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1. Introduction

Orthogonal polynomials (OPs) are crucial due to their numerous applications. In mathematics, they
are the backbone for several contributions regarding approximation theory and numerical analysis.
Also, they have many practical applications in the physical sciences; for instance, they arise in
electromagnetism and quantum mechanics. Among the advantages of the orthogonal polynomials
is that the quadrature rules are based on employing these polynomials; see, for example, [1]. For
the uses of OPs in spectral methods, one can refer to [2,3]. Some other applications can be found
in [4-6]. The most-used orthogonal polynomials in the literature are the classical polynomials,
which include Hermite, Laguerre, and Jacobi polynomials. Some theoretical contributions regarding
these polynomials can be found in [7, 8], while some applications to these polynomials can be
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found in [9-11].

Hermite polynomials are a family of classical orthogonal polynomials. They have several
applications in various branches of the applied sciences. Hermite polynomials have a crucial role
in quantum field theory. Furthermore, these polynomials arise in many applications, such as statistical
mechanics, signal processing, computer graphics, and probability theory. Some applications of
Hermite polynomials can be found in [12, 13]. Many authors were interested in investigating Hermite
polynomials and their related polynomials from theoretical and practical perspectives. Hwang and
Ryoo [14] derived some identities involving two-variable partially degenerate Hermite polynomials.
In [15], some representations of degenerate Hermite polynomials were developed. Two-variable g-
Hermite polynomials were introduced in [16]. A study regarding the (p,q)-Hermite Polynomials was
presented in [17]. Muhiuddin et al. [18] studied a class of Bernoulli polynomials associated with
Lagrange-Hermite polynomials. Artioli et al. [19] studied some families of polynomials, including
Hermite polynomials. The authors of [20,21] studied some other polynomials associated with Hermite
polynomials. In [22], a new family of Hermite polynomials was established.

Chihara presented a class of orthogonal polynomials, generalized Hermite polynomials (GHPs), in
his essential book [23]. These polynomials generalize the classical Hermite polynomials. They have
been the subject of both historical and contemporary research. In [24], spectral analysis is carried
out on these polynomials. Chaggara and Koepf [25] provided these polynomials’ linearization and
connection coefficients. The authors of [26] also provided more findings regarding monic GHPs. Some
formulae involving these polynomials will be developed in this study. In particular, these formulas may
be helpful in approximation theory and numerical analysis.

Investigating special functions, including orthogonal polynomials and their generalized ones, is
of interest from theoretical and practical aspects. Studying these generalized polynomials may be
helpful in different disciplines, such as numerical analysis, so investigating them is a target for many
authors. The authors of [27] introduced new polynomials that unify the four kinds of Chebyshev
polynomials. Some formulas regarding the shifted Jacobi polynomials were developed in [28].
Some other formulas regarding the generalized Bernoulli polynomials were introduced in [29]. A
class of generalized polynomials associated with Laguerre and Bernoulli polynomials was introduced
in [30]. The authors in [31] established new formulas with some applications for two polynomials
that generalize Fibonacci and Lucas polynomials. The authors in [32] investigated some generalized
g-Bernoulli polynomials. Another type of generalized polynomials was introduced in [33]. Following
a matrix approach, the authors of [34] investigated some Appell polynomials. Other formulas for
general polynomial sequences were given in [35]. The theory of special functions extensively uses the
mathematical framework known as umbral calculus, which is concerned with manipulating sequences
and polynomials. For example, the authors in [36,37] investigated many sequences of special functions
using the umbral calculus.

Numerical analysis highlights the importance of utilizing various polynomial sequences. For
example, the authors of [38] developed new formulas for certain Jacobi polynomials and employed
them to treat some DEs of even-order. The authors of [39] used the generalized Bessel polynomials for
treating some fractional DEs. The authors of [40] used a kind of generalized Chebyshev polynomials to
treat some fractional optimal control problems. The authors of [41] numerically treated the fractional
Rayleigh-Stokes problem utilizing some orthogonal combinations of Chebyshev polynomials. In [42],
convolved Fibonacci polynomials were developed and used to solve the Fitzhugh numerically-Nagumo
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nonlinear DE. For some other studies of generalized polynomials, one can refer to [43—45].

Many disciplines encounter the celebrated special functions known as hypergeometric
functions (HGFs). They arise in combinatorics, number theory, probability, and physics. HGFs can
express several vital functions, including famous polynomials. HGFs can solve important problems
such as duplication, connection, and linearization. For example, in [46—48], HGFs are used in
the linearization coeflicients of Jacobi polynomials with different parameters. For some important
problems that can be solved via the different HGFs, one can see [49-51].

In this paper, we are concerned with establishing some new formulas related to the GHPs. To be
more specific, we can list the current paper’s main objectives as follows:

Establishing new derivative expressions for the GHPs in terms of other GHPs.
Deducing the connection formulas between two GHPs of different parameters.
Deriving new product formulas of two different GHPs in terms of other GHPs.
Deriving other product formulas of GHPs with some celebrated polynomials.
Expressing the derivatives of GHPs as combinations of different polynomials.
Presenting some applications to the derived formulas.

The paper’s organization is as follows: Section 2 presents an overview of the GHPs. In Section 3,
new derivative expressions between two different classes of GHPs are established. From these
relations, some connection formulas can be deduced as special cases. New moments formulas of the
GHPs are derived in Section 4. Some new linearization formulas involving the GHPs are established
in Section 5. Some other derivatives and connection formulas are found in Section 6. Some definite
weighted integrals are presented in Section 7. Moreover, this section establishes the operational matrix
of the integer derivatives. Finally, some concluding remarks are reported in Section 8.

2. An overview on generalized Hermite polynomials

This section presents some fundamental properties of the GHPs and an overview of some well-
known polynomials.

It is well-known that Hermite polynomials are classical orthogonal polynomials regarding the
weight function: w(x) = e on (—o0, 00) in the sense that

[

f e Hy(x) H(x)dx = Vx2'i!6;;, Q2.1)

—00

and 0; ; is the celebrated Kronecker delta function.

Some authors investigated the polynomials of the generalized weight function: w(x) = |x?# e
These polynomials, of course, generalize those of the standard Hermite polynomials. In Chihara [23],
it was proven that these polynomials can be represented as

m

d
H¥(x) = o XM e (e_"zxz‘”m K,(,ﬁ‘)) , (2.2)
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where
m
12
éﬁlﬁlﬂ (%;%+,u+1;x2), m even,
KW — 2
m m=1
(E;ll))’jﬂxlFl (mT” —+/1+2 x) m odd.

The polynomials can be written alternatively in terms of the generalized Laguerre polynomials as
follows [52]:

(~1y2m (B) 247 (), meven,
i = (-1 2m (m_—l)v [ (xz) m odd &
2 ) ol ’
3
Moreover, the orthogonality relation of HY(x) is given by
0, k# J,
f e e HY (x) H(x) dx = { 4* ()r(&+p), k = j,k even, (2.4)

(SN (1+4+p), k=jkodd

The following two lemmas are of basic importance. The first gives the GHPs’ analytic forms, and the
second provides their inversion formulas. These formulas will be the fundamental basis for deriving
new formulas for the GHPs.

Lemma 2.1. For a non-negative integer j, the following are the two analytic forms of the GHPs:

/(= 1)’ u+j—r+3) (G-r+1,
Hg’j)(x) =02 Z ) X (2.5)

!
o r!

1Y P 3 -
o s Yt i =) e
2j+1

r=0

x2j—2r+l . (26)

r!

Proof. The above two formulas are direct consequences of the representation (2.3) along with the
analytic form of the generalized Laguerre polynomial given by [53]

L¥(x) =

o
F(n+c‘x+1)2 () o 0

e I'n+a+1-k)

Lemma 2.1 is now proved. O

Lemma 2.2. For a non-negative integer j, the following are the two inversion formulas of the GHPs:

J 22r21(1+]—r)r( +]—r+u)r @
- Z ‘ HY), (%), (2.8)
p r!
Jj_ 2221 (u+j—r+%) (GJ-r+1),
r H®
K20l Z - 2, 5req () (2.9)

r=0
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Proof. The proofs of (2.8) and (2.9) are similar. Now, we prove (2.8). If we assume the identity:

J
X = Z FojHY (), (2.10)
r=0

then we have to compute the coefficients F,.;. For this purpose, multiply both sides of (2.10) by
w(x) H;“”z (x), and integrate from to —oco to oo to get

(e8]

j (o)
ZFW f WOOHYE () HY, (x) dx = f w(x) X HY (x) dx. 2.11)

r=0

—00

In virtue of the orthogonality relation (2.4) together with the power form representation (2.5), it is not
difficult to express the coeflicients F. ; explicitly in the form

1 j_r foo )
F.j= Arjr | wx)x¥ 22l dx, (2.12)
! h2j—2r ; o -0

where
(1Y 2% (u+j—r+3) G-r+1),

rj ! s

The integral on the right-hand side of (2.12) can be computed in terms of the Gamma function as

0 . 1
f w(x)x“f-”—”dx:r(z+2j—f—r+y). (2.13)
Therefore, the coeflicients F,.; reduce to the form

Fr,]_4 / ;[!(j—f—r)!r(%+j_€_r+ﬂ).

In hypergeometric form, we can write

L (DT (3 +2j-C-r+p) L(3+2j-r+n)
{Z‘f!(j—{’—r)!l"(%+j—€—r+,u)_(j—r)!l“(%+j—r+,u)

S R
Sl R A ﬂ‘l)'

X

The last ,F (1) can be summed by the Chu-Vandemonde identity [53], and thus, we get

2221+ j-n), (3 +j—r+n)
Fr,j: r.

r!

Formula (2.8) is now proved. Formula (2.9) can be similarly proved. O
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2.1. An overview on some classes of polynomials

In this part, we give specific properties of some classes of polynomials that will be important in
what follows.
The ultraspherical polynomials are the orthogonal normalized Gegenbauer polynomials defined as
J! C(.A)(x)
UD(x) = J ’
;) eu,
where C;ﬂ)(x) are the well-known Gegenbauer polynomials.
These polynomials can be expressed in the form

. r 2r—1 _
JITQA+ 1) Z( D22 —r+ D) o (2.14)

U0 = ,
e P TP NI (=2 1!

while their inversion formula is

S T+ %(j—2r+/l)l"(j—2r+2/l) W

TTQA+ D2 L (-2 AT+ -+ ) U550 (2.15)

In addition, these polynomials are orthogonal on [—1, 1] in the sense that

KT+ 1 B

f(l HUPUP@) = {0 T A+ k) T k, (2.16)
0, ik

Among the important families of polynomials are the two classes of generalized Fibonacci and
generalized Lucas polynomials. F ?’b(x) and Lj’d(x) can be generated using the following recursive
formulas [47]:

Fi*(x) = axF&(x) +bFh(x), Fg’(o =1, Fi*'(x) =ax, j22. (2.17)

Lx) = cx LY () +d L), L' =2, L) =cx,  j=2. (2.18)

Also, among the celebrated classes of polynomials are the four classes of Chebyshev polynomials that
can be generated with the following unified recursive formula:

$i(x) =2x¢j—1(x) = pja(x), j=2, (2.19)

with the following initials:

Tox) =1, Ti/(x)=x, Uyx) =1, Ui(x) =2x
Vox) =1, Vi(x) =2x-1, Wyx) =1, Wi(x) =2x+ 1.

These polynomials have the following unified moment formula:

m

1
X" ¢i(x) = 5 Z (’?:) @ jrm-25(X). (2.20)

s=0
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3. New derivative expressions of the GHPs

This section is interested in developing new derivative expressions for the GHPs. In fact, the general
derivative for the GHPs of a certain parameter will be given in terms of other GHPs. From these
formulas, the following expressions will be deduced:

The expressions of the derivatives of the GHPs in terms of the original polynomials themselves.
The expressions of the derivatives of Hermite polynomials in terms of the GHPs.

The derivative expressions of the GHPs in terms of the standard Hermite polynomials.

The connection formulas between the standard Hermite polynomials and their generalized ones.

In the following theorem, we give an expression for D/H ?‘)(x) in terms of H(/./l)(x).

Theorem 3.1. Let j and q be non-negative integers with j > q. The following formula applies:

|5
) p)
D'HY(x) = E Brjg HY (%), (3.1)
=0

3 B \/7_ij 2—j+2(f+q)
G =T %

T(3(1+j-q) +2)

— 1 . 1 . X
(G- r(Ea+j-9) T30 +j-20-g)+2)
_f’l_l+ﬂ’l_l_'u ‘
3F2[ lilzl_zjigi/l 1, q and j even,
2 222 2 2
T(32+j-q) +2)

(%(j—q—1)'—5)!1"(%(2+j—q)) r(} (2+j—2€—q)+/l)x

1] , q even, jodd, (3.2)

T(3Q+j-g +2)
(%(j—q—n_—f)!r(% Q+j-@)T(}@+j-20-9)+2)

X

_f,_l+‘_7’l_l—
3F2[ AR H 1)’ q odd, jeven,
3Tt 4
(5 +j-gq+20)
X
(G- r(3A+j-9) T(30+j-20-g+22)
_f,l_l+ﬁ,_l_
3F2[ 27272 K11, q and j odd.
337 5t3-4
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Proof. To prove formula (3.1), it is required to prove the following four formulas:

VEQYIT (14— g +2) & 4t
DZ(]H(#)( ) ( %

T(3+j-4q) STOG-C-'T(L+j-C-q+2)
3F2(_€’%_‘j+q’§_‘j—ﬂ

(1)
1) Hy\ o2,

. ! Jj—q 2—1—2j+2€+4q1" 3 +j_q+/l
D2QH(/-‘?H( ) \/E(z-] + 1)' (2 ) X

r3+j-q) = fv(j—f—q)!r(§+j—f—q+/1)

f—-—1+q, -Jj—Hu W
3F2( —-—J,———J+q 2|1 e 0

Jj—q 2-2j+20+4q : 1
DM HY(x) = \/_(21)' 2 F(j-q+a+3) y
J q+3 {’:0 !(j—f—q—l)!F(j—f—q+/l+%)
~6y—-j+q.5—j-p
> 2 >2 ()
35( N | g

. ' Jj—q 21—2j+2€+4q1—‘ 1 +j—61+/1
Do )z = VIR 1) (3 )

T(+j-q) S 0G-t-'T(3+j-t-q+2)

~l5—j+q,~5—j—H W
(IR e

To prove (3.3), we make use of (2.5) to obtain the following formula:

E4 (1 +2j = 2g =21+ j— 1), (3 + j = 7 + 1)

2g ry(k) _ _n2j r . 2j-2r=2
D"sz(x)——ZfZO: . X2
Inserting the inversion formula (2.8) into (3.7) yields the following formula:
(-1 (L+2j =29 =2 (L + j= 1) (5 +j—r+u
DMHY(x) =27 )" — & )w
r!
r=0
T R Y e LR e A e a)g W
7 Hy\ o 0g2,(%)

=0

The last formula can be transformed into the following formula:

j—q 4 . . )
1P+ = p)p(L+2j = 2p = 2q)s(1 + j— £ — @)
quHg;)(x) — Z :22(f+q) z : ( ) ( J p)p( J 14 Q)Zq( J Q)[ p><

(€= p)p!

- peu) B, 0.
2 ) 2j-20-2q

[
(§+]—€—q+/l)

t—p

(3.3)

(3.4)

(3.5)

(3.6)

(3.7

(3.8)

(3.9)
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and accordingly, the following formula can be obtained:

CS)

VERHIT(L+j—g+A) L 4742
D¥HY)(x) = (; ) X

r(3+j-q) SOG-t-'T(3+j-t-q+2)
~l5—Jj+q5—Jj—H
)5 . %)
(AL )
This proves (3.3). The other formulas can be similarly proved. O

Remark 3.1. Several important formulas can be deduced from formula (3.1). The following corollaries
exhibit these results.

Corollary 3.1. In terms of Hﬁ.”)(x), DiH i.“)(x) can be written as follows:

&

DUHP(x) = > GrjgHY (0, >4, (3.10)
=0
where
\/77..]'!2—]'+2(€+q)
Gf’j’q :TX
(30 +j-q) +n)
(3G -20-)T (20 +j- )T (31 +j—20-q) +p)
_[’1_14_2’1_1_
3F2[ 12].21 zquz K 1), q and j even,
= 5,5 — 5 + = _/.l
2 2°2 2 2
F(3Q+j-g9+p)
X
F(3Q+j-)(3G-20-q-D)NT(3Q+j-20-q) +p)
/S S R
3F2[ ; 2 ; i . 2 ,ulu l), g even, jodd, (3.11)
—»Tat -
r(;2+j-q +u)
X
F(32+)-9)(30-20-g= DN (52 + =20~ q) +p)
_f’_l+ﬁ’l_l_
3F2[ | 2j 2}.2 qz K1 , q odd, jeven,
- — _,__+__/l
2 2 2 2
F(30+j-q)+p
(3G -20-)T (20 +j- )T (31 +j—20-q) +p)
S S R
3F2[ . a 1), g and j odd.
-5, 5 — _+__/,l
222 2 2
Proof. Formula (3.10) can be easily obtained from (3.1) only by setting 4 = pu. O
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Corollary 3.2. The g-th derivative of H;(x) is given by
24 j1
(-a)!
Proof. The substitution by u = 0 in (3.10) reduces it into the following form:

|5

: Fo(=¢;51)
DIH(x)=20j1 3 0 )
(=217 ;fz(j—zf—q)!

DYH (x) = Hiy(x), j=zgq.

j-q-2 o(x),

which immediately gives
24 j!

DU =5

Hj_q(X).
This proves (3.12).

(3.12)

(3.13)

(3.14)

O

Corollary 3.3. Consider two non-negative integers j and q such that j > q. The following formulas

hold:
J—q 4
-1
quH(”)(x) =49(2))! Z ( )('u)fl : Hyj 5r 24(x),
12 —26-2g)! (§+]—5)€
J=q 4
-1
DMHY, (x) =(2j + 1! 22qz DG Hyjor-2441(X),
—@2j-20-2g+1)! (%+j—€)€
J—q 4
-1
D** HY(x) =(2)! 21+ L Hyj o0 24-1(%),
S oej-2-2q-0(3+j-0),
U (=D

DZq+1H;“j>+l(x) =21*24(2j + 1)!

Hjjpp-54(x).
Soei-2w-20 (3+j-¢),

Proof. To prove (3.15), we set 4 = 0 in (3.3) to obtain the following relation:

1 F f - Jj—u
—20-2g) 7" -—]

J=q
D*HY(x) = 49(2))!
§00 = 412)) ;; G
The Chu-Vandermonde identity leads to the following reduced formula:

& (=D (),

DY HY)(x) = 41(2))! 1
S oej-2-29) (4+j-10)

Hj op 04(x).
¢

‘ 1) Hajop24(%).

(3.15)

(3.16)

(3.17)

(3.18)

Other reduction formulas can be obtained similarly by applying the well-known Chu-Vandermonde

identity.

O

Corollary 3.4. Consider two non-negative integers j and g such that j > q. The following

formulas hold:

VAR 4 - €+ ), HO
r(i+j-q) = CU-t-9! Hajarag

D*H,j(x) = (x),
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VAR + 1) &4 2712201 — ¢ 4 ), @

2 —
D qH2j+l(X) r(_ i q) 21 (] [ — C[)‘ 2j-20— 2q+1( x),
5 =
2j)t E& 4l — gy )
D2q+1H2j(x) — \/7_1-( .]) ( )f é/l) rn 1( )
F(%+j—q) (N (j—C—q- 1)) e
Dty ZNEQIH DA 20— L4 )
2]+1(x) - ] 1 (3 | 2] 20— Zq( )
F(%+]—q)5:0 oG-t -9!
Proof. Similar to the proof of Corollary 3.3. O

Corollary 3.5. The following four connection formulas between Hermite and generalized Hermite
polynomials are valid:

¢
H(”)( ) = 'Z f'()(l?)i 2j-20(X),

¢
H("‘)H( ) = Z T a (‘2); Hyj op01(%),

T
3 4 -C+ 1)[
Hyj(x) =! ; G- H,,_ 26( x),
J
4A-C+ 1){»
Hyji1(x) =j! {;Z GITE Hy, 2€+1( X).
Proof. Simply set g = 0 respectively in formulas (3.15)—(3.18). O

4. Moments formulas of the GHPs

This section focuses on deriving the moment formulas of the GHPs in terms of other GHPs. More
precisely, we will determine the coeflicients G, ;,, in the following equation:

|5
Y HY ) = Y G inH D, ().

p=0
Theorem 4.1. For all non-negative integers m and j, the following moment formula holds:
1%
m py() _ D
Y HP ()= Y Gy iHD, (), (4.1)

where the coefficients G, ;,, are given as follows:
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(L1 + j+m)+ A)
%(j+m—_2p)!r(%(1+j+m—2p)+x)

X

—L_m 1l _J_m_ )
3F2[ 21.21’2].2(12 1), m even, j even,
~3p3T3taoA
(30 + j+m) + A) §
(3G +m=2p)C (31 + j+m=2p)+ 1)
Ly i
3F2[ EEE 1), m odd, j odd,
c P —2- 2272774 4o
p.jm = m! 1, - | 1 . ()
! (3G +m=-D)T(32+j+m) +2)

(%(]'er—zp—1))!r(§(2+j+m—2p)+ﬂ)><

1 _J _p ) _
3F2[ | 27 p’.z H 1), m even, jodd,
L_j_m _Jj_m_
272727272
(3G +m-D)NT (3@ +j+m)+2)
X
(%(]+m—2p—1)) (%(2+]+m 2p)+ A4
4 1 _J_
3F2[1 2>"Pa 3k 1], m odd, jeven.
I _J_m _J_m_ )
2727227272

Proof. Formula (4.1) can be split into the following four formulas:

jt+m
1
2m () ; 1 /
x"HY (x)=(j+m)!T(5+j+m+ A
2 (2 )z:(;22m—2pp!(j+m—p)lr(%+j+m_p+/l)

X

4.3)
—Js Pa —J—H @)
3F2( —j—m, : —j—m=-2 ‘1) Hajran2p(0:
3 & 1
2m (1) . .
H (x):(]+m)!F(—+]+m+/l) X
2 2 Z:(;22m—2pp!(j+m—p)lr(%+j+m—p+/l) 4.4)
. 1 .
—b=P—3~JH %)
3F2 ( _j - m, _% i ] —-m-A ' 1) H2/+2m 2p+1('x)’
3 & 1
2m+1H(ﬂ>(x) (]+m)lF( +]+m+/l)z —— : P X
:02’”‘P+p!(]+m—p)!l“(5+]+m—p+/l) 4.5)
—J=D:5—J— M )
3F2( ] m, _‘2_] m—A '1) H 2j+2m— 2p+1('x)
AIMS Mathematics
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MV HE () =(j+m+ DIT (3 + j+m+ )

Jj+m+1

1
2 X (4.6)

S 2m2pl(j+m—p+ DIT(3+ j+m=p+2)

. 1 .
—j—p. =3 = J—H W
3F2( » _j_m’_z iemea '1) HY s,

The above formulas can be proved using the power form representations (2.5) and (2.6), and
their inversion formulas (2.8) and (2.9). We will show (4.6). We can demonstrate the other
formulas similarly.

Formula (2.5) leads to

Ny (pr o) Gore ),
x2m+1 Hg;)(X) — 22] Z ( - 2)r x2j—2r+2m+l. (47)
r=0 '

The inversion formula (2.9) converts the last formula to the following one:

Y (e ) Gmra ),
x2m+1 Hg;)(x) :22] Z ( 2)r X

r=0

r!

S TR g - L am =) (34 -+ m—r+ 2)

¢
Z 7 H\ o0 140m-2r(%)-
(=0 :
(4.8)
After some algebraic computation, the last formula can be turned into (4.6). O

5. Some linearization formulas of generalized Hermite polynomials

This section is devoted to deriving some linearization formulas involving the GHPs. We will give a
product formula for two different GHPs in terms of other GHPs. In addition, GHP products with some
well-known polynomials will be presented.

Theorem 5.1. The following linearization formula for three different parameters generalized Hermite
polynomials holds:

i+
HO W HP () = ) Gy Hiyo, (), G-D

p=0

where the coefficients G, ; j are given as follows:
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Gpij =
A (=) (3G + =200 T (30 +i+ j - 20) + 2)
X
C(3(0+i+j-2p)+2) ((l+J 2p>)'<p 0)!
: . L6-p.s—4—u . .
l+i-¢) (la+i-20+a F _ o 11, i even, jeven,
( 2 )5(2( ) )532[_5 fpgl-i_dyp-a ) J
4p P(-DT(3A+i+j-20)T(3Q+i+j-20+2)
F(3Q+i+j-2p)+2) Op-0T (3 +i+j-2p)
) (L N A odd.
(1+§—€)[(§(1+z—2€)+a)£ JF, A R 1], i odd, j even,
4 P (=) (3G + =20 T (30 +i+ j - 20) + )
X
P30 +i+j—2p)+2) = 0 (3Gi+j-2p)p-0!
i 4 P53 =5~ H
l+i-¢) (L +i-20)+a) ;F . 1, i even, jodd,
(1+3-0), (5 ) )f“[—g—uf—-—éw—x ] /
Zp:( DT(3Q+i+j-20)T (30 +i+j-20+2)
X
((1+l+] 2p) + ) = 0p-0T(32+i+j-2p)
‘ Ll p—p—-L—y
(fa+i-20) (1+i-t+a) 3F2( T 1), i odd, j odd.
¢ ¢ ity l_i_Jip_ )
2 > 2 2 2
(5.2)

Proof. The linearization formula (5.1) can be split into the following linearization formulas:

i+j
4P
HY (x) HY) (x) = Z X
pP=

J
0F(%+i+j—p+/l)
P+ j-OIT(3+i+j—C+2)A+i-0(3+i-L+a)
; (G+j=-plp-0!

_if_p L_i_
3F2(_, 5t pPs5 J' M ‘1)Hu) (x),

£y (5.3)

—j+ls—i—j+l-2 2j+2i-2p
i+j
4r
HY(x)HY | (x) = X
a pz:(:)r(%+i+j—p+/l)
P+ j-OIT(3+i+j— b+ ) +i-0 (3 +i-CL+a), (5.4)
o .
; LG+ j=plp=10
—Jt— P,—l J—H %)
3F2( J+€———l—]+€ ﬁ'l)H2j+2i—2p+l('x)’
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@ ® S 47
Hy (0) Hyj ' (x) = E i3 .. X
pzol“(§+z+]—p+/l)

Po(=DiGi+j-OT (R +i+j—+A)A+i-O(2+i-C(+a
Z (2 _ ) (2 ){’X (5.5
= G+ j-plp-0!
—j,f—p,l—j—/l ()
3F2( —i—j+€,—%—2i—j+f—/l '1) By jsai-2pn ()
i+j+1
4p
H () HY) () = x
" a ,,Z:;‘r(§+i+j—p+ﬂ)
P+ j= b+ DIT(+i+j-+ )M +i=0(3+i-C+a), (5.6)
. G
; Op-0'G+j—-p+1)
—jl=p,—5—j-H )
3F2( -1 —i—j+£’,—%2—i—j+£’—/l |1) Hyjiaiapa)

The proofs of the four formulas are similar. We are going to prove (5.4). Starting from formula (2.5),
we can write

LA +i-r),(+i-r+a)
HYY(x) HY), (%) = 22 )
r=0

r 2i-2r ry()
A X H2j+l'

Based on the moment formula (4.4), the following formula can be obtained:

LA+ j-T (it j—r+ ) (A +i-r), (S +i-r+a)
HY(x) HY), (x) =4 > - I
r=0 :

Jizr 22p=2(i-r)

Z X (5.7)

S pNi+j—p-nT(3+i+j—p-r+2)

. 1 .
—LTP Ty T H )
352 ( —i—j+ r,—% —i—j+r-2 ‘ 1) Hy 520241 (s

which can be transformed—after performing some algebraic computations—into (5.4). O
In the next part, we will offer product formulas for the GHPs and some polynomials.

Theorem 5.2. Consider i and j to be two non-negative integers, and let ¢;(x) denote any of the
four kinds of Chebyshev polynomials that are generated by (2.19). The following linearization
formula holds:
HP () $i(0) = )~ ¥pibjsi-ap(), (5.8)
p=0

where the coefficients vy, ; are given by the following formula:
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. 1 i
—p. =i+ ps =5 M
) 3F1( 2 2
1.

- 1] , 1even,

1
2
Ypi = - X .
i~ p)'p! ~p.—i+p.—k -
3F1 (p P 2 K -1 s iodd.

Proof. We are going to show that the following two linearization formulas hold:

2i
_ 1 -p,2i+p,t—i-
HY(x) (%) =(2i)! Z BT 3F) ( u _ii i g l - 1)  jr2i-2p(X), (5.9)
=0 . . 2
H 1 p=2i+p—1,-L—i—y
®) () =i v —P - L
Hy: (%) ¢(x) =(2i + 1)! pzz(; = p DI 3F ( -] ’ 1) P jr2i-2p+1(%).

(5.10)

To prove relation (5.9), we make use of the power form representation of H,;(x) along with the moment
formula of ¢;(x) given in (2.20) to write:

(_1)r22r(1+i_r)r l'|'l‘—]"+lu 2i-2r 25— 2
(2 )r Z( l s r)¢j+2i—2r—2s(x)a (5.11)
s=0

HY (0 ¢i(x) = >

!
oy r!

that can be rewritten again in the form

2 2 (A (A +i= 0 (3 +i-C+p)

HY () ¢;(x) = Z Z i L6 j12i-ap ().
Based on the identity:
[ 2i-2¢ : . . .
Z"1<4> ariOGrizten), pt(pdisptoiou|_
0! plRi-p)t ! —i+1 ’

=0

the following linearization formula can be obtained:

2i
1 -p,2i+p,t—i-
(1) ) _ . pa l p’ 2 l /’t _ Lo
HY(x) ¢ ,(x) = (20)! ; PR ( e | 1) B j12i-2p(X).
Formula (5.10) can be similarly proved. O

Theorem 5.3. Consider i and j to be two non-negative integers, and let F ?’b(x) denote the generalized
Fibonacci polynomials that are generated by (2.17). The following linearization formula holds:

HP () F(x) = Y Gy Fil_, (%), (5.12)

Jj+i—2p
p=0
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where G, ; is given as

2a (=byit -4
i T Sy .
i-p!'p! —p,—i+p,—L—
N0 B 4 N P )
2
Proof. Similar to the proof of Theorem 5.2. O

Theorem 5.4. Consider i and j to be two non-negative integers, and let Lj.’d(x) denote the generalized
Lucas polynomials that are generated by (2.18). The following linearization formula holds:

HY (x) L5(x) = Z Gpi L5, (1), (5.13)
p=0

where G, ; is given as

2 ¢ (=d)Pi! 373
i T T o ,
i-p!'p! —p,—i+p,—L—
B | DTITRTITRI odd,
T2
Proof. Similar to the proof of Theorem 5.2. m|

6. Some other derivatives and connection formulas

This section is devoted to presenting the derivative formulas of the GHPs in terms of different
polynomials. Some inverse formulas are also found. The derivation of these formulas is based on the
analytic and inversion formulas of these polynomials.

Theorem 6.1. In terms of the ultraspherical polynomials U E“)(x), one has the following expression of
D'HY(x) for j 2 g > 1:

DqHy’)(x) = > Apig UL, (), 6.1)

with A, ;, given as

o 2NRG = 2p - g+ )G~ 2p — g+ 20)
piq = : '
p!(]—ZP—CI)!F(%_"a)F(I timpogr®

: 1 _J
-p—j+tp+qg-a,5—1- .
3F1[ AR I A A —1), j even, 6.2)
172
-p,—j+p+qg-a,—L- .
3F1( A 4 ? 2 H —1], ]Odd
~2
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Proof. Based on formula (2.5), we can write

L J 1y . _ . 1 .
DIHY (x) = 2% Z COe2jgm2n e i) s o)

!
o r!

which can be transformed into the following formula by applying the inversion formula (2.15)

|_ J (_1)r21—2j+q+2r(1 +2i—g=2 _ . 1 _ .
J—q=2r,1-r+)) rHpt
D'HY (x) =4/ E < € )

r

r!

JLJr

[SIEY

(2j=q-2r+0+a)2j-q=2NTQj-q =20 +t- (1 +)
NR2j—qg-20r+) T +2j—q-2r—t+a)l(l+2a) Usjoargoai(0)-
(6.4)

t=0

Some lengthy algebraic computations turn (6.4) into the following formula:

ra +a)F(%+j+M) L] (=2j+2p+q-a)2j-2p-q+20)

2j '+ 2a) Py 2j-2p-¢g)! 6.5)

3 (D21 4 = 1), (2) = 20)! U9 o,
— (p—n!ril’(l +2j—p—q—r+a/)1“(%+j_,,+'u) j—q-2p

In hypergeometric form, the last formula can be written as

DHY(x | 2R S Z (2j=2p—q+Q2j=2p—q+2a)
r(3 +a) P2j-2p - T +2j—p—q+a) 6.6)
-p, ,—2j+p+ a o
3F1( py=i- .U__]J p+q- ‘)Uﬁlzp(x)

Similarly, we can find an explicit expression for D‘IHé“jir ,(x) in terms of Uﬁ.“)(x). This expression is

21420 \Fr(2j + 1)) j_il (1+2j-2p—q+@l(1+2j-2p—q+2a)

DHy), (x) = : .
r(i+a) & P!2j-2p-q+DITQ+2j-p-q+a) 67)
-p,—5 ,—1=-2j+p+ o @
3F1( p—5—J- ﬂ___, Jtp+q- 1) v .

Merging the two expressions in (6.6) and (6.7) gives the expression in (6.1). O

Theorem 6.2. In terms of F ;"b(x), one has the following expression of D‘IH;”)(x) forj>q>1:

|2

D'HY(x) = Z Mg FS" (), (6.8)

p=0
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with M, ;, given as

C(=D)P2a b jI(L+ j=2p - q)

M, = .
i plG-p-gq+D!
—p—l—j+p+aq.s—4-pul o) .
3F1( L 2 2 ﬁ , jeven,
272
—p,-l-j+p+q-Li-ul, .
3F1( ; 2 4—2], jodd.
2
Proof. Similar to the proof of Theorem 6.1. m|

Theorem 6.3. In terms of L;’d(x), one has the following expression of DqH;”)(x) forj>q>1:

—_—

=4
2

D'HY(x) = poia L5, (%), (6.9)
p=0

with M, ;, given as

_ _(—1)1’2jc‘j+qd”nj_2p_q J!
pJja —

piG-p—9!
: 1 _J
—P-=JtTPYq ;-5 —H | .
3F1( | jz 2 ﬁ), j even,
272
—P=jt P+ a5 |, .
3F1 ( j 2 ﬁ], ]Odd
T2
Proof. Similar to the proof of Theorem 6.1. O

Remark 6.1. The inversion formulas to the derivative formulas stated in Theorems 6.1-6.3 can also be
derived using similar procedures. The following theorem exhibits the derivatives of the ultraspherical
polynomials in terms of the GHPs.

Theorem 6.4. In terms of H(/.a)(x), one has the following expression of DU (/.“)(x) forj>q>1:

P’}

2
(@)
ZyiqH:
=0

,_
—

DU (x) =

p

(x), (6.10)

J—9-2p

with Z,, ;, given as
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j12-1-i*2p+2g+ 20 (% + a) TG+ a)

Y A X
P14 I'(j+2a)p!
1 J 4
r($(1+j-g)+u) 2 ) .
F ‘ -1
(%(j—Zp—q))!F(%(1+j—q))l"(%(1+j—2p—q)+u) 21472 1— ] _a, % _ % + % ny ) jeven,q even,
J 4
(3 C+j=a)+1) —P.m3 %3 .
- F . -1]1, even, g odd,
F 2o (2o 22\ | =g, L4 4 - Jevemq
L(3@t-ar+) F P _% - % -1 i odd, g even
T($(+j-2p-g)r (3 C+j-)r(FC+j-2p-grtu) > 2| | _ ji-a, _%‘ +4-u ’ Jodd.q ’
P(3(+j-g)+n) F P % - % + % 1 i odd. a odd
r(S@+j-2p-) (34 j-)T G +j2p=gyru) 2" 2| | _ j_ g L_J 4 q_ » Joaa, g oad.
J=&y=5+t5;—H

Proof. We employ the analytic form of the ultraspherical polynomials (2.14) and the GHPs’ inversion
formulas (2.8) and (2.9) to obtain (6.10). O

7. Applications to some of the derived formulas

This section presents two applications based on the formulas developed in the previous sections.
The first concerns obtaining closed formulas for certain weighted definite integrals involving the GHPs.
The second concerns deriving the operational matrix of the GHPs’ derivatives.

7.1. Some new definite and weighted definite integrals

This section will display new weighted definite integrals based on moments, linearization, and
derivatives formulas.

Corollary 7.1. For all positive integers i,m, j with (j + m + i) even, the following identity holds:

f ) K" |xH e‘szyl)(x) Hﬁ@(x) dx=G R h;, o
where
Gpjm = 22 (| 2] (4 + [ﬁTm] + ) X

pH(|3G+m=2p|iT (3 +[52]+ 2-p))

3] i

JE(Ea—j—mﬂg

where | 7] and [7] represent, respectively, the floor and ceiling functions, and h; is given by:

(7.2)

h_4i (é)'r<%+'u)’ i=j,ieven, (73)
N (S)r(1+4+p), i=j iodd '
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Proof. The moment formula of H;”)(x) can be written as:

2]
Y HP ()= Y Gy, (), (7.4)

p=0

and G, ,, are given by (7.2). The moment formula (4.1) along with the orthogonality relation (2.4)
leads to (7.1). O

Corollary 7.2. For all non-negative integers i, j, s with j > i, one has the following integral formulas:

fl HY (x) T;(x) Ty(x) P

| m X = 2_Cs ni,s7 (7'5)
1
f V1 =2 H(x) U(x) Uy(x) dx = ’—2r Miss (7.6)
-1
! 1 + X ™
T H/"(x) Vi(x) Vi(x)dx = mn;s, (7.7)
-1
boT=x )
f Tox H(x) Wi(x) Wy(x)dx = n; 5, (7.8)
-1

where

and n; s is given by

1

G-y (o " (
! _

F(%(i+j—s+2))r(%(i—j+5+2)) 3F1( =3

77,"5 = l'

Proof. The four integrals (7.5)—(7.8) are direct consequences of the unified linearization formula (5.8)
along with the orthogonality relations of the four kinds of Chebyshev polynomials [54]. O

Corollary 7.3. Let j, k, q be positive integers, with j > q. The following integral formula holds:

! a-1 A g hy, i —k — q) even,
f (1) DY () U dx = {252 e V=) (7.9)
-1 / 0, otherwise,

where A, ;, are defined in (6.2), and hy is given by

k!l"(%) F(a+ %)
" QaxT(@) (@+k)

k
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Proof. Starting from formula (6.1), and multiplying both terms by (1 — xz)"‘% U,(;’)(x), we can write

] =
f 1 (1-2)" DHP () U (x)dx = )

1 p=0

1 1
Apig f (1-2)7 U2 U, (xdx.  (7.10)
-1

The application of the orthogonality relation of U,((“)(x) in (2.16) leads to formula (7.9). O

7.2. Introducing the operational matrix of integer derivatives of the GHPs

It is well-known that the operational matrices of derivatives of different polynomials are important
tools in numerical analysis. Operational matrices are fundamental keys for solving many DEs,
particularly non-linear ones. Many authors were interested in establishing these matrices for various
polynomials and utilizing them in various applications. For example, the operational matrices of
derivatives of some combinations of Legendre polynomials were established and utilized in [55] to
solve initial value problems.

In the following part, the operational matrix of integer derivatives of the GHPs will be established.
First, the following lemma is needed.

Lemma 7.1. The first-order derivative of the GHPs may be expressed explicitly in the form

2j Hj(li)l (), j even,

(/.1) — . i—m j—m+1 i
DH"(x) = o =3 () (—1)"3 (%)v " . (7.11)
2jH” (x)+pu H!Y(x), jodd.
j
~ r(1+2)

Proof. Formula (7.11) can be split into the following two formulas:

DHY)(x) =4 jHY) | (x), (7.12)
J

DHY), (x) =2 (2j + DHY)(x) + Z VA=) = L+ 1) HYY (). (7.13)
t=1

To prove (7.12), we set ¢ = 0 and A = u in (3.5) to get

NSRS 2242 | Fy(—t35 1)
DHglj)(x) = ]!F(— +]+,u)z : L0 — Hé”j)_%_l(x). (7.14)
2 S G-c-ner(+j-t+p)

If we note the simple identity

Fo—tiin =1 (=9
COTT 0, 6>,
then, it is easy to show the following identity:
DHY)(x) = 4 jHY) (). (7.15)
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Now, to prove formula (7.13), we set ¢ = 0 and A = p in (3.6) to get the following formula:

w o VEQjADIT(5+j+u) D1-2+2¢
DHZJ'“(X) B 1, Z . 1, X
r(%+) S OG-0T (3 +j-C+p)
1 . 1 .

Now, to find a closed form for the ;F,(1) that appears in the last formula, we set

1),

1 . 1 .
4 — ’_g’___ —u
IM{’,,u_SIZ(z 1] .12 ]

and utilize the Zeilberger’s algorithm [56] to show that M, has the following closed form:

1, =0,
M[’,u — (_1){+1 22(+2[u€!

, (> 1.
212+ 1) (u+j—C+3),

Inserting the reduced formula (7.17) into (7.16) yields the following formula:

J
DHY), (x) = 2(2j + DHY)(x) + Z 22— €+ 1) HY, ().

j—2¢
(=1

This completes the proof of Corollary 7.1.

(7.16)

(7.17)

O

Corollary 7.4. Based on formula (7.11), the first derivative of H;”) (x) can be written in matrix form as

dH™(x)

— w0

(7.18)

where H"(x) = [Wé“)(x),ﬂl(’l)(x),...,le)(x)]T, where S = (s,,;) is the operational matrix of

derivative whose order is (N + 1) X (N + 1), and its elements can be expressed in the form

2j9 ) lf‘m = J_ 1’
pal i (B
Smj = (m)’ , If j>m,jodd,and m even,
5 .
0, otherwise.

For example, for N =7, the matrix S is given by

O 0 0 0 0 0 0 O
2 0 0 0 0 0 0 0
0O 4 0 0 0 0 0 O
| 1w 0 6 0 0 0 00
O 0 0O 8 0 0 0 O
~1284 0 32¢ 0 10 0 0 O
0O 0 0 0 0 12 0 0
15364 0 -384y 0 48: 0 14 0

8x8
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8. Conclusions

This paper extends the theoretical framework beyond the classical Hermite polynomials by
establishing essential new formulas related to the GHPs. We first introduced some elementary formulas
for these polynomials, then derived a series of new formulas related to these polynomials. These
formulas include the derivative expressions of the GHPs, which are expressed in terms of various
polynomials. In addition, some product formulas for these polynomials, along with some celebrated
polynomials, were also developed. Some applications to the derived formulas were also deduced based
on applying some of the introduced formulas. Some new definite and weighted definite integrals were
developed. In addition, a new operational matrix of the GHPs was established. We expect it will be
useful in numerically treating various differential equations. As far as we know, most of the formulas
in this paper are new. In addition, we aim to employ these polynomials in numerical analysis soon.
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