[8] | İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203 |
[9] | Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906 |
[10] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
In this paper, we introduced a new concept of generalized φ-concave-convex operator and proved the existence and uniqueness of fixed points of such operators with mixed monotonicity. As consequences, several new fixed point results about mixed monotone operators with some concavity and convexity were gained. In addition, the main results were applied to nonlinear integral equations on unbounded regions. The research findings generalized and developed recent relevant results in the literature.
Let A denote the class of functions f which are analytic in the open unit disk Δ={z∈C:|z|<1}, normalized by the conditions f(0)=f′(0)−1=0. So each f∈A has series representation of the form
f(z)=z+∞∑n=2anzn. | (1.1) |
For two analytic functions f and g, f is said to be subordinated to g (written as f≺g) if there exists an analytic function ω with ω(0)=0 and |ω(z)|<1 for z∈Δ such that f(z)=(g∘ω)(z).
A function f∈A is said to be in the class S if f is univalent in Δ. A function f∈S is in class C of normalized convex functions if f(Δ) is a convex domain. For 0≤α≤1, Mocanu [23] introduced the class Mα of functions f∈A such that f(z)f′(z)z≠0 for all z∈Δ and
ℜ((1−α)zf′(z)f(z)+α(zf′(z))′f′(z))>0(z∈Δ). | (1.2) |
Geometrically, f∈Mα maps the circle centred at origin onto α-convex arcs which leads to the condition (1.2). The class Mα was studied extensively by several researchers, see [1,10,11,12,24,25,26,27] and the references cited therein.
A function f∈S is uniformly starlike if f maps every circular arc Γ contained in Δ with center at ζ ∈Δ onto a starlike arc with respect to f(ζ). A function f∈C is uniformly convex if f maps every circular arc Γ contained in Δ with center ζ ∈Δ onto a convex arc. We denote the classes of uniformly starlike and uniformly convex functions by UST and UCV, respectively. For recent study on these function classes, one can refer to [7,9,13,19,20,31].
In 1999, Kanas and Wisniowska [15] introduced the class k-UCV (k≥0) of k-uniformly convex functions. A function f∈A is said to be in the class k-UCV if it satisfies the condition
ℜ(1+zf″(z)f′(z))>k|zf′(z)f′(z)|(z∈Δ). | (1.3) |
In recent years, many researchers investigated interesting properties of this class and its generalizations. For more details, see [2,3,4,14,15,16,17,18,30,32,35] and references cited therein.
In 2015, Sokół and Nunokawa [33] introduced the class MN, a function f∈MN if it satisfies the condition
ℜ(1+zf″(z)f′(z))>|zf′(z)f(z)−1|(z∈Δ). |
In [28], it is proved that if ℜ(f′)>0 in Δ, then f is univalent in Δ. In 1972, MacGregor [21] studied the class B of functions with bounded turning, a function f∈B if it satisfies the condition ℜ(f′)>0 for z∈Δ. A natural generalization of the class B is B(δ1) (0≤δ1<1), a function f∈B(δ1) if it satisfies the condition
ℜ(f′(z))>δ1(z∈Δ;0≤δ1<1), | (1.4) |
for details associated with the class B(δ1) (see [5,6,34]).
Motivated essentially by the above work, we now introduce the following class k-Q(α) of analytic functions.
Definition 1. Let k≥0 and 0≤α≤1. A function f∈A is said to be in the class k-Q(α) if it satisfies the condition
ℜ((zf′(z))′f′(z))>k|(1−α)f′(z)+α(zf′(z))′f′(z)−1|(z∈Δ). | (1.5) |
It is worth mentioning that, for special values of parameters, one can obtain a number of well-known function classes, some of them are listed below:
1. k-Q(1)=k-UCV;
2. 0-Q(α)=C.
In what follows, we give an example for the class k-Q(α).
Example 1. The function f(z)=z1−Az(A≠0) is in the class k-Q(α) with
k≤1−b2b√b(1+α)[b(1+α)+2]+4(b=|A|). | (1.6) |
The main purpose of this paper is to establish several interesting relationships between k-Q(α) and the class B(δ) of functions with bounded turning.
To prove our main results, we need the following lemmas.
Lemma 1. ([8]) Let h be analytic in Δ with h(0)=1, β>0 and 0≤γ1<1. If
h(z)+βzh′(z)h(z)≺1+(1−2γ1)z1−z, |
then
h(z)≺1+(1−2δ)z1−z, |
where
δ=(2γ1−β)+√(2γ1−β)2+8β4. | (2.1) |
Lemma 2. Let h be analytic in Δ and of the form
h(z)=1+∞∑n=mbnzn(bm≠0) |
with h(z)≠0 in Δ. If there exists a point z0(|z0|<1) such that |argh(z)|<πρ2(|z|<|z0|) and |argh(z0)|=πρ2 for some ρ>0, then z0h′(z0)h(z0)=iℓρ, where
ℓ:{ℓ≥n2(c+1c)(argh(z0)=πρ2),ℓ≤−n2(c+1c)(argh(z0)=−πρ2), |
and (h(z0))1/ρ=±ic(c>0).
This result is a generalization of the Nunokawa's lemma [29].
Lemma 3. ([37]) Let ε be a positive measure on [0,1]. Let ϝ be a complex-valued function defined on Δ×[0,1] such that ϝ(.,t) is analytic in Δ for each t∈[0,1] and ϝ(z,.) is ε-integrable on [0,1] for all z∈Δ. In addition, suppose that ℜ(ϝ(z,t))>0, ϝ(−r,t) is real and ℜ(1/ϝ(z,t))≥1/ϝ(−r,t) for |z|≤r<1 and t∈[0,1]. If ϝ(z)=∫10ϝ(z,t)dε(t), then ℜ(1/ϝ(z))≥1/ϝ(−r).
Lemma 4. ([22]) If −1≤D<C≤1, λ1>0 and ℜ(γ2)≥−λ1(1−C)/(1−D), then the differential equation
s(z)+zs′(z)λ1s(z)+γ2=1+Cz1+Dz(z∈Δ) |
has a univalent solution in Δ given by
s(z)={zλ1+γ2(1+Dz)λ1(C−D)/Dλ1∫z0tλ1+γ2−1(1+Dt)λ1(C−D)/Ddt−γ2λ1(D≠0),zλ1+γ2eλ1Czλ1∫z0tλ1+γ2−1eλ1Ctdt−γ2λ1(D=0). |
If r(z)=1+c1z+c2z2+⋯ satisfies the condition
r(z)+zr′(z)λ1r(z)+γ2≺1+Cz1+Dz(z∈Δ), |
then
r(z)≺s(z)≺1+Cz1+Dz, |
and s(z) is the best dominant.
Lemma 5. ([36,Chapter 14]) Let w, x and\ y≠0,−1,−2,… be complex numbers. Then, for ℜ(y)>ℜ(x)>0, one has
1. 2G1(w,x,y;z)=Γ(y)Γ(y−x)Γ(x)∫10sx−1(1−s)y−x−1(1−sz)−wds;
2. 2G1(w,x,y;z)= 2G1(x,w,y;z);
3. 2G1(w,x,y;z)=(1−z)−w2G1(w,y−x,y;zz−1).
Firstly, we derive the following result.
Theorem 1. Let 0≤α<1 and k≥11−α. If f∈k-Q(α), then f∈B(δ), where
δ=(2μ−λ)+√(2μ−λ)2+8λ4(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). | (3.1) |
Proof. Let f′=ℏ, where ℏ is analytic in Δ with ℏ(0)=1. From inequality (1.5) which takes the form
ℜ(1+zℏ′(z)ℏ(z))>k|(1−α)ℏ(z)+α(1+zℏ′(z)ℏ(z))−1|=k|1−α−ℏ(z)+αℏ(z)−αzℏ′(z)ℏ(z)|, |
we find that
ℜ(ℏ(z)+1+αkk(1−α)zℏ(z)ℏ(z))>k−αk−1k(1−α), |
which can be rewritten as
ℜ(ℏ(z)+λzℏ(z)ℏ(z))>μ(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). |
The above relationship can be written as the following Briot-Bouquet differential subordination
ℏ(z)+λzℏ′(z)ℏ(z)≺1+(1−2μ)z1−z. |
Thus, by Lemma 1, we obtain
ℏ≺1+(1−2δ)z1−z, | (3.2) |
where δ is given by (3.1). The relationship (3.2) implies that f∈B(δ). We thus complete the proof of Theorem 3.1.
Theorem 2. Let 0<α≤1, 0<β<1, c>0, k≥1, n≥m+1(m∈ N ), |ℓ|≥n2(c+1c) and
|αβℓ±(1−α)cβsinβπ2|≥1. | (3.3) |
If
f(z)=z+∞∑n=m+1anzn(am+1≠0) |
and f∈k-Q(α), then f∈B(β0), where
β0=min{β:β∈(0,1)} |
such that (3.3) holds.
Proof. By the assumption, we have
f′(z)=ℏ(z)=1+∞∑n=mcnzn(cm≠0). | (3.4) |
In view of (1.5) and (3.4), we get
ℜ(1+zℏ′(z)ℏ(z))>k|(1−α)ℏ(z)+α(1+zℏ′(z)ℏ(z))−1|. |
If there exists a point z0∈Δ such that
|argℏ(z)|<βπ2(|z|<|z0|;0<β<1) |
and
|argℏ(z0)|=βπ2(0<β<1), |
then from Lemma 2, we know that
z0ℏ′(z0)ℏ(z0)=iℓβ, |
where
(ℏ(z0))1/β=±ic(c>0) |
and
ℓ:{ℓ≥n2(c+1c)(argℏ(z0)=βπ2),ℓ≤−n2(c+1c)(argℏ(z0)=−βπ2). |
For the case
argℏ(z0)=βπ2, |
we get
ℜ(1+z0ℏ′(z0)ℏ(z0))=ℜ(1+iℓβ)=1. | (3.5) |
Moreover, we find from (3.3) that
k|(1−α)ℏ(z0)+α(1+z0ℏ′(z0)ℏ(z0))−1|=k|(1−α)(ℏ(z0)−1)+αz0ℏ′(z0)ℏ(z0)|=k|(1−α)[(±ic)β−1]+iαβℓ|=k√(1−α)2(cβcosβπ2−1)2+[αβℓ±(1−α)cβsinβπ2]2≥1. | (3.6) |
By virtue of (3.5) and (3.6), we have
ℜ(1+zℏ′(z0)ℏ(z0))≤k|(1−α)ℏ(z0)+α(1+z0ℏ(z0)ℏ(z0))−1|, |
which is a contradiction to the definition of k-Q(α). Since β0=min{β:β∈(0,1)} such that (3.3) holds, we can deduce that f∈B(β0).
By using the similar method as given above, we can prove the case
argℏ(z0)=−βπ2 |
is true. The proof of Theorem 2 is thus completed.
Theorem 3. If 0<β<1 and 0≤ν<1. If f∈k-Q(α), then
ℜ(f′)>[2G1(2β(1−ν),1;1β+1;12)]−1, |
or equivalently, k-Q(α)⊂B(ν0), where
ν0=[2G1(2β(1−μ),1;1β+1;12)]−1. |
Proof. For
w=2β(1−ν), x=1β, y=1β+1, |
we define
ϝ(z)=(1+Dz)w∫10tx−1(1+Dtz)−wdt=Γ(x)Γ(y) 2G1(1,w,y;zz−1). | (3.7) |
To prove k-Q(α)⊂B(ν0), it suffices to prove that
inf|z|<1{ℜ(q(z))}=q(−1), |
which need to show that
ℜ(1/ϝ(z))≥1/ϝ(−1). |
By Lemma 3 and (3.7), it follows that
ϝ(z)=∫10ϝ(z,t)dε(t), |
where
ϝ(z,t)=1−z1−(1−t)z(0≤t≤1), |
and
dε(t)=Γ(x)Γ(w)Γ(y−w)tw−1(1−t)y−w−1dt, |
which is a positive measure on [0,1].
It is clear that ℜ(ϝ(z,t))>0 and ϝ(−r,t) is real for |z|≤r<1 and t∈[0,1]. Also
ℜ(1ϝ(z,t))=ℜ(1−(1−t)z1−z)≥1+(1−t)r1+r=1ϝ(−r,t) |
for |z|≤r<1. Therefore, by Lemma 3, we get
ℜ(1/ϝ(z))≥1/ϝ(−r). |
If we let r→1−, it follows that
ℜ(1/ϝ(z))≥1/ϝ(−1). |
Thus, we deduce that k-Q(α)⊂B(ν0).
Theorem 4. Let 0≤α<1 and k≥11−α. If f∈k-Q(α), then
f′(z)≺s(z)=1g(z), |
where
g(z)=2G1(2λ,1,1λ+1;zz−1)(λ=1+αkk(1−α)). |
Proof. Suppose that f′=ℏ. From the proof of Theorem 1, we see that
ℏ(z)+zℏ′(z)1λℏ(z)≺1+(1−2μ)z1−z≺1+z1−z(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). |
If we set λ1=1λ, γ2=0, C=1 and D=−1 in Lemma 4, then
ℏ(z)≺s(z)=1g(z)=z1λ(1−z)−2λ1/λ∫z0t(1/λ)−1(1−t)−2/λdt. |
By putting t=uz, and using Lemma 5, we obtain
ℏ(z)≺s(z)=1g(z)=11λ(1−z)2λ∫10u(1/λ)−1(1−uz)−2/λdu=[2G1(2λ,1,1λ+1;zz−1)]−1, |
which is the desired result of Theorem 4.
The present investigation was supported by the Key Project of Education Department of Hunan Province under Grant no. 19A097 of the P. R. China. The authors would like to thank the referees for their valuable comments and suggestions, which was essential to improve the quality of this paper.
The authors declare no conflict of interest.
[1] | M. A. Krasnoselskii, Positive solutions of operator equations, P. Noordhoff, Groningen, The Netherlands, 1964. Available from: https://lccn.loc.gov/65002000. |
[2] |
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620–709. https://doi.org/10.1137/1018114 doi: 10.1137/1018114
![]() |
[3] | D. Cruo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, New York, 1988. https://doi.org/10.1016/0307-904X(90)90165-2 |
[4] | K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. https://doi.org/10.1007/978-3-662-00547-7 |
[5] |
S. W. Du, V. Lakshmikantham, Monotone iterative technique for differential equations in a Banach space, J. Math. Anal. Appl., 87 (1982), 454–459. https://doi.org/10.1016/0022-247X(82)90134-2 doi: 10.1016/0022-247X(82)90134-2
![]() |
[6] |
A. Constantin, Monotone iterative technique for a nonlinear integral equation, J. Math. Anal. Appl., 205 (1997), 280–288. https://doi.org/10.1006/jmaa.1996.5175 doi: 10.1006/jmaa.1996.5175
![]() |
[7] |
V. Šeda, Monotone-iterative technique for decreasing mappings, Nonlinear Anal., 40 (2000), 577–588. https://doi.org/10.1016/S0362-546X(00)85035-X doi: 10.1016/S0362-546X(00)85035-X
![]() |
[8] |
E. Liz, Monotone iterative techniques in ordered Banach spaces, Nonlinear Anal., 30 (1997), 5179–5190. https://doi.org/10.1016/S0362-546X(96)00224-6 doi: 10.1016/S0362-546X(96)00224-6
![]() |
[9] |
M. W. Hirsch, Fixed points of monotone maps, J. Differential Equations, 123 (1995), 171–179. https://doi.org/10.1006/jdeq.1995.1161 doi: 10.1006/jdeq.1995.1161
![]() |
[10] |
M. A. Krasnoselskill, A. B. Lusnikov, Regular fixed points and stable invariant subsets of monotone operators, Funct. Anal. Appl., 30 (1996), 174–183. https://doi.org/10.1007/BF02509504 doi: 10.1007/BF02509504
![]() |
[11] |
M. W. Hirsch, H. Smith, Monotone maps: A review, J. Difference Equ. Appl., 11 (2005), 379–398. https://doi.org/10.1080/10236190412331335445 doi: 10.1080/10236190412331335445
![]() |
[12] | E. C. Balreira, S. Elaydi, R. Luis, Global stability of higher dimensional monotone maps, J. Difference Equ. Appl., 2017. http://doi.org/10.1080/10236198.2017.1388375 |
[13] |
H. Persson, A fixed point theorem for monotone functions, Appl. Math. Lett., 19 (2006), 1207–1209. https://doi.org/10.1016/j.aml.2006.01.008 doi: 10.1016/j.aml.2006.01.008
![]() |
[14] |
J. Duda, Cone monotone mappings: Continuity and differentiability, Nonlinear Anal., 68 (2008), 1963–1972. https://doi.org/10.1016/j.na.2007.01.023 doi: 10.1016/j.na.2007.01.023
![]() |
[15] |
D. Gao, A Fixed point theorem for monotone maps and its applications, J. Math., 2015 (2015), 167049. http://doi.org/10.115/2015/167049 doi: 10.115/2015/167049
![]() |
[16] |
M. Bachar, M. A. Khamsi, Recent contributions to fixed point theory of monotone mappings, J. Fixed Point Theory Appl., 19 (2017), 1953–1976. https://doi.org/10.1007/s11784-016-0339-3 doi: 10.1007/s11784-016-0339-3
![]() |
[17] |
M. R. Alfuraidan, E. D. Jorquera, M. A, Khamsi, Fixed point theorems for monotone Caristi inward mappings, Numer. Funct. Anal. Optim., 39 (2018), 1092–1101. https://doi.org/10.1080/01630563.2018.1478426 doi: 10.1080/01630563.2018.1478426
![]() |
[18] |
G. A. Enciso, Fixed points and convergence in monotone systems under positive or negative feedback, Inter. J. Control, 87 (2013), 301–311. https://doi.org/10.1080/00207179.2013.830336 doi: 10.1080/00207179.2013.830336
![]() |
[19] |
C. Mostajerran, R. Sepulchre, Positivity, monotonicity, and consensus on Lie groups, SIAM J. Control Ortim., 56 (2018), 2436–2461. https://doi.org/10.1137/17M1127168 doi: 10.1137/17M1127168
![]() |
[20] |
V. Doshi, S. Mallick, D. Y. Eun, Convergence of bi-virus epidemic models with non-linear rates on networks-a monotone dynamical systems approach, IEEE/ACM T. Network., 31 (2023). https://doi.org/10.1109/TNET.2022.3213015 doi: 10.1109/TNET.2022.3213015
![]() |
[21] |
K. Deimling, V. Lakshmikantham, Quasi-solutions and their role in the qualitative theory of differential equations, Nonlinear Anal.-Theor., 4 (1980), 457–663. https://doi.org/10.1016/0362-546X(80)90066-8 doi: 10.1016/0362-546X(80)90066-8
![]() |
[22] | W. F. Ames, Monotonically convergent upper and lower bounds for classes of conflicting populations, In: Proceedings of the International Conference on Nonlinear Systems and Applications, Academic, New York, 1977, 3–14. https://doi.org/10.1016/B978-0-12-434150-0.50006-0 |
[23] |
D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., 11 (1987), 623–632. https://doi.org/10.1016/0362-546X(87)90077-0 doi: 10.1016/0362-546X(87)90077-0
![]() |
[24] | H. L. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, American Mathematical Society, Providence, R. I., 1995. https://doi.org/10.1090/surv/041 |
[25] |
I. J. Cabrera, B. Lóspez, K. sadarangani, Existence of positive solutions for the nonlinear elastic beam equation via a mixed monotone operator, J. Comput. Appl. Math., 327 (2018), 306–313. https://doi.org/10.1016/j.cam.2017.04.031 doi: 10.1016/j.cam.2017.04.031
![]() |
[26] |
D. Angeli, E. D. Sontag, Monotone control systems, IEEE Trans. Autom. Control., 48 (2003), 1684–1698. https://doi.org/10.1109/TAC.2003.817920 doi: 10.1109/TAC.2003.817920
![]() |
[27] |
H. L. Smith, The discrete dynamics of monotonically decomposable maps, J. Math. Biol., 53 (2006), 747–758. https://doi.org/10.1007/s00285-006-0004-3 doi: 10.1007/s00285-006-0004-3
![]() |
[28] |
P. D. Leenheer, D. Angeli, E. D. Sontag, Monotone chemical reaction networks, J. Math. Chem., 2006. https://doi.org/10.1007/s10910-006-9075-z doi: 10.1007/s10910-006-9075-z
![]() |
[29] |
B. Chen, J. Wang, Global exponential periodicity and global exponential stability of a class of recurrent neural networks, Phys. Lett. A, 329 (2004), 36–48. https://doi.org/10.1016/j.physleta.2004.06.072 doi: 10.1016/j.physleta.2004.06.072
![]() |
[30] |
A. Wu, Z. Zeng, J. Zhang, Global exponential convergence of periodic neural networks with time-varying delays, Neurocomputing, 78 (2012), 149–154. https://doi.org/10.1016/j.neucom.2011.04.045 doi: 10.1016/j.neucom.2011.04.045
![]() |
[31] |
H. L. Simith, Global stability for mixed monotone systems, J. Difference Equ. Appl., 14 (2008), 1159–1164. https://doi.org/10.1080/10236190802332126 doi: 10.1080/10236190802332126
![]() |
[32] |
G. A. Enciso, H. L. Smith, E. D. Sontag, Nonmonotone systems decomposable into monotone systems with negative feedback, J. Differential Equations, 224 (2006), 205–227. https://doi.org/10.1016/j.jde.2005.05.007 doi: 10.1016/j.jde.2005.05.007
![]() |
[33] |
S. Chang, Y. Ma, Coupled fixed points for mixed monotone condensing operators and an existence theorem of the solutions for a class of functional equations arising in dynamic programming, J. Math. Anal, Appl., 160 (1991), 468–479. https://doi.org/10.1016/0022-247X(91)90319-U doi: 10.1016/0022-247X(91)90319-U
![]() |
[34] |
Y. Sun, A fixed point theorem for mixed monotone operators with applications, J. Math. Appl., 156 (1991), 240–252. https://doi.org/10.1016/0022-247X(91)90394-F doi: 10.1016/0022-247X(91)90394-F
![]() |
[35] |
Y. Sang, A class of φ-concave operators and applications, Fixed Point Theory Appl., 2013 (2013), 274. https://doi.org/10.1186/1687-1812-2013-274 doi: 10.1186/1687-1812-2013-274
![]() |
[36] |
D. Guo, Fixed points of mixed monotone operators with applications, Appl. Anal., 34 (1988), 215–224. https://doi.org/10.1080/00036818808839825 doi: 10.1080/00036818808839825
![]() |
[37] |
D. Guo, Existence and uniqueness of positive fixed points for mixed monotone operators and applications, Anal. Appl., 46 (1992), 91–100. https://doi.org/10.1080/00036819208840113 doi: 10.1080/00036819208840113
![]() |
[38] |
Z. Zhang, New fixed point theorems of mixed monotone operators and applications, J. Math. Anal. Appl., 204 (1996), 307–319. https://doi.org/10.1006/jmaa.1996.0439 doi: 10.1006/jmaa.1996.0439
![]() |
[39] |
Z. Liang, L. Zhang, S. Li, Fixed point theorems for a class of mixed monotone operators, J. Anal. Appl., 22 (2003), 529–542. https://doi.org/10.4171/ZAA/1160 doi: 10.4171/ZAA/1160
![]() |
[40] |
Y. Wu, Z. Liang, Existence and uniqueness of fixed points for mixed monotone operators with applications, Nonlinear Anal., 65 (2006), 1913–1924. https://doi.org/10.1016/j.na.2005.10.045 doi: 10.1016/j.na.2005.10.045
![]() |
[41] |
Y. Wu, New fixed point theorems and applications of mixed monotone operators, J. Math. Anal. Appl., 341 (2008), 883–893. https://doi.org/10.1016/j.jmaa.2007.10.063 doi: 10.1016/j.jmaa.2007.10.063
![]() |
[42] |
S. Xu, B. Jia, Fixed-point theorems of ϕ-concave-(-ψ) convex mixed monotone operators and applications, J. Math. Anal. Appl., 295 (2004), 645–657. https://doi.org/10.1016/j.jmaa.2004.03.049 doi: 10.1016/j.jmaa.2004.03.049
![]() |
[43] |
C. Y. Huang, Fixed point theorems for a class of positive mixed monotone operators, Math. Nachr., 285 (2012), 659–669. https://doi.org/10.1002/mana.200910277 doi: 10.1002/mana.200910277
![]() |
[44] |
D. Wardowski, Mixed monotone operators and their application to integral equations, J. Fixed Point Theory Appl., 19 (2017), 1103–1117. https://doi.org/10.1007/s11784-016-0335-7 doi: 10.1007/s11784-016-0335-7
![]() |
[45] | X. Pan, Eigenvectors of nonmonotone operators and an iterative method, Math. Numer. Sin., 2 (1988), 129–137. |
[46] |
Z. Zhao, X. Du, Fixed points of generalized e-concave (generalized e-convex) operators and their applications, J. Math. Anal. Appl., 334 (2007), 1426–1438. https://doi.org/10.1016/j.jmaa.2006.09.082 doi: 10.1016/j.jmaa.2006.09.082
![]() |
1. | Syed Ghoos Ali Shah, Saima Noor, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Maslina Darus, Rashad Asharabi, Analytic Functions Related with Starlikeness, 2021, 2021, 1563-5147, 1, 10.1155/2021/9924434 |