Research article

Analysis of a deterministic-stochastic oncolytic M1 model involving immune response via crossover behaviour: ergodic stationary distribution and extinction

  • Received: 13 September 2022 Revised: 29 October 2022 Accepted: 08 November 2022 Published: 16 November 2022
  • MSC : 46S40, 47H10, 54H25

  • Oncolytic virotherapy is a viable chemotherapeutic agent that identifies and kills tumor cells using replication-competent pathogens. Oncolytic alphavirus M1 is a naturally existing disease that has been shown to have rising specificity and potency in cancer progression. The objective of this research is to introduce and analyze an oncolytic M1 virotherapy framework with spatial variability and anti-tumor immune function via piecewise fractional differential operator techniques. To begin, we potentially demonstrate that the stochastic system's solution is non-negative and global by formulating innovative stochastic Lyapunov candidates. Then, we derive the existence-uniqueness of an ergodic stationary distribution of the stochastic framework and we establish a sufficient assumption $ \mathbb{R}_{0}^{p} < 1 $ extermination of tumor cells and oncolytic M1 virus. Using meticulous interpretation, this model allows us to analyze and anticipate the procedure from the start to the end of the tumor because it allows us to examine a variety of behaviours ranging from crossover to random mechanisms. Furthermore, the piecewise differential operators, which can be assembled with operators including classical, Caputo, Caputo-Fabrizio, Atangana-Baleanu, and stochastic derivative, have decided to open up innovative avenues for readers in various domains, allowing them to encapsulate distinct characteristics in multiple time intervals. Consequently, by applying these operators to serious challenges, scientists can accomplish better outcomes in documenting facts.

    Citation: Abdon Atangana, Saima Rashid. Analysis of a deterministic-stochastic oncolytic M1 model involving immune response via crossover behaviour: ergodic stationary distribution and extinction[J]. AIMS Mathematics, 2023, 8(2): 3236-3268. doi: 10.3934/math.2023167

    Related Papers:

  • Oncolytic virotherapy is a viable chemotherapeutic agent that identifies and kills tumor cells using replication-competent pathogens. Oncolytic alphavirus M1 is a naturally existing disease that has been shown to have rising specificity and potency in cancer progression. The objective of this research is to introduce and analyze an oncolytic M1 virotherapy framework with spatial variability and anti-tumor immune function via piecewise fractional differential operator techniques. To begin, we potentially demonstrate that the stochastic system's solution is non-negative and global by formulating innovative stochastic Lyapunov candidates. Then, we derive the existence-uniqueness of an ergodic stationary distribution of the stochastic framework and we establish a sufficient assumption $ \mathbb{R}_{0}^{p} < 1 $ extermination of tumor cells and oncolytic M1 virus. Using meticulous interpretation, this model allows us to analyze and anticipate the procedure from the start to the end of the tumor because it allows us to examine a variety of behaviours ranging from crossover to random mechanisms. Furthermore, the piecewise differential operators, which can be assembled with operators including classical, Caputo, Caputo-Fabrizio, Atangana-Baleanu, and stochastic derivative, have decided to open up innovative avenues for readers in various domains, allowing them to encapsulate distinct characteristics in multiple time intervals. Consequently, by applying these operators to serious challenges, scientists can accomplish better outcomes in documenting facts.



    加载中


    [1] Z. Z. Wang, Z. M. Guo, H. Q. Peng, A mathematical model verifying potent oncolytic efficacy of M1 virus, Math. Biosci., 276 (2016), 19–27. https://doi.org/10.1016/j.mbs.2016.03.001 doi: 10.1016/j.mbs.2016.03.001
    [2] G. Marelli, A. Howells, N. R. Lemoine, Y. H. Wang, Oncolytic viral therapy and the immune system: a double-edged sword against cancer, Front. Immunol., 9 (2018), 11616–11623. https://doi.org/10.3389/fimmu.2018.00866 doi: 10.3389/fimmu.2018.00866
    [3] J. Malinzi, P. Sibanda, H. Mambili-Mamboundou, Analysis of virotherapy in solid tumor invasion, Math. Biosci., 263 (2015), 102–110. https://doi.org/10.1016/j.mbs.2015.01.015 doi: 10.1016/j.mbs.2015.01.015
    [4] J. Malinzi, R. Ouifki, A. Eladdadi, D. F. M. Torres, K. A. J. White, Enhancement of chemotherapy using oncolytic virotherapy: mathematical and optimal control analysis, Math. Biosci. Eng., 15 (2018), 1435–1463. https://doi.org/10.48550/arXiv.1807.04329 doi: 10.48550/arXiv.1807.04329
    [5] E. Ratajczyk, U. Ledzewicz, H. Schättler, Optimal control for a mathematical model of glioma treatment with oncolytic therapy and TNF-$\alpha $ inhibitors, J. Optim. Theory Appl., 176 (2018), 456–477. https://doi.org/10.1007/s10957-018-1218-4 doi: 10.1007/s10957-018-1218-4
    [6] Y. J. Wang, J. P. Tian, J. J. Wei, Lytic cycle: a defining process in oncolytic virotherapy, Appl. Math. Model., 37 (2013), 5962–5978. https://doi.org/10.1016/j.apm.2012.12.004 doi: 10.1016/j.apm.2012.12.004
    [7] Y. M. Su, C. Jia, Y. Chen, Optimal control model of tumor treatment with oncolytic virus and MEK inhibitor, BioMed Res. Int., 2016 (2016), 1–8. https://doi.org/10.1155/2016/5621313 doi: 10.1155/2016/5621313
    [8] K. W. Okamoto, P. Amarasekare, I. T. D. Petty, Modeling oncolytic virotherapy: Is complete tumor-tropism too much of a good thing? J. Theor. Biol., 358 (2014), 166–178. https://doi.org/10.1016/j.jtbi.2014.04.030 doi: 10.1016/j.jtbi.2014.04.030
    [9] Y. S. Tao, Q. Guo, The competitive dynamics between tumor cells, a replication-competent virus and an immune response, J. Math. Biol., 51 (2005), 37–74. https://doi.org/10.1007/s00285-004-0310-6 doi: 10.1007/s00285-004-0310-6
    [10] C. A. Alvarez-Breckenridge, B. D. Choi, C. M. Suryadevara, E. A. Chiocca, Potentiating oncolytic viral therapy through an understanding of the initial immune responses to oncolytic viral infection, Curr. Opin. Virol., 13 (2015), 25–32. https://doi.org/10.1016/j.coviro.2015.03.015 doi: 10.1016/j.coviro.2015.03.015
    [11] A. M. Elaiw, N. H. AlShamrani, Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays, Math. Methods Appl. Sci., 41 (2018), 6645–6672. https://doi.org/10.1002/mma.5182 doi: 10.1002/mma.5182
    [12] A. M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal. Real World Appl., 11 (2010), 2253–2263. https://doi.org/10.1016/j.nonrwa.2009.07.001 doi: 10.1016/j.nonrwa.2009.07.001
    [13] A. M. Elaiw, N. A. Almuallem, Global properties of delayed-HIV dynamics models with differential drug efficacy in cocirculating target cells, Appl. Math. Comput., 265 (2015), 1067–1089. https://doi.org/10.1016/j.amc.2015.06.011 doi: 10.1016/j.amc.2015.06.011
    [14] S. X. Zhang, X. X. Xu, Dynamic analysis and optimal control for a model of hepatitis C with treatment, Commun. Nonlinear Sci. Numer. Simul., 46 (2017), 14–25. https://doi.org/10.1016/j.cnsns.2016.10.017 doi: 10.1016/j.cnsns.2016.10.017
    [15] J. P. Tian, The replicability of oncolytic virus: defining conditions in tumor virotherapy, Math. Biosci. Eng., 8 (2011), 841–860. https://doi.org/10.3934/mbe.2011.8.841 doi: 10.3934/mbe.2011.8.841
    [16] K. S. Kim, S. Kim, I. H. Jung, Hopf bifurcation analysis and optimal control of treatment in a delayed oncolytic virus dynamics, Math. Comput. Simul., 149 (2018), 1–16. https://doi.org/10.1016/j.matcom.2018.01.003 doi: 10.1016/j.matcom.2018.01.003
    [17] A. Atangana, Extension of rate of change concept: from local to nonlocal operators with applications, Results Phys., 19 (2020), 103515. https://doi.org/10.1016/j.rinp.2020.103515 doi: 10.1016/j.rinp.2020.103515
    [18] A. Atangana, J. F. Gómez-Aguilar, Fractional derivatives with no-index law property: application to chaos and statistics, Chaos Solitons Fract., 114 (2018), 516–535. https://doi.org/10.1016/j.chaos.2018.07.033 doi: 10.1016/j.chaos.2018.07.033
    [19] S. T. M. Thabet, M. S. Abdo, K. Shah, T. Abdeljawat, Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative, Results Phys., 19 (2020), 103507. https://doi.org/10.1016/j.rinp.2020.103507 doi: 10.1016/j.rinp.2020.103507
    [20] W. Gao, P. Veeresha, H. M. Baskonus, D. G. Prakasha, P. Kumar, A new study of unreported cases of 2019-nCOV epidemic outbreaks, Chaos Solitons Fract., 138 (2020), 109929. https://doi.org/10.1016/j.chaos.2020.109929 doi: 10.1016/j.chaos.2020.109929
    [21] E. Atangana, A. Atangana, Facemasks simple but powerful weapons to protect against COVID-19 spread: Can they have sides effects? Results Phys., 19 (2020), 103425. https://doi.org/10.1016/j.rinp.2020.103425 doi: 10.1016/j.rinp.2020.103425
    [22] M. A. Khan, A. Atangana, E. Alzahrani, Fatmawati, The dynamics of COVID-19 with quarantined and isolation, Adv. Differ. Equ., 2020 (2020), 1–22. https://doi.org/10.1186/s13662-020-02882-9 doi: 10.1186/s13662-020-02882-9
    [23] K. Shah, T. Abdeljawad, H. Alrabaiah, On coupled system of drug therapy via piecewise equations, Fractals, 30 (2022), 1–14. https://doi.org/10.1142/S0218348X2240206X doi: 10.1142/S0218348X2240206X
    [24] T. H. Zha, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176.
    [25] T. H. Zhao, M. I. Khan, Y. M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7310 doi: 10.1002/mma.7310
    [26] K. Shah, I. Ahmad, J. J. Nieto, G. U. Rahman, T. Abdeljawad, Qualitative investigation of nonlinear fractional coupled pantograph impulsive differential equations, Qual. Theory Dyn. Syst., 21 (2022), 131. https://doi.org/10.1007/s12346-022-00665-z doi: 10.1007/s12346-022-00665-z
    [27] M. H. Heydari, M. Razzaghi, A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative, Chaos Solitons Fract., 152 (2021), 111465. https://doi.org/10.1016/j.chaos.2021.111465 doi: 10.1016/j.chaos.2021.111465
    [28] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on $\psi$-Hilfer derivative fractional impulsive integro-differential equations, Math. Methods Appl. Sci., 45 (2022), 8045–8059. https://doi.org/10.1002/mma.7954 doi: 10.1002/mma.7954
    [29] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
    [30] M. H. Heydari, M. Razzaghi, D. Baleanu, Orthonormal piecewise Vieta-Lucas functions for the numerical solution of the one- and two-dimensional piecewise fractional Galilei invariant advection-diffusion equations, J. Adv. Res., 2022. https://doi.org/10.1016/j.jare.2022.10.002 doi: 10.1016/j.jare.2022.10.002
    [31] M. Caputo, Linear model of dissipation whose Q is almost frequency independent–Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [32] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl,, 1 (2015), 73–85.
    [33] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Thermal. Sci., 20 (2016), 763–769.
    [34] T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals, Chaos, 29 (2019), 023102. https://doi.org/10.1063/1.5085726 doi: 10.1063/1.5085726
    [35] F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006
    [36] T. Abdeljawad, Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comput. Appl. Math., 339 (2018), 218–230. https://doi.org/10.1016/j.cam.2017.10.021 doi: 10.1016/j.cam.2017.10.021
    [37] A. Atangana, S. İğret Araz, New concept in calculus: piecewise differential and integral operators, Chaos Solitons Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
    [38] A. Atangana, S. İğret Araz, Deterministic-stochastic modeling: a new direction in modeling real world problems with crossover effect, Math. Biosci. Eng., 19 (2022), 3526–3563.
    [39] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
    [40] S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. M. Chu, On multi-step methods for singular fractional $q$-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
    [41] İ. A. Arık, S. İğret Araz, Crossover behaviors via piecewise concept: a model of tumor growth and its response to radiotherapy, Res. Phys., 41 (2022), 105894. https://doi.org/10.1016/j.rinp.2022.105894 doi: 10.1016/j.rinp.2022.105894
    [42] S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical $\hslash$-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110. https://doi.org/10.1142/S0218348X22401107 doi: 10.1142/S0218348X22401107
    [43] Y. Lin, H. P. Zhang, J. K. Liang, K. Li, W. B. Zhu, L. W. Fu, et al., Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers, Proc. Nat. Acad. Sci., 111 (2014), E4504–E4512. https://doi.org/10.1073/pnas.1408759111 doi: 10.1073/pnas.1408759111
    [44] A. M. Elaiw, A. D. Hobiny, A. D. Al Agha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, Appl. Math. Comput., 367 (2020), 124758. https://doi.org/10.1016/j.amc.2019.124758 doi: 10.1016/j.amc.2019.124758
    [45] S. Rashid, A. Khalid, S. Sultana, F. Jard, K. M. Abulanaja, Y. S. Hamed, Novel numerical investigation of the fractional oncolytic effectiveness model with M1 virus via generalized fractional derivative with optimal criterion, Results Phys., 37 (2022), 105553. https://doi.org/10.1016/j.rinp.2022.105553 doi: 10.1016/j.rinp.2022.105553
    [46] S. W. Yao, S. Rashid, M. Inc, E. E. Elattar, On fuzzy numerical model dealing with the control of glucose in insulin therapies for diabetes via nonsingular kernel in the fuzzy sense, AIMS Math., 7 (2022), 17913–17941. https://doi.org/10.3934/math.2022987 doi: 10.3934/math.2022987
    [47] S. Rashid, B. Kanwal, A. G. Ahmad, E. Bonyah, S. K. Elagan, Novel numerical estimates of the pneumonia and meningitis epidemic model via the nonsingular kernel with optimal analysis, Complexity, 2022 (2022), 1–25. https://doi.org/10.1155/2022/4717663 doi: 10.1155/2022/4717663
    [48] F. Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
    [49] S. Rashid, E. I. Abouelmagd, S. Sultana, Y. M. Chu, New developments in weighted $n$-fold type inequalities via discrete generalized $\hat{\hbar}$-proportional fractional operators, Fractals, 30 (2022), 2240056. https://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
    [50] F. A. Rihan, H. J. Alsakaji, Analysis of a stochastic HBV infection model with delayed immune response, Math. Biosci. Eng., 18 (2021), 5194–5220. https://doi.org/10.3934/mbe.2021264 doi: 10.3934/mbe.2021264
    [51] S. A. Iqbal, M. G. Hafez, Y. M. Chu, C. Park, Dynamical analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative, J. Appl. Anal. Comput., 12 (2022), 770–789. https://doi.org/10.11948/20210324 doi: 10.11948/20210324
    [52] T. Khan, G. Zaman, Y. El-Khatib, Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model, Results Phys., 24 (2021), 104004. https://doi.org/10.1016/j.rinp.2021.104004 doi: 10.1016/j.rinp.2021.104004
    [53] M. A. Qurashi, S. Rashid, F. Jarad, A computational study of a stochastic fractal-fractional hepatitis B virus infection incorporating delayed immune reactions via the exponential decay, Math. Biosci. Eng., 19 (2022), 12950–12980. https://doi.org/10.3934/mbe.2022605 doi: 10.3934/mbe.2022605
    [54] S. Rashid, M. K. Iqbal, A. M. Alshehri, R. Ashraf, F. Jarad, A comprehensive analysis of the stochastic fractal-fractional tuberculosis model via Mittag-Leffler kernel and white noise, Res. Phys., 39 (2022), 105764. https://doi.org/10.1016/j.rinp.2022.105764 doi: 10.1016/j.rinp.2022.105764
    [55] B. Q. Zhou, X. H. Zhang, D. Q. Jiang, Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate, Chaos Solitons Fract., 137 (2020), 109865. https://doi.org/10.1016/j.chaos.2020.109865 doi: 10.1016/j.chaos.2020.109865
    [56] D. Q. Jiang, X. H. Wen, B. Q. Zhou, Stationary distribution and extinction of a stochastic two-stage model of social insects with egg cannibalism, Appl. Math. Lett., 132 (2022), 108100. https://doi.org/10.1016/j.aml.2022.108100 doi: 10.1016/j.aml.2022.108100
    [57] F. Y. Wei, F. X. Chen, Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations, Phys. A, 453 (2016), 99–107. https://doi.org/10.1016/j.physa.2016.01.059 doi: 10.1016/j.physa.2016.01.059
    [58] X. R. Mao, Stochastic differential equations and applications, Chichester, UK: Horwood, 1997.
    [59] R. Khasminskii, Stochastic stability of differential equations, Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-23280-0
    [60] R. S. Lipster, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217–228. https://doi.org/10.1080/17442508008833146 doi: 10.1080/17442508008833146
    [61] B. Berrhazi, M. E. Fatini, T. Caraballo, R. Pettersson, A stochastic SIRI epidemic model with Lévy noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2415–2431. https://doi.org/10.3934/dcdsb.2018057 doi: 10.3934/dcdsb.2018057
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1115) PDF downloads(93) Cited by(1)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog