In the present work, simulation function is applied to establish fixed point results of $ \mathcal{F} $-contraction in the setting of Bi-polar metric space. Our results are extensions or generalizations of results proved in the literature. The derived results are substantiated with suitable examples and an application to find the solution to the integral equation.
Citation: Gunaseelan Mani, Rajagopalan Ramaswamy, Arul Joseph Gnanaprakasam, Vuk Stojiljković, Zaid. M. Fadail, Stojan Radenović. Application of fixed point results in the setting of $ \mathcal{F} $-contraction and simulation function in the setting of bipolar metric space[J]. AIMS Mathematics, 2023, 8(2): 3269-3285. doi: 10.3934/math.2023168
In the present work, simulation function is applied to establish fixed point results of $ \mathcal{F} $-contraction in the setting of Bi-polar metric space. Our results are extensions or generalizations of results proved in the literature. The derived results are substantiated with suitable examples and an application to find the solution to the integral equation.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181 |
[2] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[3] | P. Dhivya, S. Radenovi$\acute{c}$, M. Marudai, B. Bin-Mohsin, Coupled fixed point and best proximity point results involving simulation functions. Bol. Soc. Paran. Mat., 22 (2004), 1–15. |
[4] | H. H. Alsulami, E. Karapinar, F. Khojasteh, A. F. Rold$\acute{a}$n-Lopez-de-Hierro, A proposal to the study of contractions in quasi-metric spaces, Discrete Dyn. Nat. Soc., 2014 (2014), 269286. https://doi.org/10.1155/2014/269286 doi: 10.1155/2014/269286 |
[5] | F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194. https://doi.org/10.2298/FIL1506189K doi: 10.2298/FIL1506189K |
[6] | S. Radenović, F. Vetro, J. Vujaković, An alternative and easy approach to fixed point results via simulation functions, Demonstr. Math., 2017 (2017), 223–230. https://doi.org/10.1515/dema-2017-0022 doi: 10.1515/dema-2017-0022 |
[7] | S. Radenovi$\acute{c}$, S. Chandok, Simulation type functions and coincidence points, Filomat, 32 (2018), 141–147. https://doi.org/10.2298/FIL1801141R doi: 10.2298/FIL1801141R |
[8] | A. Chanda, L. K. Dey, S. Radenovi$\acute{c}$, Simulation functions: A survey of recent results, Racsm. Rev. R. Acad. A., 113 (2019), 2923–2957. https://doi.org/10.1007/S13398-018-0580-2 doi: 10.1007/S13398-018-0580-2 |
[9] | H. Aydi, M. A. Barakat, E. Karapinar, Z. D. Mitrovi$\acute{c}$, T. Rashid, On l-simulation mappings in partial metric spaces, AIMS Math., 4 (2019), 1034–1045. https://doi.org/10.3934/math.2019.4.1034 doi: 10.3934/math.2019.4.1034 |
[10] | F. Khojasteh, V. Rakocevi$\acute{c}$, Some new common fixed point results for generalized contractive multi-valued non-self-mappings, Appl. Math. Lett., 25 (2012), 287–293. https://doi.org/10.1016/j.aml.2011.07.021 doi: 10.1016/j.aml.2011.07.021 |
[11] | E. Karapinar, G. H. Joonaghany, F. Khojasteh, S. N. Radenovi$\acute{c}$, Study of $\Gamma$-simulation functions, $Z_{\Gamma}$ contractions and revisiting the $L$-contractions, Filomat, 35 (2021), 201–224. https://doi.org/10.2298/FIL2101201K doi: 10.2298/FIL2101201K |
[12] | K. Zoto, Z. D. Mitrovi$\acute{c}$, S. N. Radenovi$\acute{c}$, Unified setting of generalized contractions by extending simulation mappings in $b$-metric-like spaces, Acta Math. Univ. Comenianae, 9 (2022), 247–258. |
[13] | H. A. Hammad, P. Agarwal, J. L. G. Guirao, Applications to boundary value problems and homotopy theory via tripled fixed point techniques in partially metric spaces, Mathematics, 9 (2012), 247–258. https://doi.org/10.3390/math9162012 doi: 10.3390/math9162012 |
[14] | H. A. Hammad, M. Da la Sen, H. Aydi, Analytical solution for differential and nonlinear integral equations via $ F_{\varpi _{e}}$-Suzuki contractions in modified $\varpi _{e}-$metric-like spaces, J. Func. Spaces, 2021 (2021), 6128586, https://doi.org/10.1155/2021/6128586 doi: 10.1155/2021/6128586 |
[15] | S. G$\ddot{a}$hler, 2-metricsche R$\ddot{a}$ume und ihre topologische struktur, Math. Nachr., 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109 doi: 10.1002/mana.19630260109 |
[16] | A. Mutlu, U. G$\ddot{u}$rdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. https://doi.org/10.22436/jnsa.009.09.05 doi: 10.22436/jnsa.009.09.05 |
[17] | G. N. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. N. S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl., 2018 (2018), 1–13. https://doi.org/10.1186/s13663-018-0646-z doi: 10.1186/s13663-018-0646-z |
[18] | B. S. Rao, G. N. V. Kishore, G. K. Kumar, Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy, Int. J. Math. Trends Technol., 63 (2018). https://doi.org/10.14445/22315373/ijmtt-v63p504 doi: 10.14445/22315373/ijmtt-v63p504 |
[19] | G. N. V. Kishore, D. R. Prasad, B. S. Rao, V. S. Baghavan, Some applications via common coupled fixed point theorems in bipolar metric spaces, J. Critical Rev., 7 (2019), 601–607. https://doi.org/10.31838/jcr.07.02.110 doi: 10.31838/jcr.07.02.110 |
[20] | G. N. V. Kishore, K. P. R. Rao, A. Sombabu, R. V. N. S. Rao, Related results to hybrid pair of mappings and applications in bipolar metric spaces, J. Math., 2019 (2019), 8485412. https://doi.org/10.1155/2019/8485412 doi: 10.1155/2019/8485412 |
[21] | Y. U. Gaba, M. Aphane, V. Sihag, On two banach type fixed points in bipolar metric spaces, Abstr. Appl. Anal., 2021 (2021), 4846877. https://doi.org/10.1155/2021/4846877 doi: 10.1155/2021/4846877 |
[22] | G. N. V. Kishore, H. Işik, H. Aydi, B. S. Rao, D. R. Prasad, On new types of contraction mappings in bipolar metric spaces and applications, J. Linear Topol. Algebra, 9 (2020), 253–266. |
[23] | U. G$\ddot{u}$rdal, A. Mutlu, K. $\ddot{O}$zkan, Fixed point results for $\alpha-\phi$ ontractive mappings in bipolar metric spaces, J. Inequal. Spec. Funct., 11 (2020), 64–75. |
[24] | A. Mutlu, K. $\ddot{O}$zkan, U. G$\ddot{u}$rdal, Locally and weakly contractive principle in bipolar metric spaces, TWMS J. Appl. Eng. Math., 10 (2020), 379–388. |
[25] | G. N. V. Kishore, K. P. R. Rao, H. Işik, B. S Rao, A. Sombabu, Covarian mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 1–15. https://doi.org/10.22075/ijnaa.2021.4650 doi: 10.22075/ijnaa.2021.4650 |
[26] | Y. U. Gaba, M. Aphane, H. Aydi, ($\alpha$, BK)-contractions in bipolar metric spaces, J. Math., 2021 (2021), 5562651. https://doi.org/10.1155/2021/5562651 doi: 10.1155/2021/5562651 |