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1. Introduction

It is well known that seeking the positive solutions to nonlinear equations is of great importance
in nonlinear analysis. In order to meet this goal we are used to utilizing suitable fixed point methods
as well as monotone iteration techniques (see e.g., [1, 2]). The concept of monotone operator together
with cone and partial order was first introduced by Krasnoselskii [1] and in this book the existence
of positive fixed points was investigated. Later on, cone theory and monotone iteration techniques
were set up and well-developed (see e.g., [2–8]). The theory about monotone operators has been
investigated over six decades and has been applied to various different fields, such as different
equations and dynamical systems [9–12], fixed point theory [13–17], control systems [18], theory
of Li groups [19] and biomathematics [20]. However, in several applications [21, 22] the operators
involved are not monotone but have a class of mixed monotone property. To deal with such situations,
the authors in [23] gave the concept of mixed monotone operators and investigated their existence
of coupled fixed points. Since mixed monotone operators play a crucial role in the studying of
nonlinear analysis, nonlinear differential equations and integral equations, such operators have not only
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important theoretical meaning (see e.g., [24]) but also wide applications in non-mathematics fields,
such as engineering and nuclear physics [3, 4, 25, 26]. Besides, by virtue of the fact that embedding a
dynamical system, whose generator has both increasing and decreasing monotonicity property into a
larger symmetric monotone dynamical system, mixed monotone operators have significant applications
in mathematical biology, chemistry, neural networks and others [27–32]. In order to solve the fixed
point problem, two common methods are usually utilized in the study of the fixed point problems for
mixed monotone operators. One is to require that the mixed monotone operators should satisfy some
compactness or continuity (see e.g., [23,33–35]); the other is to assume the operators discussed exhibit
certain concavity or convexity (see e.g., [36–44]). For recent two decades, a number of authors were
interested in studying the mixed monotone operators with some concavity and convexity in the setting
of ordered real Banach spaces. In [36, 37, 45], the scholars presented the mixed monotone operators
that meet the following concave-convex properties:

(H1) A(tσ, t−1ς) ≥ tαA(σ, ς);
(H2) A(tσ, t−1ς) ≥ t(1 + r)A(σ, ς).
Z. Liang etc. [39] investigated this problem and extended (H1) to the following condition:
(H3) A(tτ, t−1υ) ≥ tα(t)A(τ, υ).
Later on, Wu [41] continued to study the problems and extended (H2) and (H3) respectively to the

following
(H4) A(tτ, t−1υ) ≥ tα(t,τ,υ);
(H5) A(tτ, t−1υ) ≥ t(1 + η(t, τ, υ))A(τ, υ),

and introduced the concepts of t − α(t, τ, υ) and t − θ(t, τ, υ) mixed monotone model operator for the
mixed monotone operators satisfying (H4) and (H5), respectively.

In addition, Xu and Jia [42] introduced the concept of φ concave-(-ψ) convex operator and
investigated some mixed monotone operators with certain concavity and convexity in a general way.
However, we have not found any general method to cope with such operators with one of the concave-
convex properties. In this paper, we introduce the concept of generalized ϕ-concave-convex operators
to solve this problem. The advantage of doing so is that such generalized ϕ-concave-convex operators
can unify a large number of operators satisfying the conditions from (H1) to (H5) above and others,
and so we can investigate the existence and uniqueness as well as the convergence of the iterated
sequences for such operators under weaker conditions. As a result, some new fixed point results on
mixed monotone operators with certain concavity and convexity are obtained and some relevant results
are improved or extended in the literature.

2. Preliminaries

In this section, we begin by briefly reviewing some basic concepts, symbols and known facts in the
theory of cone and partial order, which can be found in Refs. [3, 4, 23, 36–42, 46].

Let the real Banach space K be partially ordered by a cone M of K, i.e., σ ≤ ς (alternatively denoted
by ς ≥ σ) if and only if ς−σ ∈ M. We denote by θ the null element of K. Note that a nonempty closed
subset M of K is called a cone if it is convex and satisfies

(i) ∀σ ∈ M, λ ≥ 0⇒ λσ ∈ M;
(ii) ∀σ,−σ ∈ M ⇒ σ = θ.
Denote by intM the interior of M. A cone M is called solid if intM , ∅, i.e., intM is nonempty. M
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is called normal if there is a positive constant N such that θ ≤ σ ≤ ς implies ‖σ‖ ≤ N‖ς‖. The smallest
N satisfying the condition above is called the normal constant of M. For convenience, we will keep
using these symbols throughout the rest of the content.

For any e > θ, that is, e ≥ θ and e , θ, we define

Me = {σ|σ ∈ K and there exist λ, µ > 0 such that λe ≤ σ ≤ µe}.

Let U ⊂ K. If for any σ ∈ U, λ > 0 it follows that λσ ∈ U, then U is called a wedge in K.
Let τ0, υ0 ∈ K with τ0 ≤ υ0. Write

[τ0, υ0] = {σ ∈ K|τ0 ≤ σ ≤ υ0},

where [τ0, υ0] is said to be an ordering interval in K.
Let U ⊂ K. We call an operator A : U × U → K mixed monotone, if ∀σ1, σ2, ς1, ς2 ∈ U, σ1 ≤ σ2

and ς1 ≥ ς2 imply A(σ1, ς1) ≤ A(σ2, ς2). If an element σ∗ ∈ U satisfies A(σ∗, σ∗) = σ∗, then σ∗ is said
to be a fixed point of A. An operator A : U ⊂ K → K is called convex if for all σ, ς ∈ U and each
t ∈ [0, 1], we have

A(tσ + (1 − t)ς) ≤ tAσ + (1 − t)Aς;

A is called concave if −A is convex.
Assume U = M or U = intM and 0 ≤ α < 1. An operator A : U → U is named α-concave

((−α)-convex) if it satisfies

A(tσ) ≥ tαAσ (A(tσ) ≤ t−αAσ),∀t ∈ (0, 1),∀σ ∈ U.

Let A : M → M be an operator and e > θ. Suppose that
(i) Ae ∈ Me;
(ii) there exists a real number η = η(t, σ) > 0 such that

A(tσ) ≥ t(1 + η)Aσ,∀t ∈ (0, 1),∀σ ∈ Me,

then A is called a generalized e-concave operator, and η = η(t, σ) is called its characteristic function.
Similarly, in the above-mentioned definition, if the condition (ii) is replaced by the following
(ii
′

) A(tσ) ≤ 1
t(1+η)Aσ, ∀t ∈ (0, 1), ∀σ ∈ Me,

then A is called a generalized e-convex operator, and η = η(t, σ) is called its characteristic function.
Definition 2.1. ( [40, 41]) If the operator A : Me × Me → K is mixed monotone, and satisfies the
condition (a) (or (b)) of Lemma 2.1, then A is called a t − α(t) (or t − η(t)) mixed monotone model
operator.
Definition 2.2. ([42]) An operator A : U × U → K is said to be φ concave −(−ψ) convex, if there are
two functions φ : (0, 1) × U → (0,∞) and ψ : (0, 1] × U → (0,∞) such that (t, σ) ∈ (0, 1] × U implies
t < φ(t, σ)ψ(t, σ) ≤ 1, and also A satisfies the following two conditions:

(H1) A(tσ, ς) ≥ φ(t, σ)A(σ, ς),∀t ∈ (0, 1),∀(σ, ς) ∈ U × U;
(H2) A(σ, tς) ≤ 1

ψ(t,ς)A(σ, ς),∀t ∈ (0, 1),∀(σ, ς) ∈ U × U.
Lemma 2.1. ([39]) Let e > θ and A : Me×Me → K be an operator. Then the following two statements
are equivalent:

(a) For all 0 < t < 1 and τ, υ ∈ Me, there exists 0 < α = α(t) < 1 such that A(tτ, t−1υ) ≥ tα(t)A(τ, υ).
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(b) For all 0 < t < 1 and τ, υ ∈ Me, there exists η = η(t) > 0 such that A(tτ, t−1υ) ≥ t[1+η(t)]A(τ, υ),
where t[1 + η(t)] < 1.
Definition 2.3. Let U be a wedge of K. An operator A : U × U → K is said to be generalized
ϕ-concave-convex, if there exists a function ϕ : (0, 1) × U × U → (0,∞) such that

A(tσ, ς) ≥ ϕ(t, σ, ς)A(σ, tς),∀t ∈ (0, 1),∀σ, ς ∈ U.

Remark 2.1. The definition of generalized ϕ-concave-convex operator above is different from that
discussed in [41, Theorem 3.1], because in [41, Theorem 3.1], the discussed operator A is defined
on M × M, while in Definition 2.3, we need not require the operator A should be only defined on
M × M; we may define A on U × U, where U may be any wedge of K in a general way. So the
concept of generalized ϕ-concave-convex operator is a generalization of the operator discussed in [41,
Theorem 3.1].
Remark 2.2. The concept of generalized ϕ-concave-convex mixed monotone operator is a
generalization of a number of operators such as t − α(t) (or t − η(t)) mixed monotone model operator,
φ concave-(−ψ) convex mixed monotone operator.

For example, if A is φ concave-(−ψ) convex then we have

A(tσ, ς) ≥ φ(t, σ)A(σ, ς),∀t ∈ (0, 1),∀σ, ς ∈ U

A(σ, tς) ≤
1

ψ(t, ς)
A(σ, ς),∀t ∈ (0, 1),∀σ, ς ∈ U.

So it follows that

A(tσ, ς) ≥ φ(t, σ)ψ(t, ς)A(σ, tς)
= ϕ(t, σ, ς)A(σ, tς),∀t ∈ (0, 1),∀σ, ς ∈ U,

where ϕ(t, σ, ς) = φ(t, σ)ψ(t, ς). Thus, A is generalized ϕ-concave-convex.

3. Fixed point theorems of generalized ϕ-concave-convex operators

In this paper, we always assume M is a normal cone of a real Banach space K. In this section, we
will explore the existence and uniqueness of the fixed points for generalized ϕ-concave-convex mixed
monotone operators.

Theorem 3.1. Let U be a wedge of K, τ0, υ0 ∈ U with τ0 ≤ υ0 and A : U × U → K be a generalized
ϕ-concave-convex mixed monotone operator. Suppose that

(i) τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0;
(ii) there is a real number r0 such that τ0 ≥ r0υ0;
(iii) t < ϕ(t, σ, ς) ≤ 1, ∀t ∈ (0, 1),∀σ, ς ∈ U;
(iv) there exist elements w0, z0 ∈ [τ0, υ0] such that

ϕ(t, σ, ς) ≥ ϕ(t,w0, z0),∀t ∈ (0, 1),∀σ, ς ∈ [τ0, υ0].
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Then A admits the unique fixed point σ∗ in [τ0, υ0], and for any initial value (σ0, ς0) ∈ [τ0, υ0]×[τ0, υ0],
the iterated sequences

σn = A(σn−1, ςn−1), ςn = A(ςn−1, σn−1), n = 1, 2, · · · , (3.1)

always converge to σ∗. Namely, ‖σn − σ
∗‖ → 0, and ‖ςn − σ

∗‖ → 0 as n→ ∞.
Proof. Let us first show the existence of the fixed point and the convergence of the iterated sequences.
Set

τn = A(τn−1, υn−1), υn = A(υn−1, τn−1), n = 1, 2, · · · . (3.2)

Since A is mixed monotone, by hypothesis (i) we have

τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ · · · ≤ υn ≤ · · · ≤ υ2 ≤ υ1 ≤ υ0.

Clearly, 0 < r0 ≤ 1 since τ0 ≥ r0υ0 from (ii). Now we assume that 0 < r0 < 1 (otherwise, if r0=1, then
τ0 = υ0, which implies the τ0 = υ0 is the unique fixed point of A in [τ0, υ0]).

Set
t1 = sup{t > 0|τ1 ≥ tυ1},

then we have 0 < r0 ≤ t1 ≤ 1. In fact, since A is a generalized ϕ-concave-convex mixed monotone
operator, it follows from (ii) that

τ1 = A(τ0, υ0) ≥ A(r0υ0, υ0) ≥ ϕ(r0, υ0, υ0)A(υ0, r0υ0)
≥ ϕ(r0, υ0, υ0)A(υ0, τ0) = ϕ(r0, υ0, υ0)υ1,

which implies that t1 ≥ ϕ(r0, υ0, υ0) > r0, so 0 < r0 ≤ t1 ≤ 1. In general, we put

tn = sup{t > 0|τn ≥ tυn}, n = 1, 2, · · · . (3.3)

Then it is easy to see that 0 ≤ tn ≤ 1 and

τn ≥ tnυn, n = 1, 2, · · · . (3.4)

By induction, we can prove that

0 < t1 < t2 < · · · < tn < tn+1 < · · · ≤ 1. (3.5)

In fact, if 0 < tn < 1, then by (3.4) and the fact that A is generalized ϕ-concave-convex mixed
monotone, we get

τn+1 = A(τn, υn) ≥ A(tnυn, υn)
≥ ϕ(tn, υn, υn)A(υn, tnυn)
≥ ϕ(tn, υn, υn)A(υn, τn) = ϕ(tn, υn, υn)υn+1. (3.6)

From (3.3), we obtain
tn+1 = sup{t > 0|τn+1 ≥ tυn+1}, n = 1, 2, · · · . (3.7)
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From (3.6), (3.7) and the hypothesis (ii), we get

tn+1 ≥ ϕ(tn, υn, υn) > tn, n = 1, 2, · · · .

So, {tn} is nondecreasing and (3.5) holds. Hence limn→∞ tn = t∗ exists and 0 < t∗ ≤ 1. We now show
t∗ = 1. Otherwise if 0 < t∗ < 1, then by (3.4) and the fact that A is generalized ϕ-concave-convex
mixed monotone, we see

τn+1 = A(τn, υn) ≥ A(tnυn, t−1
n τn) = A(

tn

t∗
· t∗υn, t−1

n τn)

≥ ϕ(
tn

t∗
, t∗υn, t−1

n τn)A(t∗υn,
tn

t∗
· t−1

n τn)

= ϕ(
tn

t∗
, t∗υn, t−1

n τn)A(t∗υn,
1
t∗
τn)

≥ ϕ(
tn

t∗
, t∗υn, t−1

n τn)ϕ(t∗, υn,
1
t∗
τn)A(υn, t∗ ·

1
t∗
τn)

≥ ϕ(
tn

t∗
,w0, z0)ϕ(t∗,w0, z0)A(υn, τn)

>
tn

t∗
· ϕ(t∗,w0, z0)υn+1. (3.8)

It follows from (3.7) and (3.8) that

tn+1 ≥
tn

t∗
· ϕ(t∗,w0, z0). (3.9)

Letting n→ ∞ in (3.9) we get

t∗ ≥
t∗

t∗
· ϕ(t∗,w0, z0) > t∗,

which leads to a contradiction. Thus t∗ = 1. For any n, p ≥ 1, we get

θ ≤ υn − τn ≤ υn − tnυn = (1 − tn)υn ≤ (1 − tn)υ0

and
θ ≤ τn+p − τn ≤ υn − τn, θ ≤ υn − υn+p ≤ υn − τn.

So on account of the normality of the cone M we get ‖υn − τn‖ → 0(n → ∞) and hence {υn} and {τn}

are both Cauchy. So, by the fact that K is complete, there exist τ∗, υ∗ in [τ0, υ0] such that ‖τn−τ
∗‖ → 0,

‖υn − υ
∗‖ → 0 (n → ∞), and υ∗ = τ∗. Write σ∗ = τ∗ = υ∗, by the standard method (see [3, 36, 44]) we

easily get ‖σn − σ
∗‖ → 0, ‖ςn − σ

∗‖ → 0(n → ∞) and the operator A has a unique fixed point σ∗ in
[τ0, υ0]. Therefore, the conclusions of Theorem 3.1 hold.
Remark 3.1. In Theorem 3.1, if the condition (iv) is substituted by

(iv
′

) ϕ(t, σ, ς) is monotone in σ and ς, respectively,
then the conclusions still hold.
Theorem 3.2. Let M be solid and A : M ×M → M be a mixed monotone operator. Suppose that there
exists a function ϕ : (0, 1) × M × M → (0,∞) such that

(i) ∀(t, σ, ς) ∈ (0.1) × M × M implies that

A(tσ, ς) ≥ ϕ(t, σ, ς)A(σ, tς);
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(ii) for all (t, σ, σ) ∈ (0, 1) × M × M, t < ϕ(t, σ, σ) ≤ 1, and ϕ(t, σ, ς) is nonincreasing (or
alternatively, nondecreasing) in σ and ς, then A admits a unique fixed point σ∗ in intM if and only
if for some τ0, υ0 ∈ intM with τ0 ≤ υ0, it holds that

τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0. (3.10)

Proof. Necessity. Suppose σ∗ is the unique fixed point of A in intM. Set τ0 = υ0 = σ∗, then it follows
from A(σ∗, σ∗) = σ∗ that τ0 ≤ A(τ0, υ0) and A(υ0, τ0) ≤ υ0.

Sufficiency. Since τ0, υ0 ∈ intM, there exists a real number r0 > 0 such that τ0 ≥ r0υ0. Set

τn = A(τn−1, υn−1), υn = A(υn−1, τn−1), n = 1, 2, · · · . (3.11)

Then by (3.10), (3.11) and the mixed monotonicity of A, we have

τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ υn ≤ · · · ≤ υ2 ≤ υ1 ≤ υ0.

Without loss of generality, suppose ϕ(t, σ, ς) is nonincreasing in σ and ς, respectively, then for all
t ∈ (0, 1), σ, ς ∈ [τ0, υ0] we get ϕ(t, σ, ς) ≥ ϕ(t,w0, z0), where w0 = z0 = υ0. Thus all the conditions of
Theorem 3.1 are satisfied. Thus, the conclusions hold from Theorem 3.1.
Remark 3.2. Compared to Theorem 3.1 in [41], Theorem 3.2 deletes the following continuity
condition:

“(H) ϕ(t, σ, σ) is continuous from left in σ”,
in which the proof of Theorem 3.1 in [41] strongly depends, while the conclusions concerning fixed
point of the operator discussed still hold.

Similar to Theorem 3.2, we have the following four theorems by means of Theorem 3.1.
Theorem 3.3. Let A : M × M → M be a mixed monotone operator. Assume that

(i) there exist τ0, υ0 ∈ M with τ0 ≤ υ0 and a real number r0 such that τ0 ≥ r0υ0 and

τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0;

(ii) there exists a function ϕ : (0, 1) × M × M → (0,∞) with t < ϕ(t, σ, ς) ≤ 1 satisfying

A(tσ, ς) ≥ ϕ(t, σ, ς)A(σ, tς),∀t ∈ (0, 1),∀σ, ς ∈ M;

(iii) ϕ = ϕ(t, σ, ς) is monotone (i.e., nondecreasing or nonincreasing) in σ and ς, respectively.
Then A admits a unique fixed point σ∗ in [τ0, υ0]. Moreover, for any initial σ0, ς0 ∈ [τ0, υ0], the iterated
sequences

σn = A(σn−1, ςn−1), ςn = A(ςn−1, σn−1), n = 1, 2, · · ·

always converge to σ∗. Namely, ‖σn − σ
∗‖ → 0, and ‖ςn − σ

∗‖ → 0 as n→ ∞.
Theorem 3.4. Let A be the same as in Theorem 3.3. Suppose that

(i) there exist τ0, υ0 ∈ M with τ0 ≤ υ0 and a real number r0 such that τ0 ≥ r0υ0 and

τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0;

(ii) there exists a function ϕ : (0, 1) × M → (0,∞) with t < ϕ(t, σ) ≤ 1 satisfying

A(tσ, ς) ≥ ϕ(t, σ)A(σ, tς),∀t ∈ (0, 1),∀σ, ς ∈ M;
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(iii) ϕ = ϕ(t, σ) is monotone (i.e., nondecreasing or nonincreasing) in σ.
Then the conclusions of Theorem 3.3 also hold.
Theorem 3.5. Let A be the same as in Theorem 3.3. Suppose that

(i) there exist τ0, υ0 ∈ M with τ0 < υ0 and a real number r0 such that τ0 ≥ r0υ0 and

τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0;

(ii) there exists a function ϕ : (0, 1) × M → (0,∞) with t < ϕ(t, ς) ≤ 1 satisfying

A(tσ, ς) ≥ ϕ(t, ς)A(σ, tς),∀t ∈ (0, 1),∀σ, ς ∈ M;

(iii) ϕ = ϕ(t, ς) is monotone (i.e., nondecreasing or nonincreasing) in ς.
Then the conclusions of Theorem 3.3 also hold.
Theorem 3.6. Let A be the same as in Theorem 3.3. Suppose that

(i) there exist τ0, υ0 ∈ M with τ0 < υ0 and a real number r0 such that τ0 ≥ r0υ0 and

τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0;

(ii) there exists a function ϕ : (0, 1)→ (0,+∞) with t < ϕ(t) ≤ 1 satisfying

A(tσ, ς) ≥ ϕ(t)A(σ, tς),∀t ∈ (0, 1),∀σ, ς ∈ M.

Then the conclusions of Theorem 3.3 also hold.
Lemma 3.1. Let A : M×M → M be a generalized ϕ-concave-convex operator with ϕ = ϕ(t) satisfying
t < ϕ(t) < 1 for all t ∈ (0, 1). Suppose A : M × M → M is mixed monotone and there exists e > θ

such that A(e, e) ∈ Me. Then A : Me × Me → Me; and there exist τ0, υ0 ∈ Me and r0 ∈ (0, 1) such that
rυ0 ≤ τ0 < υ0, and τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0.
Proof. Since A : M × M → M is generalized ϕ-concave-convex with ϕ = ϕ(t), we have

A(tτ, υ) ≥ ϕ(t)A(τ, tυ) (3.12)

and

A(τ, tυ) ≤
1
ϕ(t)
A(tτ, υ) (3.13)

for all t ∈ (0, 1) and τ, υ ∈ M. So, for any σ, ς ∈ Me, taking τ = t−1σ, υ = ς in (3.12) we have

A(t · t−1σ, ς) ≥ ϕ(t)A(t−1σ, tς).

Hence, we get

A(t−1σ, tς) ≤
1
ϕ(t)
A(σ, ς) (3.14)

and

A(σ, ς) ≥ ϕ(t)A(t−1σ, tς). (3.15)
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For any σ, ς ∈ Me, there exist λ1, λ2 ∈ (0, 1) such that

λ1e ≤ σ ≤ λ−1
1 e, λ2e ≤ ς ≤ λ−1

2 e.

Set λ = min{λ1, λ2}. Then λ ∈ (0, 1). So by (3.14) and the fact that A is generalized ϕ-concave-convex
mixed monotone, we obtain

A(σ, ς) ≤ A(λ−1
1 e, λ2e) ≤ A(λ−1e, λe) ≤

1
ϕ(λ)
A(e, e) (3.16)

and

A(σ, ς) ≥ A(λ1e, λ−1
2 e) ≥ A(λe, λ−1e) ≥ ϕ(λ)A(e, e). (3.17)

From (3.16) and (3.17) we get

ϕ(λ)A(e, e) ≤ A(σ, ς) ≤
1

ϕ(λ)
A(e, e),

which implies that A(σ, ς) ∈ Me since A(e, e) ∈ Me. Thus A : Me × Me → Me.
Take a sufficiently small number 0 < t0 < 1 such that

t0e ≤ A(e, e) ≤
1
t0

e. (3.18)

Since t0 < ϕ(t0) ≤ 1, choose a sufficient large natural number k such that(
ϕ(t0)

t0

)k

≥
1
t0
, (3.19)

i.e.,

(ϕ(t0))kt0 ≥ tk
0. (3.20)

Take τ0 = tk
0e, υ0 = t−k

0 e. It is easy to see that τ0, υ0 ∈ Me and τ0 = t2k
0 υ0 < υ0. Choose any r0 ∈ (0, t2k

0 ),
then 0 < r0 < 1 and τ0 ≥ r0υ0. Since A is mixed monotone, we see A(τ0, υ0) ≤ A(υ0, τ0). Moreover,
by (3.18), (3.19) and the generalized ϕ-concave-convex property of A, we get

A(τ0, υ0) = A(tk
0e, t−k

0 e) = A
(
t0 · tk−1

0 e, t−1
0 · t

−(k−1)
0 e

)
≥ ϕ(t0)A

(
tk−1
0 e, t0 · t−1

0 · t
−(k−1)
0 e

)
= ϕ(t0)A

(
tk−1
0 e, t−(k−1)

0 e
)

= ϕ(t0)A
(
t0, tk−2

0 e, t−1
0 · t

−(k−2)
0 e

)
≥ ϕ(t0)ϕ(t0)A

(
tk−2
0 e, t−(k−2)

0 e
)
≥ · · ·

≥ (ϕ(t0))k
A(e, e) ≥ (ϕ(t0))kt0e ≥ tk

0e = τ0.

Similarly, we get

A(υ0, τ0) = A(t−k
0 e, tk

0e) = A
(
t−1
0 · t

−(k−1)
0 e, t0 · tk−1

0 e
)
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≤
1

ϕ(t0)
A

(
t−(k−1)
0 e, tk−1

0 e
)

=
1

ϕ(t0)
A

(
t−1
0 · t

−(k−2)
0 e, t0 · tk−2

0 e
)

≤
1

ϕ(t0)
·

1
ϕ(t0)
A

(
t−(k−2)
0 e, tk−2

0 e
)
≤ · · ·

≤
1

(ϕ(t0))kA(e, e) ≤
1

t0(ϕ(t0))k e.

Hence, by (3.20), we have

A(υ0, τ0) ≤
1

t0(ϕ(t0))k e ≤
1
tk
0

e = υ0.

Therefore we obtain τ0 ≤ A(τ0, υ0), and A(υ0, τ0) ≤ υ0.
Theorem 3.7. Let e > θ and A : Me × Me → Me be a generalized ϕ-concave-convex mixed monotone
with ϕ(t, σ, ς) = ϕ(t) and t < ϕ(t) ≤ 1 for all t ∈ (0, 1) and σ, ς ∈ Me, namely,

A(tσ, ς) ≥ ϕ(t)A(σ, tς),∀t ∈ (0, 1),∀σ, ς ∈ Me.

Then the operator A admits a unique fixed point σ∗ in Me. Moreover, for any initial (σ0, ς0) ∈ Me×Me,
the iterated sequences

σn = A(σn−1, ςn−1), ςn = A(ςn−1, σn−1), n = 1, 2, · · ·

always converge to σ∗. Namely, ‖σn − σ
∗‖ → 0, and ‖ςn − σ

∗‖ → 0 as n→ ∞.
Proof. The conclusions of Theorem 3.7 follow from Lemma 3.1 and Theorem 3.1.
Remark 3.3. Since generalized ϕ-concave-convex operators unify and extend a number of nonlinear
operators with certain concavity and convexity, such as φ concave-(-ψ) convex operators, here we state
that Theorems 3.1–3.7 have a typical advantage over the related results in the existing literature. In
fact, in [42, Theorem 2.1], the φ concave-(-ψ) convex operator is assumed to satisfy the following limit
inequality

“(M) lims→t− φ(s,w0)ψ(s,w0) > t, ∀t ∈ (0, 1)”,
which is a condition related to the continuity because if the function φ(σ, ς)ψ(σ, ς) is continuous from
left in σ, then the condition (M) holds. However, Theorems 3.1–3.7 need not require the operators
discussed should satisfy such limit inequality as the condition (M). In short, Theorems 3.1–3.7 need
not require the generalized ϕ-concave-convex operators satisfy any kind of continuity condition, so
they will derive a number of new fixed point results of the nonlinear operators with certain concavity
and convexity under weaker conditions (see the subsequent Sections 4 and 5).
Remark 3.4. Different from Theorems 2.1–2.6 and Corollaries 2.1 and 2.2 in [42], Theorem 3.7
need not require the generalized ϕ-concave-convex mixed monotone operator should satisfy a pair of
coupled upper and lower solutions, which will deduce a number of new fixed point results of mixed
monotone operators with certain concavity and convexity without assumption of coupled upper and
lower solutions.
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4. Fixed point theorems of φ concave-(-ψ) convex operators

In this section, we will use the main results concerning generalized ϕ-concave-convex operators to
deduce a number of new fixed point theorems of φ concave-(-ψ) convex mixed monotone operators.
Theorem 4.1. Let A : M×M → M be a φ concave-(-ψ) convex operator with φ = φ(t, σ) and ψ = ψ(t),
namely, ∀(t, σ, ς) ∈ (0, 1) × M × M implies

A(tσ, ς) ≥ φ(t, σ)A(σ, ς) (4.1)

and

A(σ, tς) ≤
1
ψ(t)
A(σ, ς), (4.2)

where
t < φ(t, σ)ψ(t) ≤ 1, for all t ∈ (0, 1) and σ ∈ M.

Suppose that A is mixed monotone and satisfies
(i) there exist τ0, υ0 ∈ M and a real number r0 > 0 such that τ0 ≥ r0υ0 and

τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0; (4.3)

(ii) there exists an element w0 ∈ [τ0, υ0] such that

φ(t, σ) ≥ φ(t,w0),∀(t, σ) ∈ (0, 1) × [τ0, υ0].

Then A admits a unique fixed point σ∗ in [τ0, υ0]. Moreover, for any initial σ0, ς0 ∈ [τ0, υ0], the iterated
sequences

σn = A(σn−1, ςn−1), ςn = A(ςn−1, σn−1), n = 1, 2, · · ·

always converge to σ∗. Namely, ‖σn − σ
∗‖ → 0, and ‖ςn − σ

∗‖ → 0 as n→ ∞.
Proof. Since A is φ concave-(-ψ) convex, it follows from (4.1) and (4.2) that

A(tσ, ς) ≥ φ(t, σ)A(σ, ς)
≥ φ(t, σ)ψ(t)A(σ, tς), (4.4)

where t ∈ (0, 1) and σ, ς ∈ M.
Set ϕ(t, σ, ς) = φ(t, σ)ψ(t). Then by (4.4), we see A : M × M → M is a generalized ϕ-

concave-convex operator. Obviously the operator A satisfies all the conditions of Theorem 3.1, so
the conclusions of Theorem 4.1 follow from Theorem 3.1.

Similarly, we have the following two theorems.
Theorem 4.2. Let A : M×M → M be a φ concave-(-ψ) convex operator with φ = φ(t) and ψ = ψ(t, ς),
namely, ∀(t, σ, ς) ∈ (0, 1) × M × M implies

A(tσ, ς) ≥ φ(t)A(σ, ς) (4.5)

and

A(σ, tς) ≤
1

ψ(t, ς)
A(σ, ς), (4.6)
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where t < φ(t)ψ(t, ς) ≤ 1 for all t ∈ (0, 1) and ς ∈ M. Suppose that A is mixed monotone and satisfies
(i) there exist τ0, υ0 ∈ M and a real number r0 > 0 such that τ0 ≥ r0υ0 and

τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0;

(ii) there is a point w0 ∈ [τ0, υ0] such that

ψ(t, ς) ≥ ψ(t,w0),∀(t, ς) ∈ (0, 1) × [τ0, υ0].

Then the conclusions of Theorem 4.1 also hold.
Proof. Since A is φ concave-(-ψ) convex, it follows from (4.5) and (4.6) that

A(tσ, ς) ≥ φ(t)A(σ, ς)
≥ φ(t)ψ(t, ς)A(σ, tς), (4.7)

where t ∈ (0, 1) and σ, ς ∈ M.
Set ϕ(t, σ, ς) = φ(t)ψ(t, ς). Then by (4.7), we seeA : M×M → M is a generalized ϕ-concave-convex

operator. Obviously the operator A satisfies all the conditions of Theorem 3.1, so the conclusions of
Theorem 4.2 follow from Theorem 3.1.

Similarly, we have the following two theorems.
Remark 4.1. If the condition (ii) in Theorem 4.2 is substituted by

(ii
′

) ψ(σ, ς) is monotone (nonincreasing or nondecreasing) in ς,
then the conclusions still hold.
Theorem 4.3. Let A : M × M → M be a φ concave-(-ψ) convex operator with φ = φ(t) and ψ = ψ(t),
namely, ∀(t, σ, ς) ∈ (0, 1) × M × M implies

A(tσ, ς) ≥ φ(t)A(σ, ς)

and

A(σ, tς) ≤
1
ψ(t)
A(σ, ς),

where t < φ(t)ψ(t) ≤ 1 for all t ∈ (0, 1). Suppose that A is mixed monotone and satisfies.
(C) there exist τ0, υ0 ∈ M and a real number r0 > 0 such that τ0 ≥ r0υ0 and

τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0.

Then the conclusions of Theorem 4.1 also hold.
Theorem 4.4. Let e > θ and A : Me × Me → Me be φ concave-(-ψ) convex mixed monotone with
φ = φ(t) and ψ = ψ(t), namely, for all t ∈ (0, 1) and σ, ς ∈ Me, it holds that

A(tσ, ς) ≥ φ(t)A(σ, ς),A(σ, tς) ≤
1
ψ(t)
A(σ, ς). (4.8)

Then A admits a unique fixed point σ∗ in Me. Moreover, for any initial σ0, ς0 ∈ Me, the iterated
sequences

σn = A(σn−1, ςn−1), ςn = A(ςn−1, σn−1), n = 1, 2, · · ·
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always converge to σ∗. Namely, ‖σn − σ
∗‖ → 0, and ‖ςn − σ

∗‖ → 0 as n→ ∞.
Proof. Let ϕ(t) = φ(t)ψ(t). Then for all σ ∈ (0, 1), σ, ς ∈ Me, it follows from (4.8) that

A(tσ, ς) ≥ φ(t)ψ(t)A(σ, ς) = ϕ(t)A(σ, tς),

which implies that A : Me × Me → Me is generalized ϕ-concave-convex with ϕ = φ(t)ψ(t). So, the
operator A satisfies all the conditions of Theorem 3.7. Hence, the conclusions of Theorem 4.4 follow
from Theorem 3.7.
Remark 4.2. Compared to Theorem 2.1 in [42], Theorems 4.1–4.3 need not require the φ concave-(-ψ)
convex operators A should satisfy the following condition:

“(H) lims→t− φ(s,w0)ψ(s,w0) > t, ∀t ∈ (0, 1)”,
upon which the crucial condition the proof of [42, Theorem 2.1] depends strongly, while the
conclusions concerning the φ concave-(-ψ)convex operator A still hold. So Theorems 4.1–4.3 improve
[42, Theorem 2.1] to a certain extent.

We now use the fixed point results about φ concave-(-ψ) convex operators obtained above to deduce
some new fixed point theorems of mixed monotone operators with certain concavity and convexity.
Remark 4.3. Theorem 4.4 is a new fixed point result of φ concave-(-ψ) convex operators and has
potential applications to nonlinear equations. This is due to the fact that Theorem 2.1 in [42] is a main
fixed point result regarding φ concave-(-ψ) convex operators in the existent literature and it can not
deduce Theorem 4.4 above since Theorem 4.4 deletes the limit inequality condition

“(H) lims→t− φ(s,w0)ψ(s,w0) > t, ∀t ∈ (0, 1)”,
which appears in [42, Theorem 2.1] as a crucial condition for the proof of the existence of the fixed
point of the operator. Besides, Theorem 4.4 need not require us to seek a surplus pair of coupled
upper and lower solutions. Such advantage will bring about some practical convenience to nonlinear
differential equations as well as integral equations.
Corollary 4.1. Let M be solid and A : M × M → M be a mixed monotone operator. Suppose that

(i) there exist τ0, υ0 ∈ intM with τ0 ≤ υ0, such that

τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0; (4.9)

(ii) for fixed ς, A(·, ς) : M → M is concave; for fixed σ, A(σ, ·) : M → M is generalized e-convex,
i.e., there is a function η = η(t, ς) satisfying

A(σ, tς) ≤ [t(1 + η(t, ς))]−1
A(σ, ς),∀t ∈ (0, 1),∀σ, ς ∈ M;

(iii) η(t, ς) is monotone (i.e., nonincreasing or nondecreasing) in ς, and there exists ε > 0, such that

A(θ, υ0) ≥ εA(υ0, τ0) (4.10)

and

[ε + (1 − ε)t]−1 − 1 < η(t, ς) < [εt + (1 − ε)t2]−1 − 1. (4.11)

Then the conclusions of Theorem 4.2 hold.
Proof. Let τn = A(τn−1, υn−1), υn = A(υn−1, τn−1), n = 1, 2, .... Then by (4.9) and the fact that A is mixed
monotone, we get that

τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ υn ≤ · · · ≤ υ2 ≤ υ1 ≤ υ0.
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Since A is mixed monotone, by (4.10) we see τ1 ≥ ευ1 and τ1 ≤ A(τ1, υ1),A(υ1, τ1) ≤ υ1. Thus
0 < ε ≤ 1. Now we begin to show A : M × M → M is φ concave-(-ψ) convex. In fact, for all t ∈ (0, 1)
and σ, ς ∈ M, we have

A(tσ, ς) = A(tσ + (1 − t)θ, ς)
≥ tA(σ, ς) + (1 − t)A(θ, ς)
≥ tA(σ, ς) + (1 − t)A(θ, υ0)
≥ tA(σ, ς) + ε(1 − t)A(υ0, τ0)
≥ tA(σ, ς) + ε(1 − t)A(σ, ς) = φ(t)A(σ, ς),

A(σ, tς) ≤
1

t(1 + η(t, ς))
A(σ, ς) =

1
ψ(t, ς)

A(σ, ς),

where

φ = φ(t) = t + ε(1 − t), ψ = ψ(t, ς) = t(1 + η(t, ς)). (4.12)

By (4.11) and (4.12) we see

t < φ(t)ψ(t, ς) ≤ 1,∀t ∈ (0, 1),∀ς ∈ M.

Hence, A : M × M → M is φ concave-(-ψ) convex and all the conditions of Theorem 4.2 are satisfied.
Therefore, the conclusions of Corollary 4.1 follows from Theorem 4.2 and Remark 4.1.
Remark 4.4. Compared with Corollary 3.3 in [41], Corollary 4.1 deletes the following continuity
condition

“(CC) η(t, ς) is continuous from left in t”,
which is listed in the assumption (iii) in [41, Corollary 3.3], and the conclusions concerning the fixed
point of the operator discussed still hold. So Corollary 4.1 improves [41, Corollary 3.3].
Corollary 4.2. Let M be solid and A : intM × intM → intM be a mixed monotone operator. Suppose
that A satisfies the following condition:

(Cα1−α2) for fixed ς,A(·, ς) : intM → intM is α1-concave; for fixed σ,A(σ, ·) : intM → intM is
(-α2)-convex, where 0 ≤ α1 + α2 < 1.
Then A admits a unique fixed point σ∗ in intM. Moreover, for any initial (σ0, ς0) ∈ intM × intM, the
iterated sequences

σn = A(σn−1, ςn−1), ςn = A(ςn−1, σn−1), n = 1, 2, · · ·

always converge to σ∗. Namely, ‖σn − σ
∗‖ → 0, and ‖ςn − σ

∗‖ → 0 as n→ ∞.
Proof. By the condition (Cα1−α2) we have for all σ ∈ (0, 1), σ, ς ∈ intM, it holds that

A(tσ, ς) ≥ tα1A(σ, ς) = φ(t)A(σ, ς),

and

A(σ, tς) ≤
1

tα2
A(σ, ς) =

1
ψ(t)
A(σ, ς),

where φ(t) = tα1 , ψ(t) = tα2 . It is easy to see that t < φ(t)ψ(t) = tα1+α2 < 1. Since 0 < α1 + α2 < 1 for
all t ∈ (0, 1). So A : intM × intM → intM is φ concave-(-ψ) convex.
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Therefore, the conclusions of Corollary 4.2 follow from Theorem 4.4.
Corollary 4.3. Let K,M,A be the same as that in Corollary 4.2. Suppose that A satisfies the following
condition:

(Cα−α) for fixed ς : A(·, ς) : intM → intM is α-concave; for fixed σ,A(σ, ·) : intM → intM is
(-α)-convex, where 0 ≤ α < 1

2 .
Then the conclusions of Corollary 4.2 also hold.
Proof. Set α1 = α2 = α. Then the proof is complete by Corollary 4.2.
Remark 4.5. Compared with Corollaries 2.1 and 2.2 in [42], Corollaries 4.2 and 4.3 remove the
following redundant assumption of coupled upper and lower solution condition

“(ii) there exist elements τ0, υ0 ∈ intM with τ0 ≤ υ0 such that τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0”,
which appears in Corollaries 2.1 and 2.2 in [42], while the conclusions still hold. So Corollaries 4.2
and 4.3 improve Corollaries 2.1 and 2.2 in [42], respectively.

5. Fixed point theorems of t − η(t) (t − α(t)) mixed monotone model operators

In this section, we will use the fixed point results on generalized ϕ-concave-convex operators
obtained in Section 3 to deduce new fixed point theorems for t − η(t) (t − α(t)) mixed monotone model
operators.
Theorem 5.1. Let e > θ and A : Me × Me → Me be a mixed monotone operator. Assume that A is
a t − η(t) mixed monotone model operator, i.e., for all t ∈ (0, 1) and τ, υ ∈ Me, there exists a function
η = η(t) > 0 such that

A(tτ, t−1υ) ≥ t(1 + η(t))A(τ, υ). (5.1)

Then A admits a unique fixed point σ∗ in Me. Moreover, for any initial σ0, ς0 ∈ Me, the iterated
sequences

σn = A(σn−1, ςn−1), ςn = A(ςn−1, σn−1), n = 1, 2, · · ·

always converge to σ∗. Namely, ‖σn − σ
∗‖ → 0, and ‖ςn − σ

∗‖ → 0 as n→ ∞.
Proof. According to Theorem 3.7, it suffices to check that A : Me×Me → Me is generalized ϕ-concave-
convex with ϕ = ϕ(t). In fact, for any t ∈ (0, 1), σ, ς ∈ Me, by (5.1) we have

A(tσ, ς) = A(tσ, t−1 · tς) ≥ t(1 + η(t))A(σ, tς) = ϕ(t)A(σ, tς),

where ϕ(t) = t(1 + η(t)), which means that A : Me × Me → Me is generalized ϕ-concave-convex with
ϕ = ϕ(t). So the proof is complete by Theorem 3.7.
Remark 5.1. Compared with Theorem 2.1 in [39], Theorem 5.1 removes the surplus assumption of
coupled upper and lower solution condition as following: “∃τ0, υ0 ∈ Me with τ0 ≤ υ0, τ0 ≤ A(τ0, υ0)
and A(υ0, τ0) ≤ υ0”, which appears as an important condition in the proof of [39, Theorem 2.1], while
the conclusions still hold. So Theorem 5.1 improves [39, Theorem 2.1].

Next, we will discuss t − α(t) mixed monotone model operators.
Theorem 5.2. ( [40]) Let e > θ and A : Me ×Me → Me be a mixed monotone operator. Suppose that A
is a t −α(t) mixed monotone model operator, i.e., for all t ∈ (0, 1) and τ, υ ∈ Me, there exists a function
α = α(t) with 0 < α(t) < 1 such that

A(tτ, t−1υ) ≥ tα(t)
A(τ, υ).
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Then the conclusions of Theorem 5.1 also hold.
Proof. By Lemma 2.1, we easily see that the conclusions of Theorem 5.2 follow from Theorem 5.1.
Remark 5.2. Theorem 5.2 is just the same as Theorem 2.1 in [40], which is one of the main results
of [40]. From the proof of Theorem 5.2 we assert that Theorem 5.2 is a special case of Theorem 3.1,
so Theorem 3.1 is a generation of [40, Theorem 2.1].
Remark 5.3. If we take α(t) = α which is a constant with 0 < α < 1 in Theorem 5.2, then Theorem 5.2
is reduced to Theorem 1 in [36]. So Theorem 3.1 is also a generalization of [36, Theorem 1].

6. Applications

In this section, we give two examples to show the fixed point results obtained in previous sections
can be applied to nonlinear integral equations on unbounded regions.
Example 6.1. Consider the following nonlinear integral equation

σ(t) = (Aσ)(t) =

∫
RN

K(t, s)[σ
1
2 (s) + σ−

1
3 (s)]ds. (6.1)

Conclusion 6.1. Assume that K : RN × RN → R1 is a nonnegative and continuous function.
Then Eq (6.1) has a unique positive solution σ∗(t). Moreover, constructing successively the sequences
σn(t) and ςn(t) (n = 1, 2, · · · ) with

σn(t) =

∫
RN

K(t, s)[σ
1
2
n−1(s) + ς

− 1
3

n−1(s)]ds

and

ςn(t) =

∫
RN

K(t, s)[ς
1
2
n−1(s) + σ

− 1
3

n−1(s)]ds

for any positive bounded continuous functions σ0 and ς0, we have supt∈RN |σn(t) − σ∗(t)| → 0, and
supt∈RN |ςn(t) − σ∗(t)| → 0 as n→ ∞.
Proof. Let K = CB(RN) denote the set of all bounded continuous functions in RN . Define the norm
‖σ‖ = supt∈RN |σ(t)|, then K is a real Banach space. Note the set M = C+

B(RN) of nonnegative functions
in CB(RN) is a normal and solid cone in CB(RN). Obviously, Eq (6.1) can be written as σ = A(σ,σ),
where

A(σ, ς) = A1(σ) + A2(ς),

A1(σ) =

∫
RN

K(t, s)σ
1
2 (s)dx,A2(ς) =

∫
RN

K(t, s)ς−
1
3 (s)ds.

According to Corollary 4.2, it suffices to check that A is an α1-concave-(-α2)-convex mixed
monotone operator where α1 = 1

2 , α2 = 1
3 . In fact, it is easy to verify that A is mixed monotone and

for fixed ς,A(·, ς) : intM → intM is α1-concave; for fixed σ,A(σ, ·) : intM → intM is (-α2)-convex,
where 0 < α1 + α2 = 1

2 + 1
3 = 5

6 < 1. Therefore, we assert Conclusion 6.1 holds by Corollary 4.2.
Remark 6.1. Compared with Example 3.1 in [42], Example 6.1 does not require us to seek another
surplus pair of coupled upper and lower solutions τ0 and υ0 satisfying:

τ0 ≤ υ0, τ0 ≤ A(τ0, υ0),A(υ0, τ0) ≤ υ0,
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which appears in [42, Example 3.1] as one of the crucial prerequisites to show the existence of the
solution for the integral equation. So Example 6.1 is more workable than [42, Example 3.1]. Similar
to Example 6.1, the following is another example to show the application of main results to nonlinear
integral equations.
Example 6.2. Consider the following nonlinear integral equation:

σ(t) = (Aσ)(t) =

∫
RN

K(t, s)
[ √

σ(s) +
1

4√σ(s)

]
ds. (6.2)

Conclusion 6.2. Assume that K : RN × RN → R1 is a nonnegative and continuous function. Then
Eq (6.2) has a unique positive solution σ∗(t). Moreover, constructing successively the sequences σn(t)
and ςn(t) (n = 1, 2, · · · ) with

σn(t) =

∫
RN

K(t, s)
[
σ

1
2
n−1(s) + ς

− 1
4

n−1(s)
]

ds

and

ςn(t) =

∫
RN

K(t, s)
[
ς

1
2
n−1(s) + σ

− 1
4

n−1(s)
]

ds

for any positive bounded continuous functions σ0 and ς0, we have supt∈RN |σn(t) − σ∗(t)| → 0, and
supt∈RN |ςn(t) − σ∗(t)| → 0, as n→ ∞.
Remark 6.2. Compared to Example 4.2 in [41], Example 6.2, like Example 6.1, does not require us to
check some certain coupled upper and lower solution τ0 and υ0 would exist. As a kind of convenience,
Example 6.2 deletes the following condition:

“
1

110
≤

∫
RN

K(t, s)ds ≤
1

1 +
√

10
”

which is for the existence of the coupled upper and lower solutions. In addition, in Example 6.2, the
initial values σ0 and ς0 for the iterated sequences {σn(t)} and {ςn(t)} may be chosen in a wider scope
intM, namely, we may choose any two positive continuous bounded functions as the values of initial
σ0 and ς0, while in [41, Example 4.2], the initial σ0 and ς0 can be chosen only in the interval [τ0, υ0].
So Example 6.2 is more workable than [41, Example 4.2].

7. Conclusions

In this paper, we introduce the notion of generalized φ-concave-convex operators. By means of
the theory of cone and partial order as well as the monotone iteration techniques, we investigate such
kind of operators satisfying mixed monotonicity property and obtain the existence and uniqueness of
the fixed points as well as the convergence of the iterated sequence. The main novelty is that the
so-called generalized ϕ-concave-convex operators can unify and extend a number of operators with
certain concavity and convexity; and the main results improve and generalize many related results
in the existing literature. Further, we delete the redundant conditions and thus make the application
examples more practicable. While the study’s conclusions are enlightening, the paper has a research
limitation in the application. In the application section, it is found that some of the main results are
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applied to only two nonlinear integral equations on unbounded regions. However, the theory of mixed
monotone operators has many other applications in nonlinear equations as well as nonlinear dynamics.
Thus, future research could focus on the applications of the obtained new fixed point results of mixed
monotone operators to boundary-value problems for nonlinear different equations, nonlinear delay
integral equations, population dynamics and chemical reaction networks.
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