Research article Special Issues

Values and bounds for depth and Stanley depth of some classes of edge ideals

  • Received: 18 March 2021 Accepted: 23 May 2021 Published: 07 June 2021
  • MSC : Primary 13C15; Secondary 13P10, 13F20

  • In this paper we study depth and Stanley depth of the quotient rings of the edge ideals associated with the corona product of some classes of graphs with arbitrary non-trivial connected graph $ G $. These classes include caterpillar, firecracker and some newly defined unicyclic graphs. We compute formulae for the values of depth that depend on the depth of the quotient ring of the edge ideal $ I(G) $. We also compute values of depth and Stanley depth of the quotient rings associated with some classes of edge ideals of caterpillar graphs and prove that both of these invariants are equal for these classes of graphs.

    Citation: Naeem Ud Din, Muhammad Ishaq, Zunaira Sajid. Values and bounds for depth and Stanley depth of some classes of edge ideals[J]. AIMS Mathematics, 2021, 6(8): 8544-8566. doi: 10.3934/math.2021496

    Related Papers:

  • In this paper we study depth and Stanley depth of the quotient rings of the edge ideals associated with the corona product of some classes of graphs with arbitrary non-trivial connected graph $ G $. These classes include caterpillar, firecracker and some newly defined unicyclic graphs. We compute formulae for the values of depth that depend on the depth of the quotient ring of the edge ideal $ I(G) $. We also compute values of depth and Stanley depth of the quotient rings associated with some classes of edge ideals of caterpillar graphs and prove that both of these invariants are equal for these classes of graphs.



    加载中


    [1] A. Alipour, A. Tehranian, Depth and Stanley Depth of Edge Ideals of Star Graphs, International Journal of Applied Mathematics and Statistics, 56 (2017), 63-69.
    [2] W. Bruns, H. J. Herzog, Cohen-macaulay rings, No. 39, Cambridge university press, 1998.
    [3] M. Cimpoeas, Several inequalities regarding Stanley depth, Romanian Journal of Math and Computer Science, 2 (2012), 28-40.
    [4] A. M. Duval, B. Goeckner, C. J. Klivans, J. L. Martine, A non-partitionable CohenMacaulay simplicial complex, Adv. Math., 299 (2016), 381-395. doi: 10.1016/j.aim.2016.05.011
    [5] S. A. S. Fakhari, On the Stanley Depth of Powers of Monomial Ideals, Mathematics, 7 (2019), 607. doi: 10.3390/math7070607
    [6] L. Fouli, S. Morey, A lower bound for depths of powers of edge ideals, J. Algebr. Comb., 42 (2015), 829-848. doi: 10.1007/s10801-015-0604-3
    [7] R. Frucht, F. Harary, On the corona of two graphs, Aeq. Math., 4 (1970), 322-325.
    [8] R. Hammack, W. Imrich, S. Klavar, Handbook of Product Graphs, Second Edition, CRC Press, Boca Raton, FL, 2011.
    [9] J. Herzog, A survey on Stanley depth, In Monomial ideals, computations and applications, (2013), 3-45. Springer, Heidelberg.
    [10] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151-3169. doi: 10.1016/j.jalgebra.2008.01.006
    [11] Z. Iqbal, M. Ishaq, Depth and Stanley depth of the edge ideals of the powers of paths and cycles, An. Sti. U. Ovid. Co-Mat, 27 (2019), 113-135.
    [12] Z. Iqbal, M. Ishaq, M. A. Binyamin, Depth and Stanley depth of the edge ideals of the strong product of some graphs, Hacet. J. Math. Stat., 50 (2021), 92-109.
    [13] S. Morey, Depths of powers of the edge ideal of a tree, Commun. Algebra, 38 (2010), 4042-4055. doi: 10.1080/00927870903286900
    [14] R. Okazaki, A lower bound of Stanley depth of monomial ideals, J. Commut. Algebr., 3 (2011), 83-88.
    [15] M. R. Pournaki, S. A. S. Fakhari, M. Tousi, S. Yassemi, What is Stanley depth? Not. Am. Math. Soc., 56 (2009), 1106-1108.
    [16] A. Rauf, Depth and Stanley depth of multigraded modules, Commun. Algebra, 38 (2010), 773-784. doi: 10.1080/00927870902829056
    [17] R. P. Stanley, Linear Diophantine equations and local cohomolog, Invent. Math., 68 (1982), 175-193. doi: 10.1007/BF01394054
    [18] V. Swaminathan, P. Jeyanthi, Super edge-magic strength of fire crackers, banana trees and unicyclic graphs, Discrete math., 306 (2006), 1624-1636. doi: 10.1016/j.disc.2005.06.038
    [19] R. H. Villarreal, Monomial algebras, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, Vol. 238, 2011.
    [20] D. B. West, Introduction to graph theory, Upper Saddle River, NJ: Prentice hall, Vol. 2, 1996.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2768) PDF downloads(117) Cited by(4)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog