This article is devoted to establishing new formulas concerning generalized Hermite polynomials (GHPs) that generalize the classical Hermite polynomials. Derivative expressions of these polynomials that involve one parameter are found in terms of other parameter polynomials. Some other important formulas, such as the linearization and connection formulas between these polynomials and some other polynomials, are also given. Most of the coefficients are represented in terms of hypergeometric functions that can be reduced in some specific cases using some standard formulas. Two applications of the developed formulas in this paper are given. The first application is concerned with introducing some weighted definite integrals involving the GHPs. In contrast, the second is concerned with establishing the operational matrix of the integer derivatives of the GHPs.
Citation: Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori. On generalized Hermite polynomials[J]. AIMS Mathematics, 2024, 9(11): 32463-32490. doi: 10.3934/math.20241556
This article is devoted to establishing new formulas concerning generalized Hermite polynomials (GHPs) that generalize the classical Hermite polynomials. Derivative expressions of these polynomials that involve one parameter are found in terms of other parameter polynomials. Some other important formulas, such as the linearization and connection formulas between these polynomials and some other polynomials, are also given. Most of the coefficients are represented in terms of hypergeometric functions that can be reduced in some specific cases using some standard formulas. Two applications of the developed formulas in this paper are given. The first application is concerned with introducing some weighted definite integrals involving the GHPs. In contrast, the second is concerned with establishing the operational matrix of the integer derivatives of the GHPs.
[1] | A. Ralston, P. Rabinowitz, A first course in numerical analysis, Chicago: Courier Corporation, 2001. |
[2] | J. Shen, T. Tang, L. L. Wang, Spectral methods: Algorithms, analysis and applications, Berlin: Springer, 41 (2011). https://doi.org/10.1007/978-3-540-71041-7 |
[3] | J. S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral methods for time-dependent problems, Cambridge: Cambridge University Press, 21 (2007). |
[4] | G. Dattoli, D. Levi, P. Winternitz, Heisenberg algebra, umbral calculus and orthogonal polynomials, J. Math. Phys., 49 (2008), 1–17. https://doi.org/10.1063/1.2909731 doi: 10.1063/1.2909731 |
[5] | W. N. Everitt, K. H. Kwon, L. L. Littlejohn, R. Wellman, Orthogonal polynomial solutions of linear ordinary differential equations, J. Comput. Appl. Math., 133 (2001), 85–109. https://doi.org/10.1016/S0377-0427(00)00636-1 doi: 10.1016/S0377-0427(00)00636-1 |
[6] | D. Babusci, G. Dattoli, S. Licciardi, E. Sabia, Mathematical methods for physicists, Singapore: World Scientific Publishing, 2019. https://doi.org/10.1142/11315 |
[7] | T. Kim, D. S. Kim, D. V. Dolgy, J. W. Park, Sums of finite products of Legendre and Laguerre polynomials, Adv. Differential Equ., 2018 (2018), 277. https://doi.org/10.1186/s13662-018-1740-6 doi: 10.1186/s13662-018-1740-6 |
[8] | M. Rahman, A non-negative representation of the linearization coefficients of the product of Jacobi polynomials, Can. J. Math., 33 (1981), 915–928. https://doi.org/10.4153/cjm-1981-072-9 doi: 10.4153/cjm-1981-072-9 |
[9] | C. Baishya, P. Veeresha, Laguerre polynomial-based operational matrix of integration for solving fractional differential equations with non-singular kernel, P. Roy. Soc. A, 477 (2021), 20210438. https://doi.org/10.1098/rspa.2021.0438 doi: 10.1098/rspa.2021.0438 |
[10] | M. M. Alsuyuti, E. H. Doha, S. S. E. Eldien, Galerkin operational approach for multi-dimensions fractional differential equations, Commun. Nonlinear Sci., 114 (2022), 106608. https://doi.org/10.1016/j.cnsns.2022.106608 doi: 10.1016/j.cnsns.2022.106608 |
[11] | E. H. Doha, W. M. Abd-Elhameed, Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method, J. Comput. Appl. Math., 181 (2005), 24–45. https://doi.org/10.1016/j.cam.2004.11.015 doi: 10.1016/j.cam.2004.11.015 |
[12] | W. M. Press, Numerical recipes 3rd edition: The art of scientific computing, Cambridge: Cambridge University Press, 2007. |
[13] | G. Grimmett, D. Stirzaker, Probability and random processes, Oxford: Oxford University Press, 2020. |
[14] | K. W. Hwang, C. S. Ryoo, Some identities involving two-variable partially degenerate Hermite polynomials induced from differential equations and structure of their roots, Mathematics, 8 (2020), 632. https://doi.org/10.3390/math8040632 doi: 10.3390/math8040632 |
[15] | T. Kim, D. S. Kim, L. C. Jang, H. Lee, H. Kim, Representations of degenerate Hermite polynomials, Adv. Appl. Math., 139 (2022), 102359. https://doi.org/10.1016/j.aam.2022.102359 doi: 10.1016/j.aam.2022.102359 |
[16] | N. Raza, M. Fadel, K. S. Nisar, M. Zakarya, On 2-variable q-Hermite polynomials, AIMS Math., 8 (2021), 8705–8727. https://doi.org/10.3934/math.2021506 doi: 10.3934/math.2021506 |
[17] | U. Duran, M. Acikgoz, A. Esi, S. Araci, A note on the (p, q)-Hermite polynomials, Appl. Math. Inform. Sci., 12 (2018), 227–231. https://doi.org/10.18576/amis/120122 |
[18] | G. Muhiuddin, W. A. Khan, U. Duran, D. Al-Kadi, A new class of higher-order hypergeometric Bernoulli polynomials associated with Lagrange-Hermite polynomials, Symmetry, 13 (2021), 648. https://doi.org/10.3390/sym13040648 doi: 10.3390/sym13040648 |
[19] | M. Artioli, G. Dattoli, U. Zainab, Theory of Hermite and Laguerre Bessel function from the umbral point of view, Appl. Math. Comput., 488 (2025), 129103. https://doi.org/10.1016/j.amc.2024.129103 doi: 10.1016/j.amc.2024.129103 |
[20] | W. A. Khan, K. S. Nisar, U. Duran, M. Acikgoz, Novel results for generalized Apostol type polynomials associated with Hermite polynomials, P. Jangjeon Math. Soc., 26 (2023), 291–305. https://doi.org/10.17777/pjms2023.26.3.291 doi: 10.17777/pjms2023.26.3.291 |
[21] | S. Araci, W. A. Khan, M. Acikgoz, C. Özel, P. Kumam, A new generalization of Apostol type Hermite-Genocchi polynomials and its applications, SpringerPlus, 5 (2016), 1–17. https://doi.org/10.1186/s40064-016-2357-4 doi: 10.1186/s40064-016-2357-4 |
[22] | G. Dattoli, S. Licciardi, Monomiality and a new family of Hermite polynomials, Symmetry, 15 (2023), 1254. https://doi.org/10.3390/sym15061254 doi: 10.3390/sym15061254 |
[23] | T. S. Chihara, An introduction to Orthogonal polynomials, New York: Gordon & Breach, 1978. |
[24] | A. M. Krall, Spectral analysis for the generalized Hermite polynomials, T. Am. Math. Soc., 344 (1994), 155–172. https://doi.org/10.1090/S0002-9947-1994-1242783-9 doi: 10.1090/S0002-9947-1994-1242783-9 |
[25] | H. Chaggara, W. Koepf, On linearization and connection coefficients for generalized Hermite polynomials, J. Comput. Appl. Math., 236 (2011), 65–73. https://doi.org/10.1016/j.cam.2011.03.010 doi: 10.1016/j.cam.2011.03.010 |
[26] | M. J. Atia, M. Benabdallah, On spectral vectorial differential equation of generalized Hermite polynomials, Axioms, 11 (2022), 344. https://doi.org/10.3390/axioms11070344 doi: 10.3390/axioms11070344 |
[27] | W. M. Abd-Elhameed, O. M. Alqubori, New results of unified Chebyshev polynomials, AIMS Math., 9 (2024), 20058–20088. https://doi.org/10.3934/math.2024978 doi: 10.3934/math.2024978 |
[28] | H. M. Ahmed, W. M. Abd-Elhameed, On linearization coefficients of shifted Jacobi polynomials, Contemp. Math., 9 (2024), 1243–1264. https://doi.org/10.37256/cm.5220244018 doi: 10.37256/cm.5220244018 |
[29] | K. W. Chen, Sums of products of generalized Bernoulli polynomials, Pac. J. Math., 208 (2003), 39–52. https://doi.org/10.2140/pjm.2003.208.39 doi: 10.2140/pjm.2003.208.39 |
[30] | N. Khan, T. Usman, J. Choi, A new class of generalized polynomials associated with Laguerre and Bernoulli polynomials, Turk. J. Math., 43 (2019), 486–497. https://doi.org/10.3906/mat-1811-56 doi: 10.3906/mat-1811-56 |
[31] | W. M. Abd-Elhameed, A. A. Philippou, N. A. Zeyada, Novel results for two generalized classes of Fibonacci and Lucas polynomials and their uses in the reduction of some radicals, Mathematics, 10 (2022), 2342. https://doi.org/10.3390/math10132342 doi: 10.3390/math10132342 |
[32] | S. Z. H. Eweis, Z. S. I. Mansour, Generalized q-Bernoulli polynomials generated by Jackson q-Bessel functions, Results Math., 77 (2022), 132. https://doi.org/10.1007/s00025-022-01656-x doi: 10.1007/s00025-022-01656-x |
[33] | H. Guan, W. A. Khan, C. Kızılateş, On generalized bivariate (p, q)-Bernoulli-Fibonacci polynomials and generalized bivariate (p, q)-Bernoulli-Lucas polynomials, Symmetry, 15 (2023), 943. https://doi.org/10.3390/sym15040943 doi: 10.3390/sym15040943 |
[34] | F. A. Costabile, M. I. Gualtieri, A. Napoli, General bivariate Appell polynomials via matrix calculus and related interpolation hints, Mathematics, 9 (2021), 964. https://doi.org/10.3390/math9090964 doi: 10.3390/math9090964 |
[35] | F. A. Costabile, M. I. Gualtieri, A. Napoli, Recurrence relations and determinant forms for general polynomial sequences. Application to Genocchi polynomials, Integ. Transf. Spec. F., 30 (2019), 112–127. https://doi.org/10.1080/10652469.2018.1537272 doi: 10.1080/10652469.2018.1537272 |
[36] | G. Dattoli, M. Haneef, S. Khan, S. Licciardi, Unveiling new perspectives of hypergeometric functions using umbral techniques, Bol. Soc. Math. Mex., 30 (2024). https://doi.org/10.1007/s40590-024-00657-w |
[37] | G. Dattoli, B. Germano, S. Licciardi, M. R. Martinelli, On an umbral treatment of Gegenbauer, Legendre and Jacobi polynomials, Int. Math. Forum, 12 (2017), 531–551. https://doi.org/10.12988/imf.2017.6789 doi: 10.12988/imf.2017.6789 |
[38] | W. M. Abd-Elhameed, A. M. Alkenedri, Spectral solutions of linear and nonlinear BVPs using certain Jacobi polynomials generalizing third- and fourth-kinds of Chebyshev polynomials, CMES-Comp. Model. Eng., 126 (2021), 955–989. https://doi.org/10.32604/cmes.2021.013603 doi: 10.32604/cmes.2021.013603 |
[39] | M. Izadi, C. Cattani, Generalized Bessel polynomial for multi-order fractional differential equations, Symmetry, 12 (2020), 1260. https://doi.org/10.3390/sym12081260 doi: 10.3390/sym12081260 |
[40] | H. Hassani, J. A. T. Machado, E. Naraghirad, Generalized shifted Chebyshev polynomials for fractional optimal control problems, Commun. Nonlinear Sci., 75 (2019), 50–61. https://doi.org/10.1016/j.cnsns.2019.03.013 doi: 10.1016/j.cnsns.2019.03.013 |
[41] | W. M. Abd-Elhameed, A. M. Al-Sady, O. M. Alqubori, A. G. Atta, Numerical treatment of the fractional Rayleigh-Stokes problem using some orthogonal combinations of Chebyshev polynomials, AIMS Math., 9 (2024), 25457–25481. https://doi.org/10.3934/math.20241243 doi: 10.3934/math.20241243 |
[42] | W. M. Abd-Elhameed, M. S. Al-Harbi, A. G. Atta, New convolved Fibonacci collocation procedure for the Fitzhugh-Nagumo non-linear equation, Nonlinear Eng., 13 (2024), 20220332. https://doi.org/10.1515/nleng-2022-0332 doi: 10.1515/nleng-2022-0332 |
[43] | S. Morigi, M. Neamtu, Some results for a class of generalized polynomials, Adv. Comput. Math., 12 (2000), 133–149. https://doi.org/10.1023/A:1018908917139 doi: 10.1023/A:1018908917139 |
[44] | G. Dattoli, S. Lorenzutta, C. Cesarano, Generalized polynomials and new families of generating functions, Ann. Univ. Ferrara, 47 (2001), 57–61. https://doi.org/10.1007/bf02838175 doi: 10.1007/bf02838175 |
[45] | A. Bayad, Y. Simsek, On generating functions for parametrically generalized polynomials involving combinatorial, Bernoulli and Euler polynomials and numbers, Symmetry, 14 (2022), 654. https://doi.org/10.3390/sym14040654 doi: 10.3390/sym14040654 |
[46] | W. M. Abd-Elhameed, New product and linearization formulae of Jacobi polynomials of certain parameters, Integ. Transf. Spec. F., 26 (2015), 586–599. https://doi.org/10.1080/10652469.2015.1029924 doi: 10.1080/10652469.2015.1029924 |
[47] | W. M. Abd-Elhameed, A. K. Amin, Novel identities of Bernoulli polynomials involving closed forms for some definite integrals, Symmetry, 14 (2022), 2284. https://doi.org/10.3390/sym14112284 doi: 10.3390/sym14112284 |
[48] | W. M. Abd-Elhameed, A. Napoli, New formulas of convolved Pell polynomials, AIMS Math., 9 (2024), 565–593. https://doi.org/10.3934/math.2024030 doi: 10.3934/math.2024030 |
[49] | H. M. Ahmed, Computing expansions coefficients for Laguerre polynomials, Integ. Transf. Spec. F., 32 (2021), 271–289. https://doi.org/10.1080/10652469.2020.1815727 doi: 10.1080/10652469.2020.1815727 |
[50] | H. M. Srivastava, A. W. Niukkanen, Some Clebsch-Gordan type linearization relations and associated families of Dirichlet integrals, Math. Comput. Model., 37 (2003), 245–250. https://doi.org/10.1016/S0895-7177(03)00003-7 doi: 10.1016/S0895-7177(03)00003-7 |
[51] | H. M. Srivastava, A unified theory of polynomial expansions and their applications involving Clebsch-Gordan type linearization relations and Neumann series, Astrophys. Space Sci., 150 (1988), 251–266. https://doi.org/10.1007/BF00641720 doi: 10.1007/BF00641720 |
[52] | C. Markett, The product formula and convolution structure associated with the generalized Hermite polynomials, J. Approx. Theory, 73 (1993), 199–217. https://doi.org/10.1006/jath.1993.1038 doi: 10.1006/jath.1993.1038 |
[53] | E. D. Rainville, Special functions, New York: The Macmillan Company, 1960. |
[54] | J. C. Mason, D. C. Handscomb, Chebyshev polynomials, Boca Raton: Chapman and Hall/CRC, 2002. |
[55] | A. Napoli, W. M. Abd-Elhameed, An innovative harmonic numbers operational matrix method for solving initial value problems, Calcolo, 54 (2017), 57–76. https://doi.org/10.1007/s10092-016-0176-1 doi: 10.1007/s10092-016-0176-1 |
[56] | W. Koepf, Hypergeometric summation, 2 Eds., New York: Springer Universitext Series, 2014. |