Processing math: 89%
Research article

Some algebraic invariants of the edge ideals of perfect [h,d]-ary trees and some unicyclic graphs

  • Received: 05 October 2022 Revised: 13 February 2023 Accepted: 20 February 2023 Published: 07 March 2023
  • MSC : 05C38, 05E99, 13C15, 13F20

  • This article is mainly concerned with computations of some algebraic invariants of quotient rings of edge ideals of perfect [h,d]-ary trees and unicyclic graphs. We compute exact values of depth and Stanley depth and consequently projective dimension for above mentioned quotient rings, except for the one special case of unicyclic graph for which best possible bounds of Stanley depth are given.

    Citation: Tazeen Ayesha, Muhammad Ishaq. Some algebraic invariants of the edge ideals of perfect [h,d]-ary trees and some unicyclic graphs[J]. AIMS Mathematics, 2023, 8(5): 10947-10977. doi: 10.3934/math.2023555

    Related Papers:

    [1] Naeem Ud Din, Muhammad Ishaq, Zunaira Sajid . Values and bounds for depth and Stanley depth of some classes of edge ideals. AIMS Mathematics, 2021, 6(8): 8544-8566. doi: 10.3934/math.2021496
    [2] Bakhtawar Shaukat, Muhammad Ishaq, Ahtsham Ul Haq . Algebraic invariants of edge ideals of some circulant graphs. AIMS Mathematics, 2024, 9(1): 868-895. doi: 10.3934/math.2024044
    [3] Zahid Iqbal, Muhammad Ishaq . Depth and Stanley depth of edge ideals associated to some line graphs. AIMS Mathematics, 2019, 4(3): 686-698. doi: 10.3934/math.2019.3.686
    [4] Malik Muhammad Suleman Shahid, Muhammad Ishaq, Anuwat Jirawattanapanit, Khanyaluck Subkrajang . Depth and Stanley depth of the edge ideals of multi triangular snake and multi triangular ouroboros snake graphs. AIMS Mathematics, 2022, 7(9): 16449-16463. doi: 10.3934/math.2022900
    [5] Pakorn Palakawong na Ayutthaya, Bundit Pibaljommee . On n-ary ring congruences of n-ary semirings. AIMS Mathematics, 2022, 7(10): 18553-18564. doi: 10.3934/math.20221019
    [6] Dijian Wang, Dongdong Gao . Laplacian integral signed graphs with few cycles. AIMS Mathematics, 2023, 8(3): 7021-7031. doi: 10.3934/math.2023354
    [7] Shengjie He, Qiaozhi Geng, Rong-Xia Hao . The extremal unicyclic graphs with given diameter and minimum edge revised Szeged index. AIMS Mathematics, 2023, 8(11): 26301-26327. doi: 10.3934/math.20231342
    [8] Dalal Awadh Alrowaili, Uzma Ahmad, Saira Hameeed, Muhammad Javaid . Graphs with mixed metric dimension three and related algorithms. AIMS Mathematics, 2023, 8(7): 16708-16723. doi: 10.3934/math.2023854
    [9] Jinlei Dong, Fang Li, Longgang Sun . Derived equivalence, recollements under H-Galois extensions. AIMS Mathematics, 2023, 8(2): 3210-3225. doi: 10.3934/math.2023165
    [10] Bana Al Subaiei, Ahlam AlMulhim, Abolape Deborah Akwu . Vertex-edge perfect Roman domination number. AIMS Mathematics, 2023, 8(9): 21472-21483. doi: 10.3934/math.20231094
  • This article is mainly concerned with computations of some algebraic invariants of quotient rings of edge ideals of perfect [h,d]-ary trees and unicyclic graphs. We compute exact values of depth and Stanley depth and consequently projective dimension for above mentioned quotient rings, except for the one special case of unicyclic graph for which best possible bounds of Stanley depth are given.



    Let K be a field and S=K[x1,x2,,xd] be the polynomial ring over K with standard grading, that is, deg(xi)=1, for all i. Let M be a finitely generated graded S-module. Suppose that M admits the following minimal free resolution:

    0jZS(j)βp,j(M)jZS(j)βp1,j(M)jZS(j)β0,j(M)M0

    Let pdim(M) denotes the projective dimension of M. Then

    pdim(M)=max{i:βi,j(M)0 for some jZ}.

    Depth is an algebraic invariant of module M denoted by depth(M) and is defined as the common length of maximal regular sequences on M in the ideal m=(x1,x2,,xd), where m is the unique graded maximal ideal of S. If M is a finitely generated Zd graded module over the Zd graded ring S, then for a homogeneous element uM and a subset W{x1,x2,,xd}, uK[W] denotes the K-subspace of M generated by all homogeneous elements of the form uv, where v is a monomial in K[W]. Such a linear K-subspace uK[W] is called a Stanley space of dimension |W| if it is a free K[W]-module, where |W| denotes the number of indeterminates in W. A Stanley decomposition of M is a presentation of the K-vector space M as a finite direct sum of Stanley spaces

    D:M=si=1aiK[Wi].

    The Stanley depth of decomposition D is  sdepth(D)=min{|Wi|:i=1,2,,s}. The Stanley depth of M is

     sdepth(M)=max{ sdepth(D):D is a Stanley decomposition of M}.

    We refer the readers to [1] for a detailed introduction to Stanley depth. In 1982 Stanley conjectured in [2] that, if M is a finitely generated Zd-graded S-module, then  sdepth(M)depth(M). Ichim et al. gave an algorithm for computing Stanley depth in [3]. Let IJ be monomial ideal of S, then Ichim et al. [4] reduced the Stanley's conjecture for the module of the type J/I to the case when I and J are square free monomial ideals. This conjecture was proved for some special classes of modules; see for instance [5,6,7]. However, this conjecture was later disproved by Duval et al. in [8]. For some other interesting results on Stanley depth we refer the readers to [9,10,11,12].

    Let G=(V(G),E(G)) be a graph with vertex set V(G)={x1,x2,,xd} and edge set E(G). All graphs considered in this paper are simple and undirected. The degree of a vertex in a graph G is the number of edges incident to that vertex. A vertex of a graph is a pendant vertex if it is of degree one. An edge ideal of a graph G is a square free monomial ideal of polynomial ring S, that is, I(G)=(xixj:{xi,xj}E(G)). Several papers have been written on depth and Stanley depth of S/I(G); see for instance [13,14,15]. A graph is known as a path if it is a sequence of vertices such that each vertex in the sequence is adjacent to the vertex next to it. A tree is a graph in which there is a unique path between any two vertices of it. A tree in which one vertex is selected as a root vertex and all other vertices are directed away from it, is known as a rooted tree. A vertex of tree is known as parent, if at least one edge is directed from it to another vertex of a tree. A vertex to which edge is directed from the parent is known as a child. A tree is called an h-ary tree if each of its vertex has at most h children. An h-ary tree is called a perfect h-ary tree of height t if each of its parent vertex has h children, and all non parent vertices are at distance t from the root vertex. B. Shaukat et al. [16] computed formulas for the values of depth, Stanley depth and projective dimension of residue class rings of the edge ideals of perfect h-ary trees.

    In this article we define a tree which we call a {perfect [h,d]-ary tree} and a unicyclic graph closely related to the perfect [h,d]-ary tree. We compute exact values of depth, Stanley depth and projective dimension for quotient rings associated to the edge ideals of perfect [h,d]-ary trees and quotient rings associated to the edge ideals of considered unicyclic graphs, except for the one special case of unicyclic graphs in which we compute tight bounds for the Stanley depth. For the values of depth see Theorem 3.4, 3.7, 4.2 and 4.5, and for the results related to Stanley depth see Theorem 3.5, 3.8, 4.3 and 4.6.

    Here we discuss some of the terminologies of Graph Theory. A graph is called simple if it is loopless and contains no multiple edges. Let n1, if Pd represents a path graph on d vertices say x1,x2,,xd, then E(Pd)=d1i=1{{xi,xi+1}} (if d=1, then E(P1)= and I(P1)=(0)). A graph denoted by Cd with edge set E(Cd)=d1i=1{{xi,xi+1}}{x1,xd} is called a cycle on d vertices. The vertices x1 and x2 in a graph G are said to be fused or merged or identified if x1 and x2 are replaced by a single new vertex x, such that, every edge that was adjacent to either x1 or x2 or both, is adjacent to x. A path with end vertices xi and xj is known as xixj-path. A graph G is connected if it has xixj-path for each xi,xjV(G). A subgraph of a graph G is maximal connected if it is connected and is not contained in any other connected subgraph of G. A maximal connected subgraph of a graph G is called its component. For vertices xi and xj of a graph G, the length of a shortest path from xi to xj is called the distance between xi and xj denoted by dG(xi,xj). If no such path exists between xi and xj, then dG(xi,xj)=. As defined earlier a tree is a graph in which there is a unique path between any two vertices of it. A forest is a graph whose all components are trees. A caterpillar is a tree in which all the vertices are at distance at most one from the central path. A lobster graph is a tree in which all the vertices are at distance at most two from the central path.

    If h=1, then a perfect h-ary tree is a path, and we designate one of its pendant vertex as a root. If h2, then there is only one vertex of degree h in a perfect h-ary tree, and we designate that unique vertex as a root. Let h2, d1 and H1,H2,,Hd be perfect (h1)-ary trees such that HiHj for all i and j. Let x1,x2,,xd be the root vertices of H1,H2,,Hd, respectively, and y1,y2,,yd be the vertices of the path Pd. Let H be a forest with d+1 components H1,H2,,Hd and Pd. If we fuse the vertex xi with yi for all i{1,2,,d} in H, then we get a tree which we call a perfect [h,d]-ary tree. If t is the common height of all perfect (h1)-ary trees in H, then we denote such a perfect [h,d]-ary tree by Ph,t,d. See Figures 1 and 2 for an example of Ph,t,d. Now let d3. If we add an edge between the vertices x1 and xd of Ph,t,d, then we get a unicyclic graph and we denote this unicyclic graph by Ch,t,d.

    Figure 1.  A forest consisting of three perfect 3-ary trees and P3.
    Figure 2.  A perfect [4,3]-ary tree.

    See Figures 3 and 4 for examples and labeling of vertices of Ph,t,d and Ch,t,d.

    Figure 3.  P2,2,7 and C2,2,4, respectively.
    Figure 4.  G(I(P3,3,3):x(0)3) and G(I(P3,3,3),x(0)3), respectively.

    Remark 2.1. Note that

    (1) If h2, t1, and d=1, then Ph,t,1 is a perfect (h1)-ary tree.

    (2) If h2, t=1 and d1, then Ph,1,d belongs to the class of caterpillar trees.

    (3) If h2, t=2 and d1, then Ph,2,d is a special class of lobster trees.

    Now we state some results that will be used frequently throughout this article.

    Lemma 2.2. Let I=I(Pd)S=K[x1,x2,,xd] be an ideal of S, then

    (1) depth(S/I)=d3 ([17,Lemma 2.8]).

    (2)  sdepth(S/I)=d3 ([18,Lemma 4]).

    Proposition 2.3. [19,Proposition 1.3 and 1.8] Let I=I(Cd)S=K[x1,x2,,xd] be an ideal of S, then depth(S/I)=d13 and  sdepth(S/I)d13.

    Lemma 2.4. [20,Theorem 2.6] Let h2, t=1 and d=1. If S=K[V(Ph,1,1)], then depth(S/I(Ph,1,1))= sdepth(S/I(Ph,1,1))=1.

    Theorem 2.5. [21,Theorem 3.5 and 3.6] Let S=K[V(Ph,2,d)], h2, t=2 and d1, then depth(S/I(Ph,2,d))= sdepth(S/I(Ph,2,d))=(h1)d.

    Theorem 2.6. [21,Theorem 4.3 and 4.4] Let S=K[V(Ch,2,d)], h2, t=2 and d3, then depth(S/I(Ch,2,d))= sdepth(S/I(Ch,2,d))=(h1)d.

    Proposition 2.7. [16,Proposition 2.2] Let h3 and t1. If S=K[V(Ph,t,1)], then

    depth(S/I(Ph,t,1))=sdepth(S/I(Ph,t,1))={(h1)2((h1)t1)(h1)31+1, if t0(mod3);(h1)+21(h1)31, if t1(mod3);(h1)+2h+1(h1)31, if t2(mod3).

    Theorem 2.8. [22,Theorem 1.3.3] (Auslander–Buchsbaum formula) Let R be a commutative Noetherian local ring and M be a non-zero finitely generated R-module. If pdim(M)<, then

    pdim(M)+depth(M)=depth(R).

    Now we give some results that play important role while proving our main results of this article.

    Lemma 2.9. [23,Lemma 2.2] Let 0R1R2R30 be a short exact sequence of finitely generated Zd-graded Smodules, then  sdepth(R2)min{ sdepth(R1), sdepth(R3)}.

    Proposition 2.10. [24,Proposition 2.7] Let JS be a monomial ideal and w be a monomial such that wJ, then  sdepth(S/(J:w)) sdepth(S/J).

    Lemma 2.11. [22,Proposition 1.2.9] (Depth Lemma) Let 0R1R2R30 be a short exact sequence of Zd-graded S-modules, then

    (1) depth(R2)min{depth(R1),depth(R3)}.

    (2) depth(R1)min{depth(R2),depth(R3)+1}.

    (3) depth(R3)min{depth(R1)1,depth(R2)}.

    Remark 2.12. Let JS be a monomial ideal. Then for xJ, the short exact sequence

    0S/(J:x)xS/JS/(J,x)0

    implies that

    (1) depth(S/J)min{depth(S/(J:x)),depth(S/(J,x))},

    (2)  sdepth(S/J)min{ sdepth(S/(J:x)), sdepth(S/(J,x))}.

    Moreover, if depth(S/(J:x))depth(S/(J,x)), then by Depth Lemma depth(S/J)=depth(S/(J:x)).

    The following results will be used frequently in our proofs and we will not be referring it again and again.

    Lemma 2.13. [25,Lemma 3.6] Let IS=K[x1,x2,,xd] be a monomial ideal. If S=SKK[xd+1]S[xd+1], then depth(S/IS)=depth(S/I)+1 and  sdepth(S/IS)= sdepth(S/I)+1.

    Lemma 2.14. [26,Lemma 2.12 and 2.13] Let J1S1=K[x1,x2,,xt] and J2S2=K[xt+1,xt+2,,xd] be monomial ideals where 1t<d. If S=S1KS2, then

    (1) depthS(S1/J1KS2/J2)=depthS(S/(J1S+J2S))=depthS1(S1/J1)+depthS2(S2/J2).

    (2)  sdepthS(S1/J1KS2/J2) sdepthS1(S1/J1)+ sdepthS2(S2/J2).

    The following lemma is proved by B. Shaukat et al. [27]. Since the paper is not yet published, we present here a short proof for the sake of completeness.

    Lemma 2.15. [27] Let h2, t=1.

    (1) If d1 and S=K[V(Ph,1,d)], then

    depth(S/I(Ph,1,d))= sdepth(S/I(Ph,1,d))=d+(h2)d12.

    (2) If d3 and S=K[V(Ch,1,d)], then

    depth(S/I(Ch,1,d))= sdepth(S/I(Ch,1,d))=d+(h2)d2.

    Proof. (1) Result is proved by induction on d. If d=1, then the result follows from Lemma 2.4. Now let d2. We have

    S/(I(Ph,1,d):x(0)d)K[V(Ph,1,d2)]/I(Ph,1,d2)kK[x(1)(d2)(h1)+1,,x(1)(d1)(h1),x(0)d]

    (if d=2, K[V(Ph,1,d2)]/I(Ph,1,d2)K) and

    S/(I(Ph,1,d),x(0)d)K[V(Ph,1,d1)]/I(Ph,1,d1)kK[x(1)(d1)(h1)+1,,x(1)(d)(h1)].

    By Lemma 2.13 we have,

    depth(S/(I(Ph,1,d):x(0)d))=depth(K[V(Ph,1,d2)]/I(Ph,1,d2))+depth(K[x(1)(d2)(h1)+1,,x(1)(d1)(h1),x(0)d])

    and

    depth(S/(I(Ph,1,d),x(0)d))=depth(K[V(Ph,1,d1)]/I(Ph,1,d1))+depth(K[x(1)(d1)(h1)+1,,x(1)(d)(h1)]).

    Then again by Lemma 2.13 and induction, we have

    depth(S/(I(Ph,1,d):x(0)d))=(d2)+(h2)d32+h=d+(h2)d12

    and

    depth(S/(I(Ph,1,d),x(0)d))=(d1)+(h2)d22+h1=d+(h2)d2.

    Hence by Remark 2.12 we have depth(S/I(Ph,1,d))=d+(h2)d12. Now we discuss the proof for Stanley depth. For lower bound we use the same arguments as used in the proof of depth and we use Lemma 2.9 instead of Lemma 2.11. And we compute the desired upper bound by using Proposition 2.10.

    (2) The proof of this result is similar to the proof given above and it involves the use of values of depth and Stanley depth of S/I(Ph,1,d) which are computed above.

    In this section we compute depth, Stanley depth and projective dimension of the quotient ring K[V(Ph,t,d)]/I(Ph,t,d). We also prove that the depth and Stanley depth are equal.

    Remark 3.1. In this remark we introduce some terms that appear in some special cases of our proofs when we use induction.

    (1) If d=0, we define K[V(Ph,t,0)]/I(Ph,t,0):=K, hence

    depth(K[V(Ph,t,0)]/I(Ph,t,0))= sdepth(K[V(Ph,t,0)]/I(Ph,t,0))=0.

    (2) If d2, we define K[V(Ph,0,d)]/I(Ph,0,d):=K[V(Pd)]/I(Pd), hence by Lemma 2.2

    depth(K[V(Ph,0,d)]/I(Ph,0,d))= sdepth(K[V(Ph,0,d)]/I(Ph,0,d))=d3.

    Remark 3.2. While doing the computations of depth and Stanley depth for the quotient ring associated to edge ideals of both perfect [h,d]-ary trees and a unicyclic graph, it was observed that the patterns of computed values were different for h=2 and h3. So our results are based on two cases of h, that is for h=2 and h3. Further, these two cases are classified on the basis of variable t.

    Remark 3.3. Let IS be a squarefree monomial ideal whose minimal generating set comprises of monomials of degree at most two. We associate a graph GI to an ideal I with vertex set and edge set defined as V(GI)=supp(I) and E(GI)={{xa,xb}:xaxbG(I)}, respectively. We know that for xiI, (I:xi) and (I,xi) are also squarefree monomial ideals minimally generated by monomials of degree at most two. The graphs G(I:xi) and G(I,xi) are subgraphs of graph GI. See Figure 4 for examples of G(I(P3,3,3):x(0)3) and G(I(P3,3,3),x(0)3)that are subgraphs of GI(P3,3,3). By using the structures of these subgraphs we have the following isomorphisms:

    S/(I(P3,3,3):x(0)3)K[V(P3,3,1)]/I(P3,3,1)K2Ki=1K[V(P3,2,1)]/I(P3,2,1)K4Ki=1K[V(P3,1,1)]/I(P3,1,1)KK[x(0)3]

    and

    S/(I(P3,3,3),x(0)3)K[V(P3,3,2)]/I(P3,3,2)K2Ki=1K[V(P3,2,1)]/I(P3,2,1).

    Theorem 3.4. Let t1 and d1. If S=K[V(P2,t,d)], then

    depth(S/I(P2,t,d))={dt3+d3,t0(mod3);t3d,t1,2(mod3).

    Proof. We will prove this result by induction on d. For d=1 and d=2, K[V(P2,t,1)]/I(P2,t,1)K[V(Pt+1)]/I(Pt+1) and K[V(P2,t,2)]/I(P2,t,2)K[V(P2(t+1))]/I(P2(t+1)), respectively. Then by Lemma 2.2, depth(S/I(P2,t,1))=t+13 and depth(S/I(P2,t,2))=2(t+1)3, as desired. Now let d3. For t=1 the result follows from Lemma 2.15 and for t=2 the result follows from Theorem 2.5. Now let t3, we have the following cases:

    (1) Let t0(mod3). We have

    S/(I(P2,t,d):x(0)d1)K[V(P2,t,d3)]/I(P2,t,d3)K2Ki=1K[V(Pt)]/I(Pt)KK[V(Pt1)]/I(Pt1)KK[x(0)d1]

    and

    S/(I(P2,t,d),x(0)d1)K[V(P2,t,d2)]/I(P2,t,d2)KK[V(Pt+1)]/I(Pt+1)KK[V(Pt)]/I(Pt).

    Then by induction, Lemma 2.14 and Lemma 2.2 we have

    depth(S/(I(P2,t,d):x(0)d1))=depth(K[V(P2,t,d3)]/I(P2,t,d3))+1+2i=1depth(K[V(Pt)]/I(Pt))+depth(K[V(Pt1)]/I(Pt1))=t3(d3)+d33+2t3+t13+1

    and

    depth(S/(I(P2,t,d),x(0)d1))=depth(K[V(P2,t,d2)]/I(P2,t,d2))+depth(K[V(Pt+1)]/I(Pt+1))+depth(K[V(Pt)]/I(Pt))=t3(d2)+d23+t+13+t3.

    Since t0(mod3) implies t13=t3=(t3) and t+13=t3+1. Thus we have depth(S/(I(P2,t,d):x(0)d1))=dt3+d3 and depth(S/(I(P2,t,d),x(0)d1))=dt3+d23+1=dt3+d+13. Hence by Remark 2.12 depth(S/I(P2,t,d))=dt3+d3.

    (2) Let t1(mod3). We have

    S/(I(P2,t,d):x(0)d)K[V(P2,t,d2)]/I(P2,t,d2)KK[V(Pt)]/I(Pt)KK[V(Pt1)]/I(Pt1)KK[x(0)d]

    and

    S/(I(P2,t,d),x(0)d)K[V(P2,t,d1)]/I(P2,t,d1)KK[V(Pt)]/I(Pt).

    By induction, Lemma 2.14 and Lemma 2.2 we have

    depth(S/(I(P2,t,d):x(0)d))=depth(K[V(P2,t,d2)]/I(P2,t,d2))+1+depth(K[V(Pt)]/I(Pt))+depth(K[V(Pt1)]/I(Pt1))=t3(d2)+t3+t13+1,

    since t1(mod3) implies t13+1=t3 so depth(S/(I(P2,t,d):x(0)d))=t3d and

    depth(S/(I(P2,t,d),x(0)d))=depth(K[V(P2,t,d1)]/I(P2,t,d1))+depth(K[V(Pt)]/I(Pt))=t3(d1)+t3=t3d.

    Hence by Remark 2.12 depth(S/I(P2,t,d))=t3d.

    (3) Let t2(mod3). We have

    S/(I(P2,t,d):x(1)d)K[V(P2,t,d1)]/I(P2,t,d1)KK[V(Pt2)]/I(Pt2)KK[x(1)d].

    Now let J=(I(P2,t,d),x(1)d). We have the following isomorphisms:

    S/(J:x(0)d)K[V(P2,t,d2)]/I(P2,t,d2)KK[V(Pt)]/I(Pt)KK[V(Pt1)]/I(Pt1)KK[x(0)d]

    and

    S/(J,x(0)d)K[V(P2,t,d1)]/I(P2,t,d1)KK[V(Pt1)]/I(Pt1).

    Then by induction, Lemma 2.14 and Lemma 2.2 we have

    depth(S/(I(P2,t,d):x(1)d))=depth(K[V(P2,t,d1)]/I(P2,t,d1))+depth(K[V(Pt2)]/I(Pt2))+1=t3(d1)+t23+1=t3dt3+t+13,
    depth(S/(J:x(0)d))=depth(K[V(P2,t,d2)]/I(P2,t,d2))+depth(K[V(Pt)]/I(Pt))+depth(K[V(Pt1)]/I(Pt1))+1=t3(d2)+t3+t13+1

    and

    depth(S/(J,x(0)d))=depth(K[V(P2,t,d1)]/I(P2,t,d1))+depth(K[V(Pt1)]/I(Pt1))=t3(d1)+t13=t3dt3+t+1323.

    Since t2(mod3) implies t+13=t3, t13+1=t3+1 and t+1323=t3. So we have depth(S/(I(P2,t,d):x(1)d))=t3d, depth(S/(J:x(0)d))=t3d+1 and depth(S/(J,x(0)d))=t3d. Thus by Remark 2.12 depth(S/J)t3d and also J=(I(P2,t,d),x(1)d) implies depth(S/(I(P2,t,d),x(1)d))t3d. Hence again by Remark 2.12 depth(S/I(P2,t,d))=t3d.

    Theorem 3.5. Let t1 and d1. If S=K[V(P2,t,d)], then

     sdepth(S/I(P2,t,d))={dt3+d3,t0(mod3);t3d,t1,2(mod3).

    Proof. For d=1,2 result holds and proof is similar to as done in Theorem 3.4 by using Lemma 2.2. Now let d3. With similar arguments as in Theorem 3.4 and using Lemma 2.14 and Remark 2.12 we get the lower bounds

     sdepth(S/I(P2,t,d)){dt3+d3,t0(mod3);t3d,t1,2(mod3).

    Now we will compute upper bound by induction on t. If t=1, by Lemma 2.15 we have  sdepth(S/I(P2,t,d))=d, as desired. For t=2, by Theorem 2.5  sdepth(S/I(P2,t,d))=d satisfies the result. Now let t3 and u be a monomial such that u:=x(t1)1x(t1)2x(t1)d. We have the following isomorphism:

    S/(I(P2,t,d):u)K[V(P2,t3,d)]/I(P2,t3,d)KK[x(t1)1,x(t1)2,,x(t1)d], then we have

     sdepth(S/(I(P2,t,d):u))= sdepth(K[V(P2,t3,d)]/I(P2,t3,d))+d. (3.1)

    By Proposition 2.10 we have  sdepth(S/I(P2,t,d)) sdepth(S/(I(P2,t,d):u)).

    (1) Let t0(mod3). Since t30(mod3), then from Eq (3.1) and by induction on t we have

     sdepth(K[V(P2,t3,d)]/I(P2,t3,d))+d=t33d+d3+d=dt3+d3.

    (2) Let t1,2(mod3). Since t31,2(mod3), then from Eq (3.1) and by induction on t we have

     sdepth(K[V(P2,t3,d)]/I(P2,t3,d))+d=t33d+d=t3d.

    Corollary 3.6. Let h=2, t1 and d1. If S=K[V(P2,t,d)], then

    pdim(S/I(P2,t,d))={(2t3+1)dd3,t0(mod3);d(t+1)t3d,t1,2(mod3).

    Proof. We have |V(P2,t,d)|=d(t+1), therefore, depth(S)=d(t+1). Hence we get the required result by using Theorem 3.4 and Theorem 2.8.

    Theorem 3.7. Let h3, t1 and d1. If S=K[V(Ph,t,d)], then

    depth(S/I(Ph,t,d))={d((h1)t+2(h1)2)(h1)31+d3,t0(mod3);d((h1)t+21)(h1)31+(h2)d12,t1(mod3);d((h1)t+2(h1))(h1)31,t2(mod3).

    Proof. We will prove this result by induction on d. If d=1, the result follows from Proposition 2.7. Now let d2. For t=1 the result follows from Lemma 2.15 and for t=2 the result follows from Theorem 2.5. Now let t3, we consider the following three cases:

    (1) Let t0(mod3). We consider two subcases

    (i) d=2.

    (ii) d3.

    If d=2, then we have the following isomorphisms:

    S/(I(Ph,t,2):x(0)1)(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)KK[x(0)1]

    and

    S/(I(Ph,t,2),x(0)1)K[V(Ph,t,1)]/I(Ph,t,1)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1).

    Now if d3, then we have

    S/(I(Ph,t,d):x(0)d1)K[V(Ph,t,d3)]/I(Ph,t,d3)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)KK[x(0)d1]

    and

    S/(I(Ph,t,d),x(0)d1)K[V(Ph,t,d2)]/I(Ph,t,d2)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)KK[V(Ph,t,1)]/I(Ph,t,1).

    First we prove the result for subcase (ii) and the proof for subcase (i) is similar and will be discussed later. Since t12(mod3) and t21(mod3), then by Lemma 2.14, Proposition 2.7 and induction we have

    depth(S/(I(Ph,t,d):x(0)d1))=depth(K[V(Ph,t,d3)]/I(Ph,t,d3))+(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)2i=1depth(K[V(Ph,t2,1)]/I(Ph,t2,1))+depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+1=(h1)t+2(h1)2(h1)31(d3)+d33+2(h1)(h1)t1+2(h1)(h1)31+(h1)2(h1)t2+21(h1)31+1=d((h1)t+2(h1)2)(h1)31+d3

    and

    depth(S/(I(Ph,t,d),x(0)d1))=depth(K[V(Ph,t,d2)]/I(Ph,t,d2))+(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+depth(K[V(Ph,t,1)]/I(Ph,t,1))=(h1)t+2(h1)2(h1)31(d2)+d23+(h1)(h1)t1+2(h1)(h1)31+(h1)t+2(h1)2(h1)31+1=d((h1)t+2(h1)2)(h1)31+d+13.

    Hence by Remark 2.12 depth(S/(I(Ph,t,d))=d((h1)t+2(h1)2)(h1)31+d3.

    For subcase (i) the proof is similar, therefore we omit the detailed proof. We have the values depth(S/(I(Ph,t,2):x(0)1))=2((h1)t+2(h1)2)(h1)31+1 and depth(S/(I(Ph,t,2),x(0)1))=2((h1)t+2(h1)2)(h1)31+1. The required result follows by using Remark 2.12.

    (2) Let t1(mod3). We again consider two subcases that is d=2 and d3.

    (i) Let d=2. We have the following isomorphims:

    S/(I(Ph,t,2):x(0)2)(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)KK[x(0)2]

    and

    S/(I(Ph,t,2),x(0)2)K[V(Ph,t,1)]/I(Ph,t,1)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1).

    Since t10(mod3) and t22(mod3), then by Lemma 2.14 and Proposition 2.7

    depth(S/(I(Ph,t,2):x(0)2))=(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)2i=1depth(K[V(Ph,t2,1)]/I(Ph,t2,1))+1=(h1){(h1)t1+2(h1)2(h1)31+1}+(h1)2(h1)t2+2(h1)(h1)31+1=2((h2)t+21)(h1)31+(h2)

    and

    depth(S/(I(Ph,t,2),x(0)2))=depth(K[V(Ph,t,1)]/I(Ph,t,1))+(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))=(h1)t+21(h1)31+(h1){(h1)t1+2(h1)2(h1)31+1}=2((h1)t+21)(h1)31+(h2).

    Hence by Remark 2.12, depth(S/(I(Ph,t,2))=2((h1)t+21)(h1)31+(h2), as desired.

    (ii) Now let d3. We have the following isomorphisms:

    S/(I(Ph,t,d):x(0)d)K[V(Ph,t,d2)]/I(Ph,t,d2)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)KK[x(0)d],
    S/(I(Ph,t,d),x(0)d)K[V(Ph,t,d1)]/I(Ph,t,d1)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1).

    Then similarly as done for subcase (i) by using same arguments for each terms of above isomorphisms except for first terms on which induction on d is applied and we have the values depth(S/(I(Ph,t,d):x(0)d))=d((h1)t+21)(h1)31+(h2)d12 and depth(S/(I(Ph,t,d),x(0)d))=d((h1)t+21)(h1)31+(h2)d2. Hence by Remark 2.12 we have depth(S/I(Ph,t,d))=d((h1)t+21)(h1)3+(h2)d12.

    (3) Let t2(mod3).

    (i) Let d=2. We have the following isomorphisms:

    S/(I(Ph,t,2):x(1)2(h1))K[V(Ph,t,1)]/I(Ph,t,1)K(h2)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t3,1)]/I(Ph,t3,1)K[x(1)2(h1)],

    Now let J=(I(Ph,t,2),x(1)2(h1)). We have

    S/(J:x(0)2)(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)K[x(0)2],
    S/(J,x(0)2)K[V(Ph,t,1)]/I(Ph,t,1)K(h2)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1).

    Since t11(mod3) and t32(mod3), then by Lemma 2.14 and Proposition 2.7 we have

    depth(S/(I(Ph,t,2):x(1)2(h1)))=depth(K[V(Ph,t,1)]/I(Ph,t,1))+(h2)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)2i=1depth(K[V(Ph,t3,1)]/I(Ph,t3,1))+1=(h1)t+2(h1)(h1)31+(h2)(h1)t1+21(h1)31+(h1)2(h1)t3+2(h1)(h1)31+1=2((h1)t+2(h1))(h1)31,
    depth(S/(J:x(0)2))=(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)2i=1depth(K[V(Ph,t2,1)]/I(Ph,t2,1))+1=(h1)(h1)t1+21(h1)31+(h1)2{(h1)t2+2(h1)2(h1)31+1}+1=2((h1)t+2(h1))(h1)31+(h1)(h2)+1

    and

    depth(S/(J,x(0)2))=depth(K[V(Ph,t,1)]/I(Ph,t,1))+(h2)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)i=1depth(K[V(Ph,t2,1)]/I(Ph,t2,1))=(h1)t+2(h1)(h1)31+(h2)(h1)t1+21(h1)31+(h1){(h1)t2+2(h1)2(h1)31+1}=2((h1)t+2(h1))(h1)31+(h2).

    Thus by Remark 2.12 we have depth(S/J)2((h1)t+2(h1))(h1)31)+(h2) and also J=(I(Ph,t,2),x(1)2(h1)) implies depth(S/(I(Ph,t,2),x(1)2(h1)))2((h1)t+2(h1))(h1)31+(h2). Hence again by Remark 2.12 we have, depth(S/I(Ph,t,2))=2((h1)t+2(h1))(h1)31.

    (ii) Now let d3.

    Let J=(I(Ph,t,d),x(1)(h1)d). We have the following isomorphisms:

    S/(I(Ph,t,d):x(1)(h1)d)K[V(Ph,t,d1)]/I(Ph,t,d1)K(h2)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t3,1)]/I(Ph,t3,1)KK[x(1)(h1)d],
    S/(J:x(0)d)K[V(Ph,t,d2)]/I(Ph,t,d2)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1))KK[x(0)d]

    and

    S/(J,x(0)d)K[V(Ph,t,d1)]/I(Ph,t,d1)K(h2)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1).

    Then similarly as done for d=2 by using the same arguments for each terms of above isomorphisms except for the first terms on which induction on d is applied we get the values depth(S/(I(Ph,t,d):x(1)(h1)d))=d((h1)t+2(h1))(h1)31, depth(S/(J:x(0)d))=d((h1)t+2(h1))(h1)31+(h1)(h2)+1 and depth(S/(J,x(0)d))=d((h1)t+2(h1))(h1)31+(h2). And so we have depth(S/I(Ph,t,d))=d((h1)t+2(h1))(h1)31.

    Theorem 3.8. Let d1, t1 and h3. If S=K[V(Ph,t,d)], then

     sdepth(S/I(Ph,t,d))={d((h1)t+2(h1)2)(h1)31+d3,t0(mod3);d((h1)t+21)(h1)31+(h2)d12,t1(mod3);d((h1)t+2(h1))(h1)31,t2(mod3).

    Proof. If d=1 the result follows from Proposition 2.7. Now let d2. With similar arguments as in Theorem 3.7 and using Lemma 2.14 and Remark 2.12 we get lower bounds that is

     sdepth(S/I(Ph,t,d)){d((h1)t+2(h1)2)(h1)31+d3,t0(mod3);d((h1)t+21)(h1)31+(h2)d12,t1(mod3);d((h1)t+2(h1))(h1)31,t2(mod3).

    Now we will compute upper bound by induction on t. If t=1, by Lemma 2.15

     sdepth(S/I(Ph,t,d))=d+(h2)d12.

    If t=2, by Theorem 2.5  sdepth(S/I(Ph,t,d))=(h1)(d), as desired. Now let t3 and u be a monomial such that u:=x(t1)1x(t1)2x(t1)d(h1)t1. We have the following isomorphism:

    S/(I(Ph,t,d):u)K[V(Ph,t3,d)]/I(Ph,t3,d)KK[x(t1)1,x(t1)2,,x(t1)d(h1)t1],

    then we have

     sdepth(S/(I(Ph,t,d):u))= sdepth(K[V(Ph,t3,d)]/I(Ph,t3,d))+d(h1)t1. (3.2)

    By Proposition 2.10 we have  sdepth(S/I(Ph,t,d)) sdepth(S/(I(Ph,t,d):u)).

    (1) Let t0(mod3). Since t30(mod3) thus by Eq (3.2) and induction on t,  sdepth(K[V(Ph,t3,d)]/I(Ph,t3,d))+d(h1)t1=d((h1)t+23(h1)2)(h1)31+d3+d(h1)t1=d((h1)t+2(h1)2)(h1)31+d3.

    (2) Let t1(mod3). Since t31(mod3) thus by Eq (3.2) and induction on t we have,  sdepth(K[V(Ph,t3,d)]/I(Ph,t3,d))+d(h1)t1=d((h1)t+231)(h1)31+(h2)d12+d(h1)t1=d((h1)t+21)(h1)31+(h2)d12.

    (3) Let t2(mod3). Since t32(mod3) thus by Eq (3.2) and induction on t we have,  sdepth(K[V(Ph,t3,d)]/I(Ph,t3,d))+d(h1)t1=d((h1)t+23(h1))(h1)31+d(h1)t1=d((h1)t+2(h1))(h1)31.

    Corollary 3.9. Let h3, t1 and d3. If S=K[V(Ph,t,d)], then

    pdim(S/I(Ph,t,d))={((h1)t+11(h2)(h1)t+2(h1)2(h1)31)(d)d3,t0(mod3);((h1)t+11(h2)(h1)t+21(h1)31)(d)(h2)d12,t1(mod3);((h1)t+11(h2)(h1)t+2(h1)(h1)31)(d),t2(mod3).

    Proof. We have |V(Ph,t,d)|=((h1)t+11(h2))(d), therefore, depth(S)=((h1)t+11(h2))(d). Hence we get the required result by using Theorem 3.7 and Theorem 2.8.

    In this section we compute depth, Stanley depth and projective dimension of quotient ring K[V(Ch,t,d)]/I(Ch,t,d).

    Remark 4.1. In this remark we introduce some terms that appear in special cases of our proofs.

    (1) If d=0 we define K[V(Ch,t,0)]/I(Ch,t,0):=K, hence

    depth(K[V(Ch,t,0)]/I(Ch,t,0))= sdepth(K[V(Ch,t,0)]/I(Ch,t,0))=0.

    (2) If d3 we define K[V(Ch,0,d)]/I(Ch,0,d):=K[V(Cd)]/I(Cd), hence by Proposition 2.3

    depth(K[V(Ch,0,d)]/I(Ch,0,d))=d13 and  sdepth(K[V(Ch,0,d)]/I(Ch,0,d))d13.

    Theorem 4.2. Let t1 and d3. If S=K[V(C2,t,d)], then

    depth(S/I(C2,t,d))={dt3+d13,t0(mod3);t3d,t1,2(mod3).

    Proof. Let d3. For t=1 the result follows from Lemma 2.15 and for t=2 the result follows from Theorem 2.6. Now let t3.

    (1) Let t0(mod3). We have

    S/(I(C2,t,d):x(0)d)K[V(P2,t,d3)]/I(P2,t,d3)K2Ki=1K[V(Pt)]/I(Pt)KK[V(Pt1)]/I(Pt1)KK[x(0)d]

    and

    S/(I(C2,t,d),x(0)d)K[V(P2,t,d1)]/I(P2,t,d1)KK[V(Pt)]/I(Pt).

    Then by Lemma 2.14, Lemma 2.2 and Theorem 3.4

    depth(S/(I(C2,t,d):x(0)d))=depth(K[V(P2,t,d3)]/I(P2,t,d3))+2i=1depth(K[V(Pt)]/I(Pt))+depth(K[V(Pt1)]/I(Pt1))+1=dt3t33+d33+2t3+t13+1

    and

    depth(S/(I(C2,t,d),x(0)d))=depth(K[V(P2,t,d1)]/I(P2,t,d1))+depth(K[V(Pt)]/I(Pt))=t3(d1)+d13+t3.

    Since t0(mod3) implies t13=t3=t3. Hence depth(S/(I(C2,t,d):x(0)d))=dt3+d33+1=dt3+d3 and depth(S/(I(C2,t,d),x(0)d))=dt3+d13. Since for d0,2(mod3) depth(S/(I(C2,t,d):x(0)d))=depth(S/(I(C2,t,d),x(0)d)). Thus by Remark 2.12 depth(S/I(C2,t,d))=dt3+d13.

    Now let d1(mod3). We have the following isomorphism:

    (I(C2,t,d):x(0)d)I(C2,t,d)x(0)1A0x(0)d1A1x(1)dA2, (4.1)

    where

    A0=(K[x(0)3,x(0)4,,x(0)d1,x(1)2,,x(1)d,x(2)1,x(2)2,,x(2)d,,x(t)1,x(t)2,,x(t)d]/(G(I(C2,t,d)){x(0)1x(1)1,x(1)1x(2)1,x(0)1x(0)2,x(0)2x(1)2,x(0)2x(0)3,x(0)d1x(0)d,x(0)1x(0)d,x(0)dx(1)d}))[x(0)1],
    A1=(K[x(0)2,x(0)3,,x(0)d3,x(1)1,x(1)2,,x(1)d2,x(1)d,x(2)1,x(2)2,,x(2)d,,x(t)1,x(t)2,,x(t)d]/(G(I(C2,t,d)){x(0)1x(1)1,x(0)1x(0)2,x(0)1x(0)d,x(0)d2x(0)d3,x(0)d2x(1)d2,x(0)d2x(0)d1,x(0)d1x(0)d,x(0)d1x(1)d1,x(0)dx(1)d,x(1)d1x(2)d1}))[x(0)d1],

    and

    A2=(K[x(0)2,x(0)3,,x(0)d2,x(1)1,x(1)2,,x(1)d1,x(2)1,x(2)2,,x(2)d1,x(3)1,x(3)2,,x(3)d,x(t)1,x(t)2,,x(t)d]/(G(I(C2,t,d)){x(0)1x(1)1,x(0)1x(0)2,x(0)1x(0)d,x(0)d1x(0)d2,x(0)d1x(0)d,x(0)d1x(1)d1,x(0)dx(1)d,x(1)dx(2)d,x(2)dx(3)d}))[x(1)d].

    Indeed, if w is a monomial such that w(I(C2,t,d):x(0)d) but wI(C2,t,d), then w is divisible by at least one variable from the set {x(0)1,x(0)d1,x(1)d}. If w is not divisible by any variable form the set {x(0)1,x(0)d1,x(1)d}, then wI(C2,t,d), a contradiction. Let w be a monomial such that w(I(C2,t,d):x(0)d)I(C2,t,d). In order to establish the isomorphism as given in Eq (4.1) one has to consider the following cases.

    Case 1. If x(0)1|w, then w=(x(0)1)αu, where α1, uK[x(0)3,x(0)4, ,x(0)d1, x(1)2,x(1)2,,x(1)d, x(2)1,x(2)2, ,x(2)d, ,x(t)1,x(t)2,,x(t)d] and u(G(I(C2,t,d)){x(0)1x(1)1, x(1)1x(2)1, x(0)1x(0)2, x(0)2x(1)2, x(0)2x(0)3, x(0)d1x(0)d, x(0)1x(0)d, x(0)dx(1)d}). Thus wx(0)1A0 and it is easy to see that

    A0K[V(Pt1)]/I(Pt1)KK[V(P2,t,d3)]/I(P2,t,d3)K2Ki=1K[V(Pt)]/I(Pt)KK[x(0)1].

    Case 2. If x(0)d1|w and x(0)1w, then w=(x(0)d1)βv, where β1, vK[x(0)2, x(0)3, ,x(0)d3, x(1)1, x(1)2,,x(1)d2, x(1)d,x(2)1, x(2)2,,x(2)d, ,x(t)1,x(t)2, ,x(t)d] and v(G(I(C2,t,d)){x(0)1x(1)1, x(0)1x(0)2, x(0)1x(0)d, x(0)d2x(0)d3, x(0)d2x(1)d2, x(0)d2x(0)d1, x(0)d1x(0)d, x(0)d1x(1)d1,x(0)dx(1)d, x(1)d1x(2)d1})). Thus wx(0)d1A1 and we have

    A1K[V(Pt1)]/I(Pt1)KK[V(P2,t,d4)]/I(P2,t,d4)K3Ki=1K[V(Pt)]/I(Pt)KK[x(0)d1].

    Case 3. If x(1)d|w, x(0)1w and x(0)d1w, then w=(x(1)d)γz, where γ1, zK[x(0)2,x(0)3,,x(0)d2,x(1)1,x(1)2,,x(1)d1,x(2)1,x(2)2,,x(2)d1,x(3)1,x(3)2,,x(3)d,, x(t)1,x(t)2,,x(t)d] and z(G(I(C2,t,d)){x(0)1x(1)1,x(0)1x(0)2,x(0)1x(0)d,x(0)d1x(0)d2,x(0)d1x(0)d, x(0)d1x(1)d1,x(0)dx(1)d,x(1)dx(2)d,x(2)dx(3)d}). Hence wx(1)dA2 and

    A2K[V(Pt2)]/I(Pt2)KK[V(P2,t,d3)]/I(P2,t,d3)K2Ki=1K[V(Pt)]/I(Pt)KK[x(1)d].

    It is also easy to see that x(0)1A0A0, x(0)d1A1A1 and x(1)dA2A2. Thus by Lemma 2.2, Lemma 2.14 and Theorem 3.4

    depth(A0)=t13+t3(d3)+d33+2t3+1=dt3+d3,
    depth(A1)=t13+t3(d4)+d43+3t3+1=dt3+d13,
    depth(A2)=t23+t3(d3)+d33+2t3+1=dt3+d3.

    Hence, depth((I(C2,t,d):x(0)d)I(C2,t,d))=min{depth(A0),depth(A1),depth(A2)}=dt3+d13. Now by applying Depth Lemma on following short exact sequence

    0(I(C2,t,d):x(0)d)I(C2,t,d)S/I(C2,t,d)S/(I(C2,t,d):x(0)d)0,

    we get depth(S/I(C2,t,d))=dt3+d13.

    (2) Let t1(mod3). In a similar way as done in Case 1 we have

    depth(S/(I(C2,t,d):x(0)d))=depth(K[V(P2,t,d3)]/I(P2,t,d3))+2i=1depth(K[V(Pt)]/I(Pt))+depth(K[V(Pt1)]/I(Pt1))+1=t3(d3)+2t3+t13+1=t3d3t3+2t3+t+231+1

    and

    depth(S/(I(C2,t,d),x(0)d))=depth(K[V(P2,t,d1)]/I(P2,t,d1))+depth(K[V(Pt)]/I(Pt))=t3(d1)+t3.

    Since t+20(mod3) implies t+23=t3. Hence depth(S/(I(C2,t,d):x(0)d))=t3d and depth(S/(I(C2,t,d),x(0)d))=t3d. Hence by Remark 2.12 we have depth(S/I(C2,t,d))=t3d.

    (3) Let t2(mod3)

    We have

    S/(I(C2,t,d):x(1)d)K[V(P2,t,d1)]/I(P2,t,d1)KK[V(Pt2)]/I(Pt2)KK[x(1)d].

    Now let J=(I(C2,t,d),x(1)d). We have the following isomorphisms:

    S/(J:x(0)d)K[V(P2,t,d3)]/I(P2,t,d3)K2Ki=1K[V(Pt)]/I(Pt)KK[V(Pt1)]/I(Pt1)KK[x(0)d]

    and

    S/(J,x(0)d)K[V(P2,t,d1)]/I(P2,t,d1)KK[V(Pt1)]/I(Pt1).

    Then by Lemma 2.14, Lemma 2.2 and Theorem 3.4 we have

    depth(S/(I(C2,t,d):x(1)d))=depth(K[V(P2,t,d1)]/I(P2,t,d1))+depth(K[V(Pt2)]/I(Pt2))+1=t3(d1)+t23+1=t3dt3+t+13,
    depth(S/(J:x(0)d))=depth(K[V(P2,t,d3)]/I(P2,t,d3))+2i=1depth(K[V(Pt)]/I(Pt))+depth(K[V(Pt1)]/I(Pt1))+1=t3(d3)+2t3+t13+1=t3d3t3+2t3+t+1323+1

    and

    depth(S/(J,x(0)d))=depth(K[V(P2,t,d1)]/I(P2,t,d1))+depth(K[V(Pt1)]/I(Pt1))=t3(d1)+t13=t3dt3+t+1323.

    Since t+10(mod3) implies t+13=t3. Hence depth(S/(I(C2,t,d):x(1)d))=t3d, depth(S/(J:x(0)d))=t3d+1 and depth(S/(J,x(0)d))=t3d. Thus by Remark 2.12 depth(S/J)t3d and also J=(I(C2,t,d),x(1)d) implies depth(S/(I(C2,t,d),x(1)d))t3d. Hence again by Remark 2.12 depth(S/I(C2,t,d))=t3d.

    Theorem 4.3. Let d3 and t1. If S=K[V(C2,t,d)], then  sdepth(S/I(C2,t,d))=t3d for t1,2(mod3). Otherwise, dt3+d13 sdepth(S/I(C2,t,d))dt3+d3.

    Proof. We compute lower bound by using similar arguments as in Theorem 4.2 and using Lemma 2.14 and Remark 2.12 that is  sdepth(S/I(C2,t,d))t3d for t1,2(mod3) otherwise,  sdepth(S/I(C2,t,d))dt3+d13. Now we compute upper bound by induction on t. If t=1, then by Lemma 2.15  sdepth(S/I(C2,t,d))=d, as desired. For t=2, by Theorem 2.6  sdepth(S/I(C2,t,d))=d, as desired. For t=3 we have the following isomorphism:

    S/(I(C2,3,d):x(0)1x(2)1x(2)2x(2)d)K[V(Pd3)]/I(Pd3)KK[x(0)1,x(2)1,x(2)2,,x(2)d].

    Then we have

     sdepth(S/(I(C2,3,d):x(0)1x(2)1x(2)2x(2)d))= sdepth(K[V(Pd3)]/I(Pd3))+d+1=d33+d+1=d3+d.

    Also by Proposition 2.10 we have  sdepth(S/I(C2,3,d))d+d3, and as already we have computed lower bound that is  sdepth(S/I(C2,3,d))d+d13. Hence

    d+d13 sdepth(S/I(C2,3,d))d+d3.

    Now let t4 and u be a monomial such that u:=x(t1)1x(t1)2x(t1)d. We have the following isomorphism:

    S/(I(C2,t,d):u)K[V(C2,t3,d)]/I(C2,t3,d)KK[x(t1)1,x(t1)2,,x(t1)d].

    Then we have

     sdepth(S/(I(C2,t,d):x(t1)1x(t1)2x(t1)d))= sdepth(K[V(C2,t3,d)]/I(C2,t3,d))+d. (4.2)

    By Proposition 2.10,  sdepth(S/I(C2,t,d)) sdepth(S/(I(C2,t,d):u)).

    (1) Let t1,2(mod3). Since t31,2(mod3), then by using induction on Eq (4.2) we have  sdepth(K[V(C2,t3,d)]/I(C2,t3,d))+d=t33d+d=t3d.

    (2) Let t0(mod3). Since t30(mod3), then by using induction on Eq 4.2 we have  sdepth(K[V(C2,t3,d)]/I(C2,t3,d))+d=dt3+d3.

    Corollary 4.4. Let h=2, t1 and d3. If S=K[V(C2,t,d)], then

    pdim(S/I(C2,t,d))={(2t3+1)dd13,t0(mod3);d(t+1)t3d,t1,2(mod3).

    Proof. We have |V(C2,t,d)|=d(t+1), therefore, depth(S)=d(t+1). Hence we get the required result by using Theorem 4.2 and Theorem 2.8.

    Theorem 4.5. Let d3, t1 and h3. If S=K[V(Ch,t,d)], then

    depth(S/I(Ch,t,d))={d((h1)t+2(h1)2)(h1)31+d13,t0(mod3);d((h1)t+21)(h1)31+(h2)d2,t1(mod3);d((h1)t+2(h1))(h1)31,t2(mod3).

    Proof. If t=1 the result follows from the Lemma 2.15. If t=2 the result follows from Theorem 2.6. Now let t3.

    (1) Let t0(mod3). We have the following isomorphisms:

    S/(I(Ch,t,d):x(0)d)2(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)KK[V(Ph,t,d3)]/I(Ph,t,d3)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)KK[x(0)d]

    and

    S/(I(Ch,t,d),x(0)d)K[V(Ph,t,d1)]/I(Ph,t,d1)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1).

    Since t12(mod3) and t21(mod3), then by Lemma 2.14, Theorem 3.7 and Proposition 2.7 we have

    depth(S/(I(Ch,t,d):x(0)d))=2(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+depth(K[V(Ph,t,d3)]/I(Ph,t,d3))+(h1)2i=1depth(K[V(Ph,t2,1)]/I(Ph,t2,1))+1=2(h1)(h1)t1+2(h1)(h1)31+(h1)t+2(h1)2(h1)31(d3)+d33+(h1)2(h1)t2+21(h1)31+1=d((h1)t+2(h1)2)(h1)31+d3

    and

    depth(S/(I(Ch,t,d),x(0)d))=depth(K[V(Ph,t,d1)]/I(Ph,t,d1))+(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))=(h1)t+2(h1)2(h1)31(d1)+d13+(d1)(d1)t1+2(h1)(h1)31=d((h1)t+2(h1)2)(h1)31+d13.

    For d0,2(mod3),d13=d3. Then by Remark 2.12 we have

    depth(S/I(Ch,t,d))=d((h1)t+2(h1)2)(h1)31+d13.

    Now let d1(mod3). We have the following isomorphism:

    (I(Ch,t,d):x(0)d)I(Ch,t,d)x(0)1A0x(0)d1A1x(1)(h1)d(h2)B0x(1)(h1)d(h3)B1,,x(1)(h1)dBh2 (4.3)

    where

    A0=(K[x(0)3,x(0)4,,x(0)d1,x(1)h,x(1)h+1,,x(1)(h1)d,x(2)1,x(2)2,,x(2)(h1)2d,,x(t)1,x(t)2,,x(t)(h1)td]/(G(I(Ch,t,d))1l=0(h1)lp=1(h1)pq=(h1)p(h2){x(l)px(l+1)q}2(h1)q=h{x(0)2x(1)q}(h1)dq=(h1)d(h2){x(0)dx(1)q}{x(0)1x(0)2,x(0)2x(0)3,x(0)1x(0)d,x(0)d1x(0)d}))[x(0)1].

    Indeed if w is a monomial such that w(I(Ch,t,d):x(0)d) but wI(Ch,t,d), then w is divisible by at least one variable from the set {x(0)1,x(0)d1, x(1)(h1)d(h2), x(1)(h1)d(h3),,x(1)(h1)d}. If w is not divisible by any variable from the set {x(0)1,x(0)d1, x(1)(h1)d(h2), x(1)(h1)d(h3),,x(1)(h1)d}, then wI(Ch,t,d), a contradiction. Let w be a monomial such that w(I(Ch,t,d):x(0)d)I(Ch,t,d). In order to establish the isomorphism as given in Eq (4.3) we adopt the similar strategy of Theorem 4.2. If x(0)1|w then w=(x(0)1)αu, where α1, u(G(I(Ch,t,d))1l=0(h1)lp=1(h1)pq=(h1)p(h2){x(l)px(l+1)q}2(h1)q=h{x(0)2x(1)q}(h1)dq=(h1)d(h2){x(0)dx(1)q}{x(0)1x(0)2,x(0)2x(0)3,x(0)1x(0)d, x(0)d1x(0)d}) and uK[x(0)3,x(0)4,,x(0)d1, x(1)h,x(1)h+1, ,x(1)(h1)d,x(2)1,x(2)2, ,x(2)(h1)2d,,x(t)1, x(t)2,,x(t)(h1)td]. Thus wx(0)1A0 where

    A0(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)KK[V(Ph,t,d3)]/I(Ph,t,d3)K2(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)KK[x(0)1].

    Now proceeding in a similar way if x(0)d1|w and x(0)1w then we have wx(0)d1A1. Now let x(0)(h1)d(h2)|w, x(0)1w and x(0)d1w we have wx(1)(h1)d(h2)B0. Continuing in the same fashion we get the required isomorphism and

    A13(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)KK[V(Ph,t,d4)]/I(Ph,t,d4)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)KK[x(0)d1],
    \begin{equation*} \begin{split} B_{0}\cong& \underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}}K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1}) \quad { \otimes _{K}} \underset{i = 1}{\overset{(h-2)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \\&\, \, \, \otimes _{K}K[x_{(h-1)d-(h-2)}^{(1)}], \end{split} \end{equation*}
    \begin{equation*} \begin{split} B_{1}\cong& \underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{h-1} \otimes _{K}}K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}} K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{(h-3)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K}K[x_{(h-1)d-(h-3)}^{(1)}], \end{split} \end{equation*}
    \begin{equation*} \begin{split} B_{2}\cong& \underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}} K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{h-4} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K}K[x_{(h-1)d-(h-4)}^{(1)}], \end{split} \end{equation*}
    \vdots
    \begin{equation*} \begin{split} B_{h-3}\cong& \underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\& \underset{i = 1}{\overset{(h-3)(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}} K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1})\\& \quad \, \, \otimes _{K}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K}K[x_{(h-1)d-1}^{(1)}], \end{split} \end{equation*}
    \begin{equation*} \begin{split} B_{h-2}\cong& \underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{(h-2)(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}} K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1}) \\& \quad \, \, \otimes _{K}K[x_{(h-1)d}^{(1)}]. \end{split} \end{equation*}

    Now by Lemma 2.14, Theorem 3.7 and Proposition 2.7 we have

    \begin{equation*} \begin{split} \text{depth}(A_{0})& = (h-1)^{2}\cdot\frac{(h-1)^{t-2+2}-1}{(h-1)^{3}-1}+\frac{(h-1)^{t+2}-(h-1)^{2}}{(h-1)^{3}-1}\cdot(d-3)+\lceil\frac{d-3}{3}\rceil\\&\quad+2(h-1)\cdot\frac{(h-1)^{t-1+2}-(h-1)}{(h-1)^{3}-1}+1\\& = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil, \end{split} \end{equation*}
    \begin{equation*} \begin{split} \text{depth}(A_{1})& = 3(h-1)\cdot\frac{(h-1)^{t-1+2}-(h-1)}{(h-1)^{3}-1}+\frac{(h-1)^{t+2}-(h-1)^{2}}{(h-1)^{3}-1}\cdot(d-4)\\&\quad+\lceil\frac{d-4}{3}\rceil+(h-1)^{2}\cdot\frac{(h-1)^{t-2+2}-1}{(h-1)^{3}-1}+1\\& = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d-1}{3}\rceil, \end{split} \end{equation*}
    \begin{equation*} \begin{split} \text{depth}(B_{0})& = 2(h-1)\cdot\frac{(h-1)^{t-1+2}-(h-1)}{(h-1)^{3}-1}+\frac{(h-1)^{t+2}-(h-1)^{2}}{(h-1)^{3}-1}\cdot(d-3)\\&\quad+\lceil\frac{d-3}{3}\rceil+(h-1)^{2}\cdot(\frac{(h-1)^{t-3+2}-(h-1)^{2}}{(h-1)^{3}-1}+1)\\&\quad+(h-2)\cdot\frac{(h-1)^{t-1+2}-(h-1)}{(h-1)^{3}-1}+1\\& = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil+(h-1)(h-2). \end{split} \end{equation*}

    Similarly

    \begin{equation*} \begin{split} \text{depth}(B_{1})& = \text{depth}(B_{2}) = \dotso = \text{depth}(B_{h-3}) = \text{depth}(B_{h-2})\\& = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil+(h-1)(h-2). \end{split} \end{equation*}

    Thus \text{depth}\big(\frac{(I(\mathscr{C}_{h, t, d}):x_{d}^{(0)})}{I(\mathscr{C}_{h, t, d})} \big) = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d-1}{3}\rceil. Now by applying Lemma 2.11 on the following short exact sequence

    \begin{equation*} \label{E22*} 0\longrightarrow \frac{(I(\mathscr{C}_{h, t, d}):x_{d}^{(0)})}{I(\mathscr{C}_{h, t, d})} \longrightarrow S/I(\mathscr{C}_{h, t, d})\longrightarrow S/(I(\mathscr{C}_{h, t, d}):x^{(0)}_{d}) \longrightarrow 0, \end{equation*}

    we have the required result that is \text{depth}(S/I(\mathscr{C}_{h, t, d})) = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d-1}{3}\rceil.

    \bf (2) Let t\equiv1(\mod3) . In a similar way as done in Case 1 we have

    \begin{equation*} \begin{split} \text{depth}(S/&(I(\mathscr{C}_{h, t, d}):x^{(0)}_{d})) \\& = \underset{i = 1}{\overset{2(h-1)}{\sum}}\text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1})) + \text{depth}(K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}))\\& \quad+ \underset{i = 1}{\overset{(h-1)^{2}}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}))+1\\& = 2(h-1)\cdot\Big\{\frac{(h-1)^{t-1+2}-(h-1)^{2}}{(h-1)^{3}-1}+1\Big\}+ \frac{(h-1)^{t+2}-1}{(h-1)^{3}-1} \cdot(d-3)\\&\quad + (h-2)\lceil\frac{d-3-1}{2}\rceil+ (h-1)^{2}\cdot\frac{(h-1)^{t-2+2}-(h-1)}{(h-1)^{3}-1}+1\\& = \frac{d((h-1)^{t+2}-1)}{(h-1)^{3}-1} + (h-2)\lceil\frac{d}{2}\rceil \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} \text{depth}(&S/(I(\mathscr{C}_{h, t, d}), x^{(0)}_{d})) \\& = \text{depth}(K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1})) + \underset{i = 1}{\overset{(h-1)}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}))\\& = \frac{(h-1)^{t+2}-1}{(h-1)^{3}-1}\cdot (d-1) + (h-2)\lceil\frac{d-2}{2}\rceil+(h-1)\cdot \Big\{\frac{(h-1)^{t-1+2}-(h-1)^{2}}{(h-1)^{3}-1}+1\Big\} \\& = \frac{d((h-1)^{t+2}-1)}{(h-1)^{3}-1} + (h-2)\lceil\frac{d}{2}\rceil. \end{split} \end{equation*}

    Hence by Remark 2.12 we have \text{depth}(S/I(\mathscr{C}_{h, t, d}) = \frac{d((h-1)^{t+2}-1)}{(h-1)^{3}-1} + (h-2)\lceil\frac{d}{2}\rceil.

    \bf (3) Let t\equiv2(\mod3) . We have the following isomorphism:

    \begin{equation*} \begin{split} S/(I(\mathscr{C}_{h, t, d}):x^{(1)}_{(h-1)d}) \cong& K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-2)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{(h-1)^{2}}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1} ) \quad { \otimes _{K}} \quad K[x^{(1)}_{(h-1)d}]. \end{split} \end{equation*}

    Now let J = (I(\mathscr{C}_{h, t, d}), x^{(1)}_{(h-1)d}) , then we have

    \begin{equation*} \begin{split} S/(J:x^{(0)}_{d}) \cong& \underset{i = 1}{\overset{2(h-1)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \quad { \otimes _{K}} \quad K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}} \\& \underset{i = 1}{\overset{(h-1)^{2}}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \quad { \otimes _{K}} \quad K[x^{(0)}_{d}] \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} S/(J, x^{(0)}_{d}) \cong& K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-2)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \quad { \otimes _{K}}\\& \underset{i = 1}{\overset{(h-1)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}). \end{split} \end{equation*}

    Since t-1 \equiv 1(\mod3) , t-2 \equiv 0(\mod3) and t-3 \equiv 2(\mod3) , then by Lemma 2.14, Theorem 3.7 and Proposition 2.7 we have

    \begin{equation*} \begin{split} \text{depth}(S/(I(&\mathscr{C}_{h, t, d}):x^{(1)}_{(h-1)d})) \\& = \text{depth}(K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1}))+ \underset{i = 1}{\overset{(h-2)}{\sum}}\text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}))\\& \quad+ \underset{i = 1}{\overset{(h-1)^{2}}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1}))+1\\& = \frac{(h-1)^{t+2}-(h-1)}{(h-1)^{3}-1}\cdot (d-1) +(h-2)\cdot \frac{(h-1)^{t-1+2}-1}{(h-1)^{3}-1}\\& \quad+ (h-1)^{2}\cdot\frac{(h-1)^{t-3+2}-(h-1)}{(h-1)^{3}-1}+1 \\& = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}, \end{split} \end{equation*}
    \begin{equation*} \begin{split} \text{depth}(S/(J&:x^{(0)}_{d})) \\& = \underset{i = 1}{\overset{2(h-1)}{\sum}}\text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}))+\text{depth}(K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}))\\&\quad+ \underset{i = 1}{\overset{(h-1)^{2}}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}))+1\\& = 2(h-1)\cdot \frac{(h-1)^{t-1+2}-1}{(h-1)^{3}-1}+ \frac{(h-1)^{t+2}-(h-1)}{(h-1)^{3}-1}\cdot(d-3) \\&\quad+ (h-1)^{2}\cdot\Big\{\frac{(h-1)^{t-2+2}-(h-1)^{2}}{(h-1)^{3}-1}+1\Big\}+1 \\& = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}+(h-1)(h-2)+1 \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} \text{depth}(S/(J&, x^{(0)}_{d})) \\& = \text{depth}(K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1})) + \underset{i = 1}{\overset{(h-2)}{\sum}}\text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}))\\&\quad+ \underset{i = 1}{\overset{(h-1)}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}))\\& = \frac{(h-1)^{t+2}-(h-1)}{(h-1)^{3}-1}\cdot(d-1) + (h-2)\cdot \frac{(h-1)^{t-1+2}-1}{(h-1)^{3}-1}\\&\quad+ (h-1)\cdot\Big\{\frac{(h-1)^{t-2+2}-(h-1)^{2}}{(h-1)^{3}-1}+1\Big\} \\& = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}+(h-2) . \end{split} \end{equation*}

    Hence by Remark 2.12 we have \text{depth}(S/J)\geq \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}+(h-2) and also J = (I(\mathscr{C}_{h, t, d}), x^{(1)}_{(h-1)d}) implies \text{depth}(S/(I(\mathscr{C}_{h, t, d}), x^{(1)}_{(h-1)d}))\geq \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}+(h-2) . Thus again by Remark 2.12 we have \text{depth}(S/I(\mathscr{C}_{h, t, d})) = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}.

    Theorem 4.6. Let d\geq3 , t\geq0 and h\geq3 . If S = K[V(\mathscr{C}_{h, t, d})] , then

    \begin{equation*} \text{ sdepth}\left(S/I(\mathscr{C}_{h, t, d})\right) = \begin{cases} \frac{d\big((h-1)^{t+2}-1\big)}{(h-1)^{3}-1} + (h-2)\lceil\frac{d}{2}\rceil, \quad t\equiv1(\mod3);\\ \frac{d\big((h-1)^{t+2}-(h-1)\big)}{(h-1)^{3}-1}, \quad t\equiv2(\mod3). \end{cases} \end{equation*}

    Otherwise, \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d-1}{3}\rceil \leq \text{ sdepth}\left(S/I(\mathscr{C}_{h, t, d})\right) \leq \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil.

    Proof. We compute lower bound by using similar arguments as in Theorem 4.5 and using Lemma 2.14 and Remark 2.12 we get.

    \begin{equation*} \text{ sdepth}\left(S/I(\mathscr{C}_{h, t, d})\right) \geq \begin{cases} \frac{d((h-1)^{t+2}-1)}{(h-1)^{3}-1} + (h-2)\lceil\frac{d}{2}\rceil, \quad t\equiv1(\mod3);\\ \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}, \quad t\equiv2(\mod3), \end{cases} \end{equation*}

    otherwise \text{ sdepth}\left(S/I(\mathscr{C}_{h, t, d})\right) \geq \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d-1}{3}\rceil .

    Now we compute upper bound by induction on t . If t = 1 result follows from Lemma 2.15 and for t = 2 result follows from Theorem 2.6. For t = 3 we have the following isomorphism:

    S/(I(\mathscr{C}_{h, 3, d}):x_{1}^{(0)}x_{1}^{(2)}x_{2}^{(2)}\dotso x_{d(h-1)^{2}}^{(2)}) \cong K[V(P_{d-3})]/I(P_{d-3}) \quad { \otimes _{K}} \quad K[x_{1}^{(0)}, x_{1}^{(2)}, x_{2}^{(2)}, \dotso , x_{d(h-1)^{2}}^{(2)}].

    Then we have

    \begin{eqnarray} \text{ sdepth} (S/(I(\mathscr{C}_{h, 3, d}):x_{1}^{(0)}x_{1}^{(2)}x_{2}^{(2)}\dotso x_{d(h-1)^{2}}^{(2)})) = \text{ sdepth}(K[V(P_{d-3})]/I(P_{d-3}) )+d(h-1)^{2}+1, \end{eqnarray}

    then by Lemma 2.2 we have

    \begin{equation*} \begin{split} \text{ sdepth} (S/(I(\mathscr{C}_{h, 3, d}):x_{1}^{(0)}x_{1}^{(2)}x_{2}^{(2)}\dotso x_{d(h-1)^{2}}^{(2)}))& = \lceil\frac{d-3}{3}\rceil +(h-1)^{2}d+1\\& = \lceil\frac{d}{3}\rceil +(h-1)^{2}d. \end{split} \end{equation*}

    Also by Proposition 2.10 we have \text{ sdepth}(S/I(\mathscr{C}_{h, 3, d})) \leq (h-1)^{2}d+\lceil\frac{d}{3}\rceil and already we have computed lower bound that is \text{ sdepth}(S/I(\mathscr{C}_{h, 3, d})) \geq (h-1)^{2}d+\lceil\frac{d-1}{3}\rceil. Now let t\geq4 and u be a monomial such that u: = x_{1}^{(t-1)}x_{2}^{(t-1)}\dotso x_{d(h-1)^{t-1}}^{(t-1)} . We have

    S/(I(\mathscr{C}_{h, t, d}):u) \cong K[V(\mathscr{C}_{h, t-3, d})]/I(\mathscr{C}_{h, t-3, d}) \quad { \otimes _{K}} \quad K[x_{1}^{(t-1)}, x_{2}^{(t-1)}, \dotso, x_{d(h-1)^{t-1}}^{(t-1)}].

    Then we have

    \begin{equation} \text{ sdepth} (S/(I(\mathscr{C}_{h, t, d}):u)) = \text{ sdepth}(K[V(\mathscr{C}_{h, t-3, d})]/I(\mathscr{C}_{h, t-3, d})) + d(h-1)^{t-1}. \end{equation} (4.4)

    By Proposition 2.10 we have \text{ sdepth}(S/I(\mathscr{C}_{h, t, d})) \leq \text{ sdepth}(S/(I(\mathscr{C}_{h, t, d}):u)) .

    \bf (1) Let t\equiv1(\mod3) implies t-3\equiv1(\mod3) then from Eq (4.4) and by induction we have \text{ sdepth}(K[V(\mathscr{C}_{h, t-3, d})]/I(\mathscr{C}_{h, t-3, d})) + d(h-1)^{t-1} = \frac{{d((h-1)^{t+2-3}}-1)}{(h-1)^{3}-1}+(h-2)\lceil\frac{d}{2}\rceil + d(h-1)^{t-1} = \frac{{d((h-1)^{t+2}}-1)}{(h-1)^{3}-1}+(h-2)\lceil\frac{d}{2}\rceil , as desired.

    \bf (2) Let t\equiv2(\mod3) implies t-3\equiv2(\mod3) then from Eq (4.4) and by induction we have \text{ sdepth}(K[V(\mathscr{C}_{h, t-3, d})]/I(\mathscr{C}_{h, t-3, d})) + d(h-1)^{t-1} = \frac{{d((h-1)^{t+2-3}}-(h-1))}{(h-1)^{3}-1}+ d(h-1)^{t-1} = \frac{{d((h-1)^{t+2}}-(h-1))}{(h-1)^{3}-1} , as desired.

    \bf (3) Let t\equiv0(\mod3) implies t-3\equiv0(\mod3) then from Eq (4.4) and by induction we have \text{ sdepth}(K[V(\mathscr{C}_{h, t-3, d})]/I(\mathscr{C}_{h, t-3, d})) + d(h-1)^{t-1} = \frac{{d((h-1)^{t+2}}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil, as desired.

    Corollary 4.7. Let h\geq 3 , t\geq1 and d\geq 3 . If S = K[V(\mathscr{C}_{h, t, d})] , then

    \begin{equation*} \text{pdim}\left(S/I(\mathscr{C}_{h, t, d})\right) = \begin{cases} \Big(\frac{(h-1)^{t+1}-1}{(h-2)}-\frac{(h-1)^{t+2}-(h-1)^{2}}{(h-1)^{3}-1}\Big)(d) - \lceil\frac{d-1}{3}\rceil, \quad t\equiv0(\mod3);\\ \Big(\frac{(h-1)^{t+1}-1}{(h-2)}-\frac{(h-1)^{t+2}-1}{(h-1)^{3}-1}\Big)(d) - (h-2)\lceil\frac{d}{2}\rceil, \quad t\equiv1(\mod3);\\ \Big(\frac{(h-1)^{t+1}-1}{(h-2)}-\frac{(h-1)^{t+2}-(h-1)}{(h-1)^{3}-1}\Big)(d), \quad t\equiv2(\mod3). \end{cases} \end{equation*}

    Proof. We have |V(\mathscr{C}_{h, t, d})| = \Big(\frac{(h-1)^{t+1}-1}{(h-2)}\Big)(d) , therefore, \text{depth}(S) = \Big(\frac{(h-1)^{t+1}-1}{(h-2)}\Big)(d) . Hence we get the required result by using Theorem 4.5 and Theorem 2.8.

    It is declared by the authors that there is no conflict of interest in this paper.



    [1] M. R. Pournaki, S. S. Fakhari, M. Tousi, S. Yassemi, Stanley depth, Not. Am. Math. Soc., 56 (2009), 1106–1108. https://doi.org/10.3390/math7070607
    [2] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math., 68 (1982), 175–193. https://doi.org/10.1007/BF01394054 doi: 10.1007/BF01394054
    [3] B. Ichim, L. Katthän, J. J. Moyano-Fernández, How to compute the Stanley depth of a module, Math. Comp., 86 (2017), 455–472.
    [4] B. Ichim, L. Katthän, J. J. Moyano-Fernández, The behavior of Stanley depth under polarization, J. Comb. Theory Ser. A., 135 (2015), 332–347. https://doi.org/10.1016/j.jcta.2015.05.005 doi: 10.1016/j.jcta.2015.05.005
    [5] A. Haider, S. Khan, Stanley's conjecture for critical ideals, Stud. Sci. Math. Hung., 48 (2011), 220–226. https://doi.org/10.1556/sscmath.2010.1160 doi: 10.1556/sscmath.2010.1160
    [6] D. Popescu, An inequality between depth and Stanley depth, Bull. Math. Soc. Sci. Math., 52 (2009), 377–382.
    [7] D. Popescu, M. I. Qureshi, Computing the Stanley depth, J. Algebra, 323 (2010), 2943–2959. https://doi.org/10.1016/j.jalgebra.2009.11.025 doi: 10.1016/j.jalgebra.2009.11.025
    [8] A. M. Duval, Algebraic shifting and sequentially Cohen-Macaulay simplicial complexes, Electron. J. Comb., 3 (1996), R21. https://doi.org/10.37236/1245 doi: 10.37236/1245
    [9] M. Ishaq, Upper bounds for the Stanley depth, Commun. Algebra, 40 (2018), 87–97. https://doi.org/10.1080/00927872.2010.523642 doi: 10.1080/00927872.2010.523642
    [10] W. Bruns, C. Krattenthaler, J. Uliczka, Stanley decompositions and Hilbert depth in the koszul complex, J. Commut. Algebra, 2 (2010), 327–357. https://doi.org/10.1216/JCA-2010-2-3-327 doi: 10.1216/JCA-2010-2-3-327
    [11] L. Katthän, R. Sieg, The Stanley depth in the upper half of the koszul complex, Commun. Algebra, 8 (2016), 3290–3300. https://doi.org/10.1080/00927872.2015.1085993 doi: 10.1080/00927872.2015.1085993
    [12] A. Popescu, Special Stanley decompositions, Bull. Math. Soc. Sci. Math., 53 (2010), 363–372.
    [13] Z. Iqbal, M. Ishaq, M. Aamir, Depth and Stanley depth of the edge ideals of square paths and square cycles, Commun. Algebra, 46 (2018), 1188–1198. https://doi.org/10.1080/00927872.2017.1339068 doi: 10.1080/00927872.2017.1339068
    [14] Z. Iqbal, M. Ishaq, M. A. Binyamin, Depth and Stanley depth of the edge ideals of the strong product of some graphs, Hacet. J. Math. Stat., 50 (2021), 92–109. https://doi.org/10.15672/hujms.638033 doi: 10.15672/hujms.638033
    [15] J. B. Liu, M. Munir, R. Farooki, M. I. Qureshi, Q. Muneer, Stanley depth of edge ideals of some wheel-related graphs, Mathematics, 7 (2019), 202–202. https://doi.org/10.3390/math7020202 doi: 10.3390/math7020202
    [16] B. Shaukat, A. U. Haq, M. Ishaq, Some algebraic invariants of the residue class rings of the edge ideals of perfect semiregular trees, Commun. Algebra, https://doi.org/10.1080/00927872.2022.2159968
    [17] S. Morey, Depths of powers of the edge ideal of a tree, Commun. Algebra., 38 (2010), 4042–4055. https://doi.org/10.1080/00927870903286900 doi: 10.1080/00927870903286900
    [18] A. Stefan, Stanley depth of powers of the path ideal, 2014. https://doi.org/10.48550/arXiv.1409.6072
    [19] M. Cimpoeas, On the Stanley depth of edge ideals of line and cyclic graphs, Rom. J. Math. Comput. Sci., 5 (2015), 70–75.
    [20] A. Alipour, A. Tehranian, Depth and Stanley depth of edge ideals of star graphs, Int. J. Appl. Math. Stat., 56 (2017), 63–69.
    [21] A. Iqbal, M. Ishaq, Depth and Stanley depth of the quotient rings of edge ideals of some lobster trees and unicyclic graphs, Turk. J. Math., 46 (2022), 1886–1896. https://doi.org/10.55730/1300-0098.3239 doi: 10.55730/1300-0098.3239
    [22] W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1998.
    [23] A. Rauf, Depth and Stanley depth of multigraded modules, Commun. Algebra, 38 (2010), 773–784. https://doi.org/10.1080/00927870902829056 doi: 10.1080/00927870902829056
    [24] M. Cimpoeas, Several inequalities regarding Stanley depth, Rom. J. Math. Comput. Sci., 2 (2012), 28–40.
    [25] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151–3169. https://doi.org/10.1016/j.jalgebra.2008.01.006 doi: 10.1016/j.jalgebra.2008.01.006
    [26] N. U. Din, M. Ishaq, Z. Sajid, Values and bounds for depth and Stanley depth of some classes of edge ideals, AIMS Mathematics, 6 (2021), 8544–8566. https://doi.org/10.3934/math.2021496 doi: 10.3934/math.2021496
    [27] B. Shaukat, M. Ishaq, A. U. Haq, Z. Iqbal, On some algebraic invariants and Cohen-Macauly graphs, 2022. https://doi.org/10.48550/arXiv.2211.05721
  • This article has been cited by:

    1. Fatima Tul Zahra, Muhammad Ishaq, Sarah Aljohani, Regularity of the edge ideals of perfect [ν,h]-ary trees and some unicyclic graphs, 2024, 10, 24058440, e30689, 10.1016/j.heliyon.2024.e30689
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1645) PDF downloads(95) Cited by(1)

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog