Processing math: 54%
Research article

On fixed point results in F-metric spaces with applications

  • Received: 28 February 2023 Revised: 19 April 2023 Accepted: 27 April 2023 Published: 15 May 2023
  • MSC : 46S40, 54H25, 47H10

  • The aim of this research article is to define locally rational contractions concerning control functions of one variable in the background of F-metric spaces and establish common fixed point results. We also introduce (α-ψ)-contractions and generalized (α, ψ,δF)-contractions in F-metric spaces and obtain fixed points of multifunctions. A non trivial example is also furnished to manifest the originality of the fundamental result. As application, we investigate the solution of nonlinear neutral differential equation.

    Citation: Hanadi Zahed, Zhenhua Ma, Jamshaid Ahmad. On fixed point results in F-metric spaces with applications[J]. AIMS Mathematics, 2023, 8(7): 16887-16905. doi: 10.3934/math.2023863

    Related Papers:

    [1] Nehad Abduallah Alhajaji, Afrah Ahmad Noman Abdou, Jamshaid Ahmad . Application of fixed point theory to synaptic delay differential equations in neural networks. AIMS Mathematics, 2024, 9(11): 30989-31009. doi: 10.3934/math.20241495
    [2] Fatima M. Azmi . New fixed point results in double controlled metric type spaces with applications. AIMS Mathematics, 2023, 8(1): 1592-1609. doi: 10.3934/math.2023080
    [3] Amer Hassan Albargi, Jamshaid Ahmad . Fixed point results of fuzzy mappings with applications. AIMS Mathematics, 2023, 8(5): 11572-11588. doi: 10.3934/math.2023586
    [4] Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344
    [5] Mohammed H. Alharbi, Jamshaid Ahmad . Solution of fractional differential equation by fixed point results in orthogonal $ \mathcal{F} $-metric spaces. AIMS Mathematics, 2023, 8(11): 27347-27362. doi: 10.3934/math.20231399
    [6] Abdullah Eqal Al-Mazrooei, Jamshaid Ahmad . Fixed point approach to solve nonlinear fractional differential equations in orthogonal $ \mathcal{F} $-metric spaces. AIMS Mathematics, 2023, 8(3): 5080-5098. doi: 10.3934/math.2023255
    [7] Hanadi Zahed, Ahmed Al-Rawashdeh, Jamshaid Ahmad . Common fixed point results in $ \mathcal{F} $-metric spaces with application to nonlinear neutral differential equation. AIMS Mathematics, 2023, 8(2): 4786-4805. doi: 10.3934/math.2023237
    [8] Amer Hassan Albargi . Some new results in $ \mathcal{F} $-metric spaces with applications. AIMS Mathematics, 2023, 8(5): 10420-10434. doi: 10.3934/math.2023528
    [9] Menaha Dhanraj, Arul Joseph Gnanaprakasam, Gunaseelan Mani, Rajagopalan Ramaswamy, Khizar Hyatt Khan, Ola Ashour A. Abdelnaby, Stojan Radenović . Fixed point theorem on an orthogonal extended interpolative $ \psi\mathcal{F} $-contraction. AIMS Mathematics, 2023, 8(7): 16151-16164. doi: 10.3934/math.2023825
    [10] Gunaseelan Mani, Rajagopalan Ramaswamy, Arul Joseph Gnanaprakasam, Vuk Stojiljković, Zaid. M. Fadail, Stojan Radenović . Application of fixed point results in the setting of $ \mathcal{F} $-contraction and simulation function in the setting of bipolar metric space. AIMS Mathematics, 2023, 8(2): 3269-3285. doi: 10.3934/math.2023168
  • The aim of this research article is to define locally rational contractions concerning control functions of one variable in the background of F-metric spaces and establish common fixed point results. We also introduce (α-ψ)-contractions and generalized (α, ψ,δF)-contractions in F-metric spaces and obtain fixed points of multifunctions. A non trivial example is also furnished to manifest the originality of the fundamental result. As application, we investigate the solution of nonlinear neutral differential equation.



    The theory of fixed points is investigated to be the utmost fascinating and dynamic field of research in the progress of mathematical analysis. In this way, the conception of metric space [1] is one of the basic parts of mathematical sciences. Because of its outstanding and extraordinary improvement in various fields, it has been extended and generalized in different directions.

    Recently, many compulsive generalizations (or extensions) of the concept of metric space came into sight. The famous extensions of the concept of metric spaces have been done by Bakhtin [2] which was formally defined by Czerwik [3] in 1993. Czerwik [3] gave the idea of b-metric space which broadens the notion of metric space by improving the triangle equality metric axiom by putting a constant s1 multiplied to the right-hand side of the inequality, and is one of the enormously applied generalizations for metric spaces. Berinde et al. [4] gave a brief survey on the development of fixed point theory, specially on b-metric spaces and discussed some important related aspects of it. Brzdek [5] proved and discussed some fixed point results for nonlinear operators, acting on some classes of functions with values in a b-metric space. Paluszyński et al. [6] discussed quasi-metric space as an extension of classical metric space and its involvement in a part of harmonic analysis related to the theory of spaces of homogeneous type. Khamsi et al. [7] reintroduced the notion of b-metric space with the name metric-type and proved some theorems in this recently introduced space. In [8], Branciari gave the concept of rectangular metric space and generalized the classical metric space by replacing the triangle inequality with more general inequality that is called rectangular inequality. This rectangular inequality consists of a distance between four points. In 2018, Jleli et al. [9] introduced a fascinating generalization of classical metric space, b-metric space and rectangular metric space that is famous as an F-metric space. Subsequently, Al-Mazrooei et al. [10] used the notion of F-metric space and proved some results for rational inequality that includes some non-negative constants.

    On the other hand, Samet et al. [11] defined the notion of α -admissibility and (α-ψ)-contraction in the background of metric spaces and proved some results for these contractions. Subsequently, Asl et al. [12] generalized the above concept of α -admissibility and gave the notion of α-admissible mappings and established fixed point results for multivalued mappings in 2013. Recently, Hussain et al. [13] defined the notion of Ćirić type (α-ψ)-contraction in the framework of F-metric space and proved fixed point theorems.

    In this article, we establish common fixed point results for locally rational contractions concerning control functions of one variable in the background of F-metric spaces. We also establish fixed points of (α-ψ)-contractive and generalized (α, ψ,δF)-contractive multifunctions. An important example is also included to display the originality of our principal result.

    Czerwik [3] gave the concept of b-metric space in this manner.

    Definition 1. ([3]) Let Θ and s1 be a constant. A function κ:Θ×Θ[0,) is called a b-metric if the following assertions hold:

    (b1) κ(ρ,)0 and κ(ρ,)=0 if and only if ρ=,

    (b2) κ(ρ,)=κ(,ρ),

    (b3)κ(ρ,φ)s[κ(ρ,)+κ(,φ)],

    for all ρ,,φΘ.

    Then the pair (Θ,κ) is known as a b-metric space.

    Jleli et al. [9] gave the following notion of F-metric space in this way.

    Let F be the family of continuous functions f:(0,+)R satisfying

    (F1) f is non-decreasing,

    (F2) for each {ρȷ}R+, limȷρȷ=0 if and only if limȷf(ρȷ)=.

    Definition 2. ([9]) Let Θ and κ:Θ×Θ[0,+) be a function satisfying the following conditions

    (D1) (ρ,)Θ×Θ, κ(ρ,)=0 if and only if ρ=,

    (D2) κ(ρ,)=κ(,ρ), for all (ρ,)Θ×Θ,

    (D3) for every (ρ,)Θ×Θ and (ρi)Ni=1Θ with

    (ρ1,ρN)=(ρ,),

    there exists (f,h)F×[0,+) such that

    κ(ρ,)>0   implies f(κ(ρ,))f(N1i=1κ(ρi,ρi+1))+h,

    for all NN and N2.

    Then (Θ,κ) is called an F-metric space.

    Example 1. Let Θ=R and κ:Θ×Θ[0,+) be defined by

    κ(ρ,)={(ρ)2 if (ρ,)[0,2]×[0,2]|ρ| if (ρ,)[0,2]×[0,2]

    with f(ι)=ln(ι) and h=ln(2), then (Θ,κ) is F-metric space.

    Definition 3. ([9]) Let (Θ,κ) be F-metric space,

    (i) a sequence {ρȷ} in Θ is said to be F-convergent to ρΘ if {ρȷ} is convergent to ρ with regard to the F-metric κ;

    (ii) a sequence {ρȷ} is F-Cauchy, if

    limȷ,mκ(ρȷ,ρm)=0;

    (iii) if every F-Cauchy sequence in F-metric space (Θ,κ) is F-convergent to an element of Θ, then (Θ,κ) is said to be F-complete.

    Theorem 1. ([9]) Let (Θ,κ) be F-complete F -metric space and L:ΘΘ. Assume that there exists α[0,1) such that

    κ(L(ρ),L())ακ(ρ,)

    for all ρ,Θ, then L has a unique fixed point ρΘ. Moreover, for any ρ0Θ, the sequence {ρȷ}Θ defined by

    ρȷ+1=L(ρȷ), ȷN,

    is F-convergent to ρ.

    Subsequently, Hussain et al. [13] defined α-ψ-contraction in the background of F-metric spaces and generalized the main result of Jleli et al. [9]. Later on, Ahmad et al. [10] defined a rational contraction in F-metric space and proved the following result as generalization of main theorem of Jleli et al. [9].

    Theorem 2. ([10]) Let (Θ,κ) be an F-complete F-metric space and L:ΘΘ. Suppose that there exists α,β[0,1) such that

    κ(L(ρ),L())ακ(ρ,)+βκ(ρ,Lρ)κ(,L)1+κ(ρ,)

    for all ρ,Θ, then L has a unique fixed point.

    For more details in the direction of metric space, b-metric space and F-metric space, we refer the researchers [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28].

    We state our main result in this way.

    Theorem 3. Let (Θ,κ) be an F-complete F-metric space and L1,L2:ΘΘ. If there exist r>0 and mappings α,β:Θ[0,1) such that

    (a) α(L1ρ)α(ρ) and α(L2ρ)α(ρ)      β(L1ρ)β(ρ) and β(L2ρ)β(ρ),

    (b) α(ρ)+β(ρ)<1,

    (c)

    κ(L1ρ,L2)α(ρ)κ(ρ,)+β(ρ)κ(ρ,L1ρ)κ(,L2)1+κ(ρ,) (3.1)

    for all ρ0,ρ,¯B(ρ0,r) and

    κ(ρ0,L1ρ0)(1λ)r (3.2)

    where λ=α(ρ0)1β(ρ0)<1, then there exists a unique point ρ¯B(ρ0,r) such that L1ρ=L2ρ=ρ.

    Proof. For ρ0¯B(ρ0,r), define the sequence {ρȷ} by

    ρ2ȷ+1=L1ρ2ȷ and ρ2ȷ+2=L2ρ2ȷ+1

    for all ȷ=0,1,2,... By inequality (3.2), we have

    κ(ρ0,ρ1)=κ(ρ0,L1ρ0)(1λ)rr

    that is, ρ1¯B(ρ0,r). Assume that ρ2,ρ3,...ρȷ¯B(ρ0,r) for some jN. Now if, 2k+1ȷ, then by inequality (3.1), we have

    κ(ρ2k+1,ρ2k+2)=κ(L1ρ2k,L2ρ2k+1)α(ρ2k)κ(ρ2k,ρ2k+1)+β(ρ2k)κ(ρ2k,L1ρ2k)κ(ρ2k+1,L2ρ2k+1)1+κ(ρ2k,ρ2k+1)=α(ρ2k)κ(ρ2k,ρ2k+1)+β(ρ2k)κ(ρ2k,ρ2k+1)κ(ρ2k+1,ρ2k+2)1+κ(ρ2k,ρ2k+1)α(ρ2k)κ(ρ2k,ρ2k+1)+β(ρ2k)κ(ρ2k+1,ρ2k+2).

    By the sequence

    κ(ρ2k+1,ρ2k+2)α(L2ρ2ȷ1)κ(ρ2k,ρ2k+1)+β(L2ρ2ȷ1)κ(ρ2k+1,ρ2k+2)α(ρ2ȷ1)κ(ρ2k,ρ2k+1)+β(ρ2ȷ1)κ(ρ2k+1,ρ2k+2)=α(L1ρ2ȷ2)κ(ρ2k,ρ2k+1)+β(L1ρ2ȷ2)κ(ρ2k+1,ρ2k+2)α(ρ2ȷ2)κ(ρ2k,ρ2k+1)+β(ρ2ȷ2)κ(ρ2k+1,ρ2k+2)...α(ρ0)κ(ρ2k,ρ2k+1)+β(ρ0)κ(ρ2k+1,ρ2k+2)

    and hence

    κ(ρ2k+1,ρ2k+2)α(ρ0)1β(ρ0)κ(ρ2k,ρ2k+1)=λκ(ρ2k,ρ2k+1). (3.3)

    Similarly, if 2kȷ, we deduce

    κ(ρ2k,ρ2k+1)α(ρ0)1β(ρ0)κ(ρ2k1,ρ2k)=λκ(ρ2k1,ρ2k). (3.4)

    Thus by inequalities (3.3) and (3.4), we have

    κ(ρ2k+1,ρ2k+2)λκ(ρ2k,ρ2k+1)...λ2k+1κ(ρ0,ρ1) (3.5)
    κ(ρ2k,ρ2k+1)λκ(ρ2k1,ρ2k)...λ2kκ(ρ0,ρ1). (3.6)

    Thus by inequalities (3.5) and (3.6), we have

    κ(ρȷ,ρȷ+1)λȷκ(ρ0,ρ1)

    for some ȷN. Now

    f(κ(ρ0,ρȷ+1))f(κ(ρ0,ρȷ+1)+κ(ρ1,ρ2)+...+κ(ρj,ρȷ+1))f((1+...+λȷ1+λȷ)κ(ρ0,ρ1))f((1λȷ)1λκ(ρ0,ρ1))f((1λȷ)1λ(1λ)r)<f(r).

    By (F1), we get ρȷ+1¯B(ρ0,r). Thus ρȷ¯B(ρ0,r), for all ȷN. Then it follows that

    κ(ρȷ,ρȷ+1)λȷκ(ρ0,ρ1)

    for all ȷN. Let (f,h)F×[0,+) be such that (D3) is satisfied. Let ϵ>0 be fixed. By (F2), there exists δ>0 such that

    0<ι<δf(ι)<f(δ)h. (3.7)

    Hence, by (3.7), (F1) and (F2), we have

    f(m1i=ȷκ(ρi,ρi+1))f(m1i=ȷλȷ(κ(ρ0,ρ1)))f(ȷȷ(ϵ)λȷκ(ρ0,ρ1))<f(ϵ)h (3.8)

    for m>ȷȷ(ϵ). Using (D3) and (3.8), we obtain κ(ρȷ,ρm)>0,m>ȷȷ(ϵ) implies

    f(κ(ρȷ,ρm))f(m1i=ȷκ(ρi,ρi+1))+h<f(ϵ)

    which yields by (F1) that κ(ρȷ,ρm)<ϵ,m>ȷȷ(ϵ). It shows that {ρȷ} is F-Cauchy sequence in ¯B(ρ0,r). Now, ¯B(ρ0,r) is F-complete since ¯B(ρ0,r) is F-closed in Θ, so there exists ρ¯B(ρ0,r) such that the sequence {ρȷ} is F-convergent to ρ, i.e.,

    limȷκ(ρȷ,ρ)=0. (3.9)

    Now, we show that ρ is fixed point of L1. We contrary suppose that κ(ρ,L1ρ)>0. Then from (3.1), (F1) and (D3), we have

    f(κ(ρ,L1ρ))f(κ(ρ,L2ρ2ȷ+1)+κ(L2ρ2ȷ+1,L1ρ))+hf(κ(ρ,L2ρ2ȷ+1)+κ(L1ρ,L2ρ2ȷ+1))+hf(κ(ρ,ρ2ȷ+2)+(α(ρ)κ(ρ,ρ2ȷ+1)+β(ρ)κ(ρ,L1ρ)κ(ρ2ȷ+1,L2ρ2ȷ+1)1+κ(ρ,ρ2ȷ+1)))+hf(κ(ρ,ρ2ȷ+2)+(α(ρ)κ(ρ,ρ2ȷ+1)+β(ρ)κ(ρ,L1ρ)κ(ρ2ȷ+1,ρ2ȷ+2)1+κ(ρ,ρ2ȷ+1)))+h.

    Taking the limit as ȷ and using (F2) and (8), we have

    limȷf(κ(ρ,L1ρ))limȷf(κ(ρ,ρ2ȷ+2)+(α(ρ)κ(ρ,ρ2ȷ+1)+β(ρ)κ(ρ,L1ρ)κ(ρ2ȷ+1,ρ2ȷ+2)1+κ(ρ,ρ2ȷ+1)))+h=,

    which implies that κ(ρ,L1ρ)=0, a contradiction. Thus ρ=L1ρ. Now we prove that ρ is fixed point of L2. Then from (3.1), (F1) and (D3), we have

    f(κ(ρ,L2ρ))f(κ(ρ,L1ρ2ȷ)+κ(L1ρ2ȷ,L2ρ))+hf(κ(ρ,ρ2ȷ+1)+(α(ρ2ȷ)κ(ρ2ȷ,ρ)+β(ρ2ȷ)κ(ρ2ȷ,L1ρ2ȷ)κ(ρ,L2ρ)1+κ(ρ2ȷ,ρ)))+hf(κ(ρ,ρ2ȷ+1)+(α(ρ2ȷ)κ(ρ2ȷ,ρ)+β(ρ2ȷ)κ(ρ2ȷ,ρ2ȷ+1)κ(ρ,L2ρ)1+κ(ρ2ȷ,ρ)))+h.

    Taking the limit as ȷ and using (F2) and (8), we have

    limȷf(κ(ρ,L2ρ))limȷf(κ(ρ,ρ2ȷ+1)+(α(ρ2ȷ)κ(ρ2ȷ,ρ)+β(ρ2ȷ)κ(ρ2ȷ,ρ2ȷ+1)κ(ρ,L2ρ)1+κ(ρ2ȷ,ρ)))+h=,

    which implies that κ(ρ,L1ρ)=0, a contradiction. Thus ρ=L2ρ.Thus ρ is a common fixed point of L1 and L2. Now we prove that ρ is unique. We suppose that

    ρ/=L1ρ/=L2ρ/

    but ρρ/. Now from (3.1), we have

    κ(ρ,ρ/)=κ(L1ρ,L2ρ/)α(ρ)κ(ρ,ρ/)+β(ρ)κ(ρ,Lρ)κ(ρ/,L2ρ/)1+κ(ρ,ρ/)=α(ρ)κ(ρ,ρ/)+β(ρ)κ(ρ,ρ)κ(ρ/,ρ/)1+κ(ρ,ρ/).

    This implies that, we have

    κ(ρ,ρ/)α(ρ)κ(ρ,ρ/).

    As α(ρ)<1, we have

    κ(ρ,ρ/)=0.

    Thus ρ=ρ/.

    Example 2. Let Θ={Sȷ=2ȷ+1:ȷN} be endowed with the F-metric

    κ(ρ,)={0, if ρ=2|ρ|, if ρ

    for all ρ,Θ and f(ι)=lnι. Then (Θ,κ) is an F-complete F-metric space. Define the mapping L1,L2:ΘΘ by

    L1(Sȷ)={S1, if ȷ=1,S2, if ȷ=2,Sȷ2, if ȷ3

    and

    L2(Sȷ)={S1, if ȷ=1,2Sȷ1, if ȷ3.

    Suppose that mȷ, then

    κ(L1(Sȷ),L2(Sm))=2|Sȷ2Sm1|=2|2(ȷm)2|<212|2(ȷm)|α(Sȷ)κ(Sȷ,Sm)+β(Sȷ)κ(Sȷ,L1Sȷ)κ(Sm,L2Sm)1+κ(Sȷ,Sm).

    Thus all the assertions of Theorem 3 hold with α:Θ×Θ[0,1) defined by α(Sȷ)=21 and any β:Θ[0,1). Hence S1 is a unique common fixed point of L1 and L2.

    Corollary 1. Let (Θ,κ) be an F-complete F-metric space and L:ΘΘ. If there exist r>0 and mappings α,β:Θ[0,1) such that

    (a) α(Lρ)α(ρ) and β(Lρ)β(ρ),

    (b) α(ρ)+β(ρ)<1,

    (c)

    κ(Lρ,L)α(ρ)κ(ρ,)+β(ρ)κ(ρ,Lρ)κ(,L)1+κ(ρ,)

    for all ρ0,ρ,¯B(ρ0,r) and

    κ(ρ0,Lρ0)(1λ)r

    where λ=α(ρ0)1β(ρ0)<1, then there exists a unique point ρ¯B(ρ0,r) such that Lρ=ρ.

    Corollary 2. Let (Θ,κ) be an F-complete F-metric space and L1,L2:ΘΘ. If there exist r>0 and mappings α:Θ[0,1) such that

    (a) α(L1ρ)α(ρ) and α(L2ρ)α(ρ)

    (b) α(ρ)<1,

    (c)

    κ(L1ρ,L2)α(ρ)κ(ρ,)

    for all ρ0,ρ,¯B(ρ0,r) and

    κ(ρ0,L1ρ0)(1λ)r

    where λ=α(ρ0)<1, then there exists a unique point ρ¯B(ρ0,r) such that L1ρ=L2ρ=ρ.

    Corollary 3. Let (Θ,κ) be an F-complete F-metric space and L1,L2:ΘΘ. If there exist r>0 and mapping β:Θ[0,1) such that

    (a) β(L1ρ)β(ρ) and β(L2ρ)β(ρ),

    (b) α(ρ)+β(ρ)<1,

    (c)

    κ(L1ρ,L2)β(ρ)κ(ρ,L1ρ)κ(,L2)1+κ(ρ,)

    for all ρ0,ρ,¯B(ρ0,r) and

    κ(ρ0,L1ρ0)(1λ)r

    where λ=11β(ρ0)<1, then there exists a unique point ρ¯B(ρ0,r) such that L1ρ=L2ρ=ρ.

    Corollary 4. Let (Θ,κ) be an F-complete F-metric space and L1,L2:ΘΘ. If there exist r>0 and α,β[0,1) such that

    (a) α+β<1,

    (b)

    κ(L1ρ,L2)ακ(ρ,)+βκ(ρ,L1ρ)κ(,L2)1+κ(ρ,)

    for all ρ0,ρ,¯B(ρ0,r) and

    κ(ρ0,L1ρ0)(1λ)r

    where λ=α1β<1, then there exists a unique point ρ¯B(ρ0,r) such that L1ρ=L2ρ=ρ.

    Corollary 5. Let (Θ,κ) be an F-complete F-metric space and L1,L2:ΘΘ. If there exist r>0 and α[0,1) such that

    κ(L1ρ,L2)ακ(ρ,)

    for all ρ0,ρ,¯B(ρ0,r) and

    κ(ρ0,L1ρ0)(1λ)r

    where λ=α<1, then there exists a unique point ρ¯B(ρ0,r) such that L1ρ=L2ρ=ρ.

    Corollary 6. Let (Θ,κ) be an F-complete F-metric space and L1,L2:ΘΘ. If there exist r>0 and β[0,1) such that

    κ(L1ρ,L2)βκ(ρ,L1ρ)κ(,L2)1+κ(ρ,)

    for all ρ0,ρ,¯B(ρ0,r) and

    κ(ρ0,L1ρ0)(1λ)r

    where λ=11β<1, then there exists a unique point ρ¯B(ρ0,r) such that L1ρ=L2ρ=ρ.

    Remark 1. If we set L1=L2=L in the Corollary 5, the we get the main result of Samet et al. [9].

    Let Ψ represents the set of all nondecreasing functions ψ:[0,+)[0,+) such that ȷ=1ψȷ(ι)<+,ι>0, where ψȷ is the ȷ-th iterate of these nondecreasing functions ψ.

    Now we state a lemma which is useful in the sequel.

    Lemma 1. For ψΨ, these conditions hold:

    (i) (ψȷ(ι))ȷN converges to 0 as ȷ,ι(0,+),

    (ii) ψ(ι)<ι, ι>0,

    (iii) ψ(ι)=0 iff ι=0.

    Samet et al. [11] gave the theory of α-admissibility and proved the following result.

    Definition 4. ([11]) A mapping L:ΘΘ is called an α-admissible if there exists a mapping α:Θ×Θ[0,+) satisfying

    ρ,Θ,α(ρ,)1α(Lρ,L)1.

    Theorem 4. ([11]) Let (Θ,κ) be a complete metric space and L be α-admissible mapping. Assume that

    α(ρ,)κ(Lρ,L)ψ(κ(ρ,))

    for all ρ,Θ, where ψΨ, also

    (i) there exists ρ0Θ such that α(ρ0,Lρ0)1;

    (ii) either L is continuous or for any sequence {ρȷ} in Θ with α(ρȷ,ρȷ+1)1 for all ȷN and ρȷρ as ȷ+, we have α(ρȷ,ρ)1ȷN.

    Then L has a fixed point.

    In 2013, Asl et al. [12] gave the notion of α -admissible mappings in this way.

    Definition 5. ([12]) Let α:Θ×Θ[0,+) be a function and L:ΘCL(Θ) be multivalued mapping. Then L is said to be α -admissible mapping if

    ρ,Θ,α(ρ,)1α(Lρ,L)1

    where α(L(ρ),L())=inf{α(a,b):aL(ρ),bL()}.

    Lemma 2. Let (Θ,κ) be an F-metric space and let CL(Θ). Then, for each ρΘ with κ(ρ,)>0 and q>1, there exists an member such that

    κ(ρ,)qκ(ρ,).

    Let (Θ,κ) be an F-metric space. We represent by N(Θ) by set of non empty subsets of Θ, by CL(Θ) the set of all nonempty closed subsets of Θ and B(Θ) the set of all nonempty bounded subsets of Θ. Now for N(Θ) and ρΘ,κ(ρ,)=inf{κ(ρ,):}. Also for 1,2B(Θ),δF(1,2)=sup{κ(ρ,):ρ1,2}. Whenever 1={ρ}, we represent δF(1,2) by δF(ρ,2). Let (Θ,,κ) be an ordered F-metric space and 1,2Θ. We say that 1r2, if for every ρ1,2, we have ρ.

    Definition 6. Let (Θ,κ) be an F-metric space. A closed-valued multifunction L:ΘCL(Θ) is said to be (α-ψ)- contractive multifunction if there exists two functions α:Θ×Θ[0,+) and ψΨ such that

    α(L(ρ),L())κ(,L())ψ(κ(ρ,)) (4.1)

    for each \rho \in \Theta and \hbar \in \mathfrak{L}(\rho).

    Theorem 5. Let (\Theta, \kappa) be an \mathcal{F} -metric space and \mathfrak{L}:\Theta \rightarrow CL(\Theta) be an \alpha ^{\ast } -admissible and ( \alpha ^{\ast } - \psi) - contractive multifunction. Also suppose that the following assertions holds:

    (i) (\Theta, \kappa) is \mathcal{F} -complete;

    (ii) there exists \rho _{0} \; \in \; \Theta and \rho _{1} \; \in \; \mathfrak{L}(\rho _{0}) such that \alpha (\rho _{0}, \rho _{1})\geq 1.

    Then \rho is a fixed point of \mathfrak{L} iff g(\xi) = \kappa (\xi, \mathfrak{L}\xi) is lower semi-continuous at \rho .

    Proof. Let \rho _{0}\in \Theta be an arbitrary element. Since \mathfrak{L}(\rho _{0})\not = \emptyset, so there exists \rho _{1}\in \mathfrak{L}(\rho _{0}). If \rho _{0} = \rho _{1}, then \rho _{0} is a fixed point of \mathfrak{L } and we have nothing to prove. As \mathfrak{L}(\rho _{1})\not = \emptyset. So if \rho _{1}\in \mathfrak{L}(\rho _{1}), then \rho _{1} is a fixed point of \mathfrak{L} . Let \rho _{1}\not \in \mathfrak{L}(\rho _{1}). Since \mathfrak{L} is \alpha ^{\ast } -admissible, so \alpha ^{\ast }(\mathfrak{L}(\rho _{0}), \mathfrak{L}(\rho _{1}))\geq 1 . Thus by (4.1), we have

    \begin{eqnarray} 0 & < &\kappa (\rho _{1}, \mathfrak{L}(\rho _{1}))\leq \alpha ^{\ast }( \mathfrak{L}(\rho _{0}), \mathfrak{L}(\rho _{1}))\kappa (\rho _{1}, \mathfrak{L }(\rho _{1})) \\ &\leq &\psi (\kappa (\rho _{0}, \rho _{1})). \end{eqnarray} (4.2)

    For given q \; > 1 and by Lemma 2, \exists \rho _{2}\in \mathfrak{ L}(\rho _{1}) such that

    \begin{equation} 0 < \kappa (\rho _{1}, \rho _{2}) < q\kappa (\rho _{1}, \mathfrak{L}(\rho _{1})). \end{equation} (4.3)

    Thus by (4.2) and (4.3), we have

    \begin{equation} 0 < \kappa (\rho _{1}, \rho _{2})\leq q\psi (\kappa (\rho _{0}, \rho _{1})). \end{equation} (4.4)

    It is clear that \rho _{2}\not = \rho _{1}. As \kappa (\rho _{1}, \rho _{2}) < q\psi (\kappa (\rho _{0}, \rho _{1})). Since \psi is strictly increasing, so \psi (\kappa (\rho _{1}, \rho _{2})) < \psi (q\psi (\kappa (\rho _{0}, \rho _{1}))). Put q_{1} = \frac{\psi (q\psi (\kappa (\rho _{0}, \rho _{1})))}{\psi (\kappa (\rho _{1}, \rho _{2}))}. Then q_{1} > 1 . If \rho _{2}\in \mathfrak{L}(\rho _{2}), then \rho _{2} is fixed point of \mathfrak{L}. Assume that \rho _{2}\not \in \mathfrak{L}(\rho _{2}). As \alpha ^{\ast }(\rho _{1}, \rho _{2})\geq 1 and \mathfrak{L} is \alpha ^{\ast } -admissible, so \alpha ^{\ast }(\mathfrak{L}(\rho _{1}), \mathfrak{L }(\rho _{2}))\geq 1. Then from (4.1), we get

    \begin{eqnarray} 0 & < &\kappa (\rho _{2}, \mathfrak{L}(\rho _{2}))\leq \alpha ^{\ast }( \mathfrak{L}(\rho _{1}), \mathfrak{L}(\rho _{2}))\kappa (\rho _{2}, \mathfrak{L }(\rho _{2})) \\ &\leq &\psi (\kappa (\rho _{1}, \rho _{2})). \end{eqnarray} (4.5)

    For given q_{1} \; > 1 and by Lemma 2, \exists \rho _{3}\in \mathfrak{L}(\rho _{2}) such that

    \begin{equation} 0 < \kappa (\rho _{2}, \rho _{3}) < q\kappa (\rho _{2}, \mathfrak{L}(\rho _{2})). \end{equation} (4.6)

    Thus by (4.5) and (4.6), we have

    \begin{eqnarray*} 0 & < &\kappa (\rho _{2}, \rho _{3})\leq q_{1}\psi (\kappa (\rho _{1}, \rho _{2})) \\ & = &\psi (q\psi (\kappa (\rho _{0}, \rho _{1}))). \end{eqnarray*}

    It is clear that \rho _{3}\not = \rho _{2}. As \kappa (\rho _{2}, \rho _{3}) < \psi (q\psi (\kappa (\rho _{0}, \rho _{1}))). Since \psi is strictly increasing, so \psi (\kappa (\rho _{2}, \rho _{3})) < \psi ^{2}(q\psi (\kappa (\rho _{0}, \rho _{1}))). Put q_{2} = \frac{\psi ^{2}(q\psi (\kappa (\rho _{0}, \rho _{1})))}{\psi (\kappa (\rho _{2}, \rho _{3}))}. Then q_{2} > 1 . If \rho _{3}\in \mathfrak{L}(\rho _{3}), then \rho _{3} is fixed point of \mathfrak{L}. Assume that \rho _{3}\not \in \mathfrak{L}\rho _{3}. As \alpha ^{\ast }(\rho _{2}, \rho _{3})\geq 1 and \mathfrak{L} is \alpha ^{\ast } -admissible, so \alpha ^{\ast }(\mathfrak{L}(\rho _{2}), \mathfrak{L}(\rho _{3}))\geq 1. Then from (4.1), we get

    \begin{eqnarray} 0 & < &\kappa (\rho _{3}, \mathfrak{L}(\rho _{3}))\leq \alpha ^{\ast }( \mathfrak{L}(\rho _{2}), \mathfrak{L}(\rho _{3}))\kappa (\rho _{3}, \mathfrak{L }(\rho _{3})) \\ &\leq &\psi ^{2}(q\psi (\kappa (\rho _{0}, \rho _{1}))). \end{eqnarray} (4.7)

    For given q_{2} \; > 1 and by Lemma 2, \exists \rho _{4}\in \mathfrak{L}(\rho _{3}) such that

    \begin{equation} 0 < \kappa (\rho _{3}, \rho _{4}) < q_{2}\kappa (\rho _{3}, \mathfrak{L}(\rho _{3})). \end{equation} (4.8)

    Thus by (4.7) and (4.8), we have

    \begin{equation*} 0 < \kappa (\rho _{3}, \rho _{4})\leq \psi ^{2}(q\psi (\kappa (\rho _{0}, \rho _{1}))). \end{equation*}

    Pursuing the same, we obtain \{ \rho _{\jmath }\} in \Theta such that \rho _{\jmath }\in \mathfrak{L}\rho _{\jmath -1} and \rho _{\jmath }\not = \rho _{\jmath -1}, and

    \begin{equation} \kappa (\rho _{\jmath }, \rho _{\jmath +1})\leq \psi ^{\jmath -1}(q\psi (\kappa (\rho _{0}, \rho _{1}))) \end{equation} (4.9)

    for all \jmath , which yields that

    \begin{equation} \sum\limits_{i = \jmath }^{m-1}\kappa (\rho _{i}, \rho _{i+1})\leq \sum\limits_{i = \jmath }^{m-1}\psi ^{i-1}(q\psi (\kappa (\rho _{0}, \rho _{1}))). \end{equation} (4.10)

    Now for m > \jmath. Fix \epsilon > 0 and let \jmath (\epsilon)\in \; \mathbb{N} such that \sum_{\jmath \geq \jmath (\delta)}\psi ^{i-1}(q\psi (\kappa (\rho _{0}, \rho _{1}))) < \epsilon . Now suppose that (f, \mathfrak{h})\in \mathcal{F}\times \lbrack 0, +\infty) be such that (D _{3} ) is satisfied. Let \epsilon > 0 be fixed. By ( \mathcal{F}_{2} ), \exists \; \delta > 0 such that

    \begin{equation} 0 < \iota < \delta \Longrightarrow f(\iota ) < f(\delta )-\mathfrak{h}. \end{equation} (4.11)

    Hence, by (4.10), (4.11) and ( \mathcal{F}_{1} ), we have

    \begin{equation} f(\sum\limits_{i = \jmath }^{m-1}\kappa (\rho _{i}, \rho _{i+1}))\leq f(\sum\limits_{i = \jmath }^{m-1}\psi ^{i-1}(q\psi (\kappa (\rho _{0}, \rho _{1})))\leq f(\sum\limits_{\jmath \geq \jmath (\delta )}\psi ^{i-1}(q\psi (\kappa (\rho _{0}, \rho _{1}))) < f(\epsilon )-\mathfrak{h} \end{equation} (4.12)

    for m > \jmath \geq \jmath (\epsilon). Using ( D_{3} ) and (4.12), we obtain \kappa (\rho _{\jmath }, \rho _{m}) > 0, \; m > \jmath \geq \jmath (\epsilon) implies

    \begin{equation*} f(\kappa (\rho _{\jmath }, \rho _{m}))\leq f(\sum\limits_{i = \jmath }^{m-1}\kappa (\rho _{i}, \rho _{i+1}))+\mathfrak{h} < f(\epsilon ) \end{equation*}

    which implies by ( \mathcal{F}_{1} ) that \kappa (\rho _{\jmath }, \rho _{m}) < \epsilon, \; m > \jmath \geq \jmath (\epsilon). This proves that { \rho _{\jmath } } is \mathcal{F} -Cauchy. Since (\Theta, \kappa) is \mathcal{F} -complete, there exists \rho ^{\ast }\in \Theta such that \{ \rho _{\jmath }\} is \mathcal{F} -convergent to \rho ^{\ast } , i.e.,

    \begin{equation} \lim \limits_{\jmath \rightarrow \infty }\kappa (\rho _{\jmath }, \rho ^{\ast }) = 0. \end{equation} (4.13)

    Suppose g(\xi) = \kappa (\xi, \mathfrak{L}\xi) is lower semi-continuous at \rho , then

    \begin{equation*} f\left( \kappa (\rho ^{\ast }, \mathfrak{L}(\rho ^{\ast }))\right) \leq f\left( \lim \inf\limits_{\jmath }g(\rho _{\jmath })\right) = f\left( \lim \inf\limits_{\jmath }\kappa (\rho _{\jmath }, \mathfrak{L}(\rho _{\jmath }))\right) = -\infty , \end{equation*}

    which implies that \kappa (\rho ^{\ast }, \mathfrak{L}(\rho ^{\ast })) = 0. Therefore \rho ^{\ast }\in \mathfrak{L}(\rho ^{\ast }). By the closedness of \mathfrak{L} it yields that \rho ^{\ast }\in \mathfrak{L}(\rho ^{\ast }) . Conversely, assume that \rho ^{\ast } is a fixed point of \mathfrak{L } , then \kappa (\rho ^{\ast }, \mathfrak{L}(\rho ^{\ast })) = 0 , which implies that

    \begin{equation*} g(\rho ^{\ast }) = 0\leq \lim \inf\limits_{\jmath }g(\rho _{\jmath }). \end{equation*}

    Corollary 7. Let (\Theta, \preceq, \kappa) be an ordered \mathcal{F} -metric space, \psi \in \Psi be a strictly increasing mapping and \mathfrak{L}:\Theta \rightarrow CL(\Theta) be a mapping such that for each \rho \in \Theta and \hbar \in \mathfrak{L}(\rho) with \rho \preceq \hbar, we have

    \begin{equation*} \kappa (\hbar , \mathfrak{L}(\hbar ))\leq \psi (\kappa (\rho , \hbar )). \end{equation*}

    Also, assume that

    (i) (\Theta, \kappa) is \mathcal{F} -complete;

    (ii) there exists \rho _{0} \; \in \; \Theta and \rho _{1} \; \in \; \mathfrak{L}(\rho _{0}) such that \rho _{0}\preceq \rho _{1}; (iii) if \rho \preceq \hbar, then \mathfrak{L}\rho \prec _{r}\mathfrak{L} \hbar.

    Then \rho is a fixed point of \mathfrak{L} iff g(\xi) = \kappa (\xi, \mathfrak{L}\xi) is lower semi-continuous at \rho .

    Proof. Define \alpha :\Theta \times \Theta \rightarrow \lbrack 0, \infty) by

    \begin{equation*} \alpha (\rho , \hbar ) = \left \{ \begin{array}{c} 1, \text{ if }\rho \preceq \hbar , \\ 0, \text{ otherwise.} \end{array} \right. \end{equation*}

    By using condition (i) and the definition of \alpha , we have \alpha (\rho _{0}, \rho _{1}) = 1. Also, from condition (iii), we have \rho \preceq \hbar, then \mathfrak{L}\rho \prec _{r}\mathfrak{L}\hbar, by using the definitions of \alpha and \prec _{r}, wehave \alpha (\rho, \hbar) = 1 implies \alpha ^{\ast }(\mathfrak{L}\rho, \mathfrak{L}\hbar) = 1 . Furthermore, it is simple to check that \mathfrak{L} is a strictly generalized (\alpha ^{\ast }, \psi) -contractive mapping. Therefore, by Theorem 5, \rho is a fixed point of \mathfrak{L} if and only if g(\xi) = \kappa (\xi, \mathfrak{L}\xi) is lower semi-continuous at \rho .

    Definition 7. Let (\Theta, \kappa) be an \mathcal{F} -metric space and \mathfrak{L} :\Theta \rightarrow B(\Theta) be a mapping. We say that \mathfrak{L} :\Theta \rightarrow B(\Theta) is said to be generalized ( \alpha ^{\ast } , \psi, \delta _{\mathcal{F}}) -contractive mapping if there exists two functions \alpha :\Theta \times \Theta \rightarrow \lbrack 0, +\infty) and \psi \in \Psi such that

    \begin{equation} \alpha ^{\ast }(\mathfrak{L}(\rho ), \mathfrak{L}(\hbar ))\delta _{\mathcal{F} }(\hbar , \mathfrak{L}(\hbar ))\leq \psi (\kappa (\rho , \hbar )) \end{equation} (4.14)

    for each \rho \in \Theta and \hbar \in \mathfrak{L}(\rho).

    Theorem 6. Let (\Theta, \kappa) be an \mathcal{F} -metric space and \mathfrak{L}:\Theta \rightarrow B(\Theta) be an \alpha ^{\ast } -admissible and generalized ( \alpha ^{\ast } , \psi, \delta _{\mathcal{F}}) -contractive mapping. Also suppose that the following assertions holds:

    (i) (\Theta, \kappa) is \mathcal{F} -complete;

    (ii) there exists \rho _{0} \; \in \; \Theta and \rho _{1} \; \in \; \mathfrak{L}(\rho _{0}) such that \alpha (\rho _{0}, \rho _{1})\geq 1.

    Then there exists \rho \in \Theta such that \{ \rho \} = \mathfrak{L}(\rho) iff g(\xi) = \kappa (\xi, \mathfrak{L}(\xi)) is lower semi-continuous at \rho .

    Proof. By the hypothesis of the theorem, there exist \rho _{0}\in \Theta and \rho _{0}\in \mathfrak{L}(\rho _{0}) such that \alpha (\rho _{0}, \rho _{1})\geq 1. Assume that \rho _{0}\not = \rho _{1} , for otherwise, \rho _{0} is a fixed point. Let \rho _{1}\not \in \mathfrak{L}(\rho _{1}) . As \mathfrak{L} is \alpha ^{\ast } -admissible, we have \alpha ^{\ast }(\mathfrak{L}(\rho _{0}), \mathfrak{L}(\rho _{1})) \; \geq 1 . Then

    \begin{eqnarray} \delta _{\mathcal{F}}(\rho _{1}, \mathfrak{L}(\rho _{1})) &\leq &\alpha ^{\ast }(\mathfrak{L}(\rho _{0}), \mathfrak{L}(\rho _{1}))\delta _{\mathcal{F} }(\rho _{1}, \mathfrak{L}(\rho _{1})) \\ &\leq &\psi (\kappa (\rho _{0}, \rho _{1})). \end{eqnarray} (4.15)

    Since \mathfrak{L}(\rho _{1}) \; \not = \; \emptyset , there is \rho _{2}\in \mathfrak{L}(\rho _{1}) . Then

    \begin{equation} 0 < \kappa (\rho _{1}, \rho _{2})\leq \delta _{\mathcal{F}}(\rho _{1}, \mathfrak{ L}(\rho _{1})). \end{equation} (4.16)

    From (4.15) and (4.16), we have

    \begin{equation*} 0 < \kappa (\rho _{1}, \rho _{2})\leq \psi (\kappa (\rho _{0}, \rho _{1})). \end{equation*}

    Since \psi is nondecreasing, we have

    \begin{equation*} \psi (\kappa (\rho _{1}, \rho _{2}))\leq \psi ^{2}(\kappa (\rho _{0}, \rho _{1})). \end{equation*}

    As \rho _{2}\in \mathfrak{L}\rho _{1} , we have \alpha (\rho _{1}, \rho _{2})\geq 1 . Since \mathfrak{L}(\rho _{2}) \; \not = \; \emptyset , there is \rho _{3} \; \in \; \mathfrak{L}(\rho _{2}) . Assume that \rho _{2}\not = \rho _{3} , for otherwise, \rho _{2} is a fixed point of \mathfrak{L} . Then

    \begin{eqnarray} \delta _{\mathcal{F}}(\rho _{2}, \mathfrak{L}(\rho _{2})) &\leq &\alpha ^{\ast }(\mathfrak{L}(\rho _{1}), \mathfrak{L}(\rho _{2}))\delta _{\mathcal{F} }(\rho _{2}, \mathfrak{L}(\rho _{2})) \\ &\leq &\psi (\kappa (\rho _{1}, \rho _{2})). \end{eqnarray} (4.17)

    Since \mathfrak{L}(\rho _{2}) \; \not = \; \emptyset , there is \rho _{3}\in \mathfrak{L}(\rho _{2}) . Then

    \begin{equation} 0 < \kappa (\rho _{2}, \rho _{3})\leq \delta _{\mathcal{F}}(\rho _{2}, \mathfrak{ L}(\rho _{2})). \end{equation} (4.18)

    From (4.17) and (4.18), we have

    \begin{equation*} 0 < \kappa (\rho _{2}, \rho _{3})\leq \psi (\kappa (\rho _{1}, \rho _{2})). \end{equation*}

    By (4.16), we have

    \begin{eqnarray*} 0 & < &\kappa (\rho _{2}, \rho _{3})\leq \psi (\kappa (\rho _{1}, \rho _{2})) \\ &\leq &\psi ^{2}(\kappa (\rho _{0}, \rho _{1})). \end{eqnarray*}

    Since \psi is nondecreasing, we have

    \begin{equation*} \psi (\kappa (\rho _{2}, \rho _{3}))\leq \psi ^{3}(\kappa (\rho _{0}, \rho _{1})). \end{equation*}

    By continuing in this way, we get a sequence \{ \rho _{\jmath }\} in \Theta such that \rho _{\jmath +1}\in \mathfrak{L}(\rho _{\jmath }) and \rho _{\jmath }\not = \rho _{\jmath +1} for \jmath = 0, 1, 2, ... . Further we have

    \begin{equation} 0 < \kappa (\rho _{\jmath }, \rho _{\jmath +1})\leq \delta _{\mathcal{F}}(\rho _{\jmath }, \mathfrak{L}(\rho _{\jmath }))\leq \psi ^{\jmath }(\kappa (\rho _{0}, \rho _{1})). \end{equation} (4.19)

    This yields that

    \begin{equation} \sum\limits_{i = \jmath }^{m-1}\kappa (\rho _{i}, \rho _{i+1})\leq \sum\limits_{i = \jmath }^{m-1}\psi ^{i}(\kappa (\rho _{0}, \rho _{1})). \end{equation} (4.20)

    Now for m > \jmath. Fix \epsilon > 0 and let \jmath (\epsilon)\in \; \mathbb{N} such that \sum_{\jmath \geq \jmath (\delta)}\psi ^{i}(\kappa (\rho _{0}, \rho _{1})) < \epsilon . Now assume that (f, \mathfrak{h})\in \mathcal{ F}\times \lbrack 0, +\infty) be such that (D _{3} ) is satisfied. Let \epsilon > 0 be fixed. By ( \mathcal{F}_{2} ), \exists \; \delta > 0 such that

    \begin{equation} 0 < \iota < \delta \Longrightarrow f(\iota ) < f(\delta )-\mathfrak{h}. \end{equation} (4.21)

    Hence, by (4.20), (4.21) and ( \mathcal{F}_{1} ), we have

    \begin{equation} f\left( \sum\limits_{i = \jmath }^{m-1}\kappa (\rho _{i}, \rho _{i+1})\right) \leq f\left( \sum\limits_{i = \jmath }^{m-1}\psi ^{i}(\kappa (\rho _{0}, \rho _{1}))\right) \leq f\left( \sum\limits_{\jmath \geq \jmath (\delta )}\psi ^{i}(\kappa (\rho _{0}, \rho _{1}))\right) < f(\epsilon )-\mathfrak{h} \end{equation} (4.22)

    for m > \jmath \geq \jmath (\epsilon). Using (D _{3} ) and (4.22), we obtain \kappa (\rho _{\jmath }, \rho _{m}) > 0, \; m > \jmath \geq \jmath (\epsilon) implies

    \begin{equation*} f\left( \kappa (\rho _{\jmath }, \rho _{m})\right) \leq f\left( \sum\limits_{i = \jmath }^{m-1}\kappa (\rho _{i}, \rho _{i+1})\right) +\mathfrak{h} < f(\epsilon ) \end{equation*}

    which implies by ( \mathcal{F}_{1} ) that \kappa (\rho _{\jmath }, \rho _{m}) < \epsilon, \; m > \jmath \geq \jmath (\epsilon). This proves that { \rho _{\jmath } } is \mathcal{F} -Cauchy. Since (\Theta, \kappa) is \mathcal{F} -complete, there exists \rho ^{\ast }\in \Theta such that \{ \rho _{\jmath }\} is \mathcal{F} -convergent to \rho ^{\ast } . Letting \jmath \rightarrow \infty in (4.19), we have

    \begin{equation*} \lim \limits_{\jmath \rightarrow \infty }\delta _{\mathcal{F}}(\rho _{\jmath }, \mathfrak{L}(\rho _{\jmath })) = 0. \end{equation*}

    Suppose g(\xi) = \delta _{\mathcal{F}}(\xi, \mathfrak{L}\xi) is lower semi-continuous at \rho , then by ( \mathcal{F}_{1} ), we have

    \begin{equation*} f\left( \delta _{\mathcal{F}}(\rho ^{\ast }, \mathfrak{L}(\rho ^{\ast }))\right) \leq f\left( \lim \inf\limits_{\jmath }g(\rho _{\jmath })\right) = f\left( \lim \inf\limits_{\jmath }\delta _{\mathcal{F}}(\rho _{\jmath }, \mathfrak{L }(\rho _{\jmath }))\right) = -\infty . \end{equation*}

    Therefore \{ \rho ^{\ast }\} \in \mathfrak{L}(\rho ^{\ast }), because \delta _{\mathcal{F}}(\Re _{1}, \Re _{2}) = 0 implies \Re _{1} = \Re _{2} = \{a\} . Conversely, suppose that \{ \rho ^{\ast }\} \in \mathfrak{L}(\rho ^{\ast }) , then

    \begin{equation*} g(\rho ^{\ast }) = 0\leq \lim \inf\limits_{\jmath }g(\rho _{\jmath }). \end{equation*}

    Corollary 8. Let (\Theta, \preceq, \kappa) be an ordered \mathcal{F} -metric space, \psi \in \Psi be a strictly increasing mapping and \mathfrak{L}:\Theta \rightarrow B(\Theta) be a mapping such that for each \rho \in \Theta and \hbar \in \mathfrak{L}(\rho) with \rho \preceq \hbar, we have

    \begin{equation*} \delta _{\mathcal{F}}(\hbar , \mathfrak{L}(\hbar ))\leq \psi (\kappa (\rho , \hbar )). \end{equation*}

    Also, assume that

    (i) (\Theta, \kappa) is \mathcal{F} -complete,

    (ii) there exists \rho _{0} \; \in \; \Theta and \{ \rho _{0}\} \; \in \; \mathfrak{L}(\rho _{0}) i.e., there exists \rho _{1} \; \in \; \mathfrak{L} (\rho _{0}) such that \rho _{0}\preceq \rho _{1}, (iii) if \rho \preceq \hbar, then \mathfrak{L}\rho \prec _{r}\mathfrak{L} \hbar.

    Then there exists \rho \in \Theta such that \{ \rho \} = \mathfrak{L}(\rho) iff g(\xi) = \kappa (\xi, \mathfrak{L}(\xi)) is lower semi-continuous at \rho .

    Proof. Define \alpha :\Theta \times \Theta \rightarrow \lbrack 0, \infty) by

    \begin{equation*} \alpha (\rho , \hbar ) = \left \{ \begin{array}{c} 1, \text{ if }\rho \preceq \hbar , \\ 0, \text{ otherwise.} \end{array} \right. \end{equation*}

    By using condition (i) and the definition of \alpha , we have \alpha (\rho _{0}, \rho _{1}) = 1. Also, from condition (iii), we have \rho \preceq \hbar, then \mathfrak{L}\rho \prec _{r}\mathfrak{L}\hbar, by using the definitions of \alpha and \prec _{r}, wehave \alpha (\rho, \hbar) = 1 implies \alpha ^{\ast }(\mathfrak{L}\rho, \mathfrak{L}\hbar) = 1 . Furthermore, it is simple to check that \mathfrak{L} is a strictly generalized ( \alpha ^{\ast } , \psi, \delta _{\mathcal{F}}) -contractive mapping. Therefore, by Theorem 5, there exists \rho \in \Theta such that \{ \rho \} = \mathfrak{L}(\rho) if and only if g(\xi) = \delta _{ \mathcal{F}}(\xi, \mathfrak{L}\xi) is lower semi-continuous at \rho .

    A representative stability result based on fixed point theory arguments follows a number of basic arguments adapted to the special structure of the equation under consideration. It leads to large number of results in the literature for different classes of equations, see [29,30]. In the present section, we investigate the existence of solution of differential equation

    \begin{equation} \rho ^{/}(\iota ) = -a(\iota )\rho (\iota )+b(\iota )g(\rho (\iota -r(\iota )))+c(\iota )\rho ^{/}(\iota -r(\iota )). \end{equation} (5.1)

    We state a lemma of Djoudi et al.[31] which will be used in proving of our theorem.

    Lemma 3. ([31]) Assume that r^{/}(\iota)\not = 1 \; \forall \iota \in \mathbb{R} . Then \rho (\iota) is a solution of (5.1) if and only if

    \begin{eqnarray} \rho (\iota ) & = &\left( \rho (0)-\frac{c(0)}{1-r^{/}(0)}\rho (-r(0))\right) e^{-\int_{0}^{\iota }a(s)ds}+\frac{c(\iota )}{1-r^{/}(\iota )}\rho (\iota -r(\iota )) \\ &&-\int_{0}^{\iota }\left( h(\upsilon ))\rho (\upsilon -r(\upsilon )))-b(\upsilon )g\left( \rho (\upsilon -r(\upsilon ))\right) \right) e^{-\int_{\upsilon }^{\iota }a(s)ds}d\upsilon \end{eqnarray} (5.2)

    where

    \begin{equation} h(\upsilon ) = \frac{r^{//}(\upsilon )c(\upsilon )+\left( c^{/}(\upsilon )+c(\upsilon )a(\upsilon )\right) (1-r^{/}(\upsilon ))}{(1-r^{/}(\upsilon ))^{2}}. \end{equation} (5.3)

    Now suppose that \vartheta :(-\infty, 0]\rightarrow \mathbb{R} is a bounded and continuous function, then \rho (\iota) = \rho (\iota, 0, \vartheta) is a solution of (5.1) if \rho (\iota) = \vartheta (\iota) for \iota \leq 0 and satisfies (5.1) for \iota \geq 0. Assume that \mathfrak{C} is the collection of \rho : \mathbb{R} \rightarrow \mathbb{R} which are continuous. Define \aleph _{\vartheta } by

    \begin{equation*} \aleph _{\vartheta } = \left \{ \rho : \mathbb{R} \rightarrow \mathbb{R}\; \mathit{\text{such that}}\;\vartheta (\iota ) = \rho (\iota )\;\mathit{\text{if t}}\leq 0\mathit{\text{, }} \rho (\iota )\rightarrow 0\;\mathit{\text{as}}\;\iota \rightarrow \infty , \mathit{\text{}}\rho \in \mathfrak{C}\right \} . \end{equation*}

    Then \aleph _{\vartheta } is a Banach space endowed with \left \Vert \cdot \right \Vert .

    Lemma 4. ([13]) The space (\aleph _{\vartheta }, \parallel \cdot \parallel) with the \mathcal{F} -metric d defined by

    \begin{equation*} d(\mathfrak{\iota }, \mathfrak{\iota }^{\ast }) = ||\mathfrak{\iota -\iota } ^{\ast }|| = \sup\limits_{\rho \in I}\left \vert \mathfrak{\iota }(\rho )-\mathfrak{ \iota }^{\ast }(\rho )\right \vert \end{equation*}

    for all \iota, \iota ^{\ast }\in \aleph _{\vartheta }, is \mathcal{F} -metric space.

    Theorem 7. Let \mathfrak{L}:\aleph _{\vartheta }\rightarrow \aleph _{\vartheta } be a mapping defined by

    \begin{eqnarray} (\mathfrak{L}\rho )(\mathfrak{\iota }) & = &\left( \rho (0)-\frac{c(0)}{ 1-r^{/}(0)}\rho (-r(0))\right) e^{-\int_{0}^{\mathfrak{\iota }}a(s)ds}+\frac{ c(\mathfrak{\iota })}{1-r^{/}(\mathfrak{\iota })}\tau (\mathfrak{\iota }-r( \mathfrak{\iota })) \\ &&-\int_{0}^{\mathfrak{\iota }}(h(\upsilon )\rho (\upsilon -r(\upsilon ))-b(\upsilon )g\left( \rho (\upsilon -r(\upsilon ))\right) )e^{-\int_{\upsilon }^{\mathfrak{\iota }}a(s)ds}d\upsilon , \mathit{\text{}}\iota \geq 0 \end{eqnarray} (5.4)

    for all \rho \in \aleph _{\vartheta } . Assume that there exists \alpha :\aleph _{\vartheta }\times \aleph _{\vartheta }\mathfrak{\rightarrow }[0, 1) such that

    \begin{equation*} \alpha \left( \rho (\iota ), \hbar (\iota )\right) = \left \{ \left \vert \frac{ c(\mathfrak{\iota })}{1-r^{/}(\mathfrak{\iota })}\right \vert +\int_{0}^{ \mathfrak{\iota }}\left( \left \vert h(\upsilon )\right \vert +\left \vert b(\upsilon )\right \vert \right) e^{-\int_{\upsilon }^{\mathfrak{\iota } }a(s)ds}\right \} < 1. \end{equation*}

    Then \mathfrak{L} has a fixed point.

    Proof. It follows from (5.3) that \mathfrak{L}(\rho), \mathfrak{L}(\hbar)\in \; \aleph _{\vartheta } . Now from (5.4), we have

    \begin{eqnarray*} \left \vert (\mathfrak{L}\rho )(\mathfrak{\iota })-(\mathfrak{L}\hbar )( \mathfrak{\iota })\right \vert &\leq &\left \vert \frac{c(\mathfrak{\iota })}{ 1-r^{/}(\mathfrak{\iota })}\right \vert \left \Vert \rho -\hbar \right \Vert \\ &&+\int_{0}^{\mathfrak{\iota }}|h(\upsilon )(\rho (\upsilon -r(\upsilon )))-\hbar (\upsilon -r(\upsilon ))|e^{-\int_{\upsilon }^{\mathfrak{\iota } }a(s)ds} \\ + &&\int_{0}^{\mathfrak{\iota }}|(b(\upsilon ))g(\rho (\upsilon -r(\upsilon )))-g(\hbar (\upsilon -r(\upsilon )))|e^{-\int_{\upsilon }^{\mathfrak{\iota } }a(s)ds} \\ &\leq &\left \{ \left \vert \frac{c(\mathfrak{\iota })}{1-r^{/}(\mathfrak{ \iota })}\right \vert +\int_{0}^{\mathfrak{\iota }}\left( \left \vert h(\upsilon )\right \vert +\left \vert b(\upsilon )\right \vert \right) e^{-\int_{\upsilon }^{\mathfrak{\iota }}a(s)ds}\right \} \left \Vert \rho -\hbar \right \Vert \\ &\leq &\alpha \left( \rho \right) \left \Vert \rho -\hbar \right \Vert \\ &\leq &\alpha \left( \rho \right) \left \Vert \rho -\hbar \right \Vert +\beta \left( \rho \right) \frac{\left \Vert \rho -\mathfrak{L}\rho \right \Vert \left \Vert \hbar -\mathfrak{L}\hbar \right \Vert }{1+\left \Vert \rho -\hbar \right \Vert }. \end{eqnarray*}

    Hence,

    \begin{equation*} \kappa (\mathfrak{L}\rho , \mathfrak{L}\hbar )\leq \alpha \left( \rho \right) \kappa (\rho , \hbar )+\beta \left( \rho \right) \frac{\kappa (\rho , \mathfrak{L}\rho )\kappa (\hbar , \mathfrak{L}\hbar )}{1+\kappa (\rho , \hbar ) } \end{equation*}

    for any \beta :\Theta \mathfrak{\rightarrow }[0, 1). Thus all the assumptions of Corollary 1 are satisfied and \mathfrak{L} has a unique fixed point in \aleph _{\vartheta } which solves (5.1).

    This article is precised on the notion of \mathcal{F} -metric space to prove common fixed points of six mappings for generalized rational contractions involving control functions of one variable. A non-trivial example is also provided to show the validity of obtained results. We also established fixed points of ( \alpha ^{\ast } - \psi) -contractive and generalized ( \alpha ^{\ast } , \psi, \delta _{\mathcal{F}}) -contractive multifunctions. As application, we discussed the solution of nonlinear neutral differential equation.

    Common fixed points of fuzzy mappings in the background of \mathcal{F} -metric space can be interesting outline for the future work in this direction. Differential and integral inclusions can be investigated as applications of these results.

    Second author acknowledges with thanks Natural Science Foundation of Hebei Province (Grant No. A2019404009) and The Major Project of Education Department of Hebei Province (No. ZD2021039) to Innovation and improvement project of academic team of Hebei University of Architecture (Mathematics and Applied Mathematics) NO. TD202006 for financial support.

    The authors declare that they have no conflicts of interest.



    [1] M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palerm., 22 (1906), 1–72.
    [2] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.
    [3] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra, 1 (1993), 5–11.
    [4] V. Berinde, M. Păcurar, The early development in fixed point theory on b-metric spaces: A brief survey and some important related aspects, Carpathian J. Math., 38 (2022), 523–538. https://doi.org/10.37193/CJM.2022.03.01 doi: 10.37193/CJM.2022.03.01
    [5] J. Brzdek, Comments on the fixed point results in classes of function with values in a b-metric space, RACSAM Rev. R. Acad. A, 116 (2022), 1–17. https://doi.org/10.1007/s13398-021-01173-6 doi: 10.1007/s13398-021-01173-6
    [6] M. Paluszyński, K. Stempak, On quasi-metric and metric spaces, Proc. Am. Math. Soc., 137 (2009), 4307–4312. https://doi.org/10.1090/S0002-9939-09-10058-8 doi: 10.1090/S0002-9939-09-10058-8
    [7] M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 7 (2010), 3123–3129. https://doi.org/10.1016/j.na.2010.06.084
    [8] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debr., 57 (2000), 31–37. https://doi.org/10.1023/A: 1009869405384
    [9] M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 2018 (2018), 128.
    [10] A. E. Al-Mazrooei, J. Ahmad, Fixed point theorems for rational contractions in \mathcal{F}-metric spaces, J. Mat. Anal., 10 (2019), 79–86.
    [11] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for \alpha -\psi contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014
    [12] J. H. Asl, S. Rezapour, N. Shahzad, On fixed points of \alpha-\psi contractive multifunctions, Fixed Point Theory Appl., 2012 (2012), 212. https://doi.org/10.1186/1687-1812-2012-212 doi: 10.1186/1687-1812-2012-212
    [13] A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math., 172 (2018), 481–490. https://doi.org/10.1016/j.trmi.2018.08.006
    [14] L. A. Alnaser, D. Lateef, H. A. Fouad, J. Ahmad, Relation theoretic contraction results in \mathcal{F}-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 337–344. https://doi.org/10.22436/jnsa.012.05.06
    [15] M. Alansari, S. S. Mohammed, A. Azam, Fuzzy fixed point results in \mathcal{F}-metric spaces with applications, J. Funct. Space., 2020 (2020), 5142815. https://doi.org/10.1155/2020/5142815 doi: 10.1155/2020/5142815
    [16] L. A. Alnaser, J. Ahmad, D. Lateef, H. A. Fouad, New fixed point theorems with applications to non-linear neutral differential equations, Symmetry, 11 (2019), 602. https://doi.org/10.3390/sym11050602 doi: 10.3390/sym11050602
    [17] S. A. Al-Mezel, J. Ahmad, G. Marino, Fixed point theorems for generalized (\alpha \beta -\psi )-contractions in \mathcal{F}-metric spaces with applications, Mathematics, 8 (2020), 584. https://doi.org/10.3390/math8040584 doi: 10.3390/math8040584
    [18] O. Alqahtani, E. Karapınar, P. Shahi, Common fixed point results in function weighted metric spaces, J. Inequalities Appl., 164 (2019), 1–9. https://doi.org/10.1186/s13660-019-2123-6
    [19] D. Lateef, J. Ahmad, Dass and Gupta's fixed point theorem in \mathcal{F}-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 405–411. https://doi.org/10.22436/jnsa.012.06.06
    [20] A. Hussain, F. Jarad, E. Karapinar, A study of symmetric contractions with an application to generalized fractional differential equations, Adv. Differ. Equ., 2021 (2021), 300. https://doi.org/10.1186/s13662-021-03456-z
    [21] A. Hussain, Fractional convex type contraction with solution of fractional differential equation, AIMS Math., 5 (2020), 5364–5380. https://doi.org/10.3934/math.2020344 doi: 10.3934/math.2020344
    [22] A. Hussain, Solution of fractional differential equations utilizing symmetric contraction, J. Math., 2021 (2021), 1–17. https://doi.org/10.1155/2021/5510971
    [23] Z. Mitrovic, H. Aydi, N. Hussain, A. A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on \mathcal{F}-metric spaces and an application, Mathematics, 7 (2019), 2–11. https://doi.org/10.3390/math7050387 doi: 10.3390/math7050387
    [24] M. Mudhesh, N. Mlaiki, M. Arshad, A. Hussain, E. Ameer, R. George, et al., Novel results of \alpha _{\ast }-\psi -\Lambda -contraction multivalued mappings in \mathcal{F}-metric spaces with an application, J. Inequalities Appl., 113 (2022), 1–19. https://doi.org/10.1186/s13660-022-02842-9 doi: 10.1186/s13660-022-02842-9
    [25] A. Shoaib, Q. Mahmood, A. Shahzad, M. S. M. Noorani, S. Radenović, Fixed point results for rational contraction in function weighted dislocated quasi-metric spaces with an application, Adv. Differ. Equ., 310 (2021), 1–15. https://doi.org/10.1186/s13662-021-03458-x
    [26] A. S. Anjum, C. Aage, Common fixed point theorem in \mathcal{F}-metric spaces, J. Adv. Math. Stud., 15 (2022), 357–365.
    [27] A. Latif, R. F. Al Subaie, M. O. Alansari, Fixed points of generalized multi-valued contractive mappings in metric type spaces, J. Nonlinear Var. Anal., 6 (2022), 123–138.
    [28] J. Brzdek, E. Karapınar, A. Petruşel, A fixed point theorem and the Ulam stability in generalized dq-metric spaces, J. Math. Anal. Appl., 467 (2018), 501–520. https://doi.org/10.1016/j.jmaa.2018.07.022
    [29] W. Hu, Q. Zhu, Existence, uniqueness and stability of mild solutions to a stochastic nonlocal delayed reaction-diffusion equation, Neural Process. Lett., 53 (2021), 3375–3394. https://doi.org/10.1007/s11063-021-10559-x
    [30] X. Yang, Q. Zhu, Existence, uniqueness, and stability of stochastic neutral functional differential equations of Sobolev-type, J. Math. Phys., 56 (2015), 122701. https://doi.org/10.1063/1.4936647
    [31] A. Djoudi, R. Khemis, Fixed point techniques and stability for natural nonlinear differential equations with unbounded delays, Georgian Math. J., 13 (2006), 25–34. https://doi.org/10.1515/GMJ.2006.25
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1393) PDF downloads(73) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog