In this article, we study the complete convergence and the complete moment convergence for negatively dependent (ND) random variables under sub-linear expectations. Under proper conditions of the moment of random variables, we establish the complete convergence and the complete moment convergence. As applications, we obtain the Marcinkiewcz-Zygmund type strong law of large numbers of ND random variables under sub-linear expectations. The results here generalize the corresponding ones in classic probability space to those under sub-linear expectations.
Citation: Mingzhou Xu, Xuhang Kong. Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations[J]. AIMS Mathematics, 2023, 8(4): 8504-8521. doi: 10.3934/math.2023428
In this article, we study the complete convergence and the complete moment convergence for negatively dependent (ND) random variables under sub-linear expectations. Under proper conditions of the moment of random variables, we establish the complete convergence and the complete moment convergence. As applications, we obtain the Marcinkiewcz-Zygmund type strong law of large numbers of ND random variables under sub-linear expectations. The results here generalize the corresponding ones in classic probability space to those under sub-linear expectations.
[1] | S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, In: Stochastic analysis and applications, Abel Symposia, Vol. 2, Springer, Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-70847-6_25 |
[2] | S. G. Peng, Nonlinear expectations and stochastic calculus under uncertainty, 1 Ed., Berlin: Springer, 2019. https://doi.org/10.1007/978-3-662-59903-7 |
[3] | L. X. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1 |
[4] | L. X. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59 (2016), 751–768. https://doi.org/10.1007/s11425-015-5105-2 doi: 10.1007/s11425-015-5105-2 |
[5] | L. X. Zhang, Donsker's invariance principle under the sub-linear expectation with an application to Chung's law of the iterated logarithm, Commun. Math. Stat., 3 (2015), 187–214. https://doi.org/10.1007/s40304-015-0055-0 doi: 10.1007/s40304-015-0055-0 |
[6] | J. P. Xu, L. X. Zhang, Three series theorem for independent random variables under sub-linear expectations with applications, Acta Math. Sin., English Ser., 35 (2019), 172–184. https://doi.org/10.1007/s10114-018-7508-9 doi: 10.1007/s10114-018-7508-9 |
[7] | J. P. Xu, L. X. Zhang, The law of logarithm for arrays of random variables under sub-linear expectations, Acta Math. Appl. Sin. English Ser., 36 (2020), 670–688. https://doi.org/10.1007/s10255-020-0958-8 doi: 10.1007/s10255-020-0958-8 |
[8] | Q. Y. Wu, Y. Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2018), 252–270. https://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053 |
[9] | L. X. Zhang, J. H. Lin, Marcinkiewicz's strong law of large numbers for nonlinear expectations, Stat. Probab. Lett., 137 (2018), 269–276. https://doi.org/10.1016/j.spl.2018.01.022 doi: 10.1016/j.spl.2018.01.022 |
[10] | H. Y. Zhong, Q. Y. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl., 2017 (2017), 261. https://doi.org/10.1186/s13660-017-1538-1 doi: 10.1186/s13660-017-1538-1 |
[11] | Z. J. Chen, Strong laws of large numbers for sub-linear expectations, Sci. China Math., 59 (2016), 945–954. https://doi.org/10.1007/s11425-015-5095-0 doi: 10.1007/s11425-015-5095-0 |
[12] | X. C. Chen, Q. Y. Wu, Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations, AIMS Math., 7 (2022), 9694–9715. https://doi.org/10.3934/math.2022540 doi: 10.3934/math.2022540 |
[13] | L. X. Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under sub-linear expectations, Acta Math. Sci. English Ser., 42 (2022), 467–490. https://doi.org/10.1007/s10473-022-0203-z doi: 10.1007/s10473-022-0203-z |
[14] | F. Hu, Z. J. Chen, D. F. Zhang, How big are the increments of G-Brownian motion, Sci. China Math., 57 (2014), 1687–1700. https://doi.org/10.1007/s11425-014-4816-0 doi: 10.1007/s11425-014-4816-0 |
[15] | F. Q. Gao, M. Z. Xu, Large deviations and moderate deviations for independent random variables under sublinear expectations, Sci. China Math., 41 (2011), 337–352. https://doi.org/10.1360/012009-879 doi: 10.1360/012009-879 |
[16] | A. Kuczmaszewska, Complete convergence for widely acceptable random variables under the sublinear expectations, J. Math. Anal. Appl., 484 (2020), 123662. https://doi.org/10.1016/j.jmaa.2019.123662 doi: 10.1016/j.jmaa.2019.123662 |
[17] | M. Z. Xu, K. Cheng, Convergence for sums of iid random variables under sublinear expectations, J. Inequal. Appl., 2021 (2021), 157. https://doi.org/10.1186/s13660-021-02692-x doi: 10.1186/s13660-021-02692-x |
[18] | M. Z. Xu, K. Cheng, How small are the increments of G-Brownian motion, Stat. Probab. Lett., 186 (2022), 109464. https://doi.org/10.1016/j.spl.2022.109464 doi: 10.1016/j.spl.2022.109464 |
[19] | M. Z. Xu, K. Cheng, Note on precise asymptotics in the law of the iterated logarithm under sublinear expectations, Math. Probl. Eng., 2022 (2022), 6058563. https://doi.org/10.1155/2022/6058563 doi: 10.1155/2022/6058563 |
[20] | M. Z. Xu, K. Cheng, W. K. Yu, Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations, AIMS Math., 7 (2022), 19998–20019. https://doi.org/10.3934/math.20221094 doi: 10.3934/math.20221094 |
[21] | M. Yao, B. Q. Xiao, Equivalent conditions of complete convergence and complete moment convergence for END random variables, Chin. Ann. Math. Ser. B, 39 (2018), 83–96. https://doi.org/10.1007/s11401-018-1053-9 doi: 10.1007/s11401-018-1053-9 |
[22] | P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci., 33 (1947), 25–31. https://doi.org/10.1073/pnas.33.2.25 doi: 10.1073/pnas.33.2.25 |
[23] | Y. S. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sin., 16 (1988), 177–201. |
[24] | M. H. Ko, Complete moment convergence of moving average process generated by a class of random variables, J. Inequal. Appl., 2015 (2015), 225. https://doi.org/10.1186/s13660-015-0745-x doi: 10.1186/s13660-015-0745-x |
[25] | B. Meng, D. C. Wang, Q. Y. Wu, Convergence of asymptotically almost negatively associated random variables with random coefficients, Commun. Stat.-Theor. M., 2021 (2021), 1963457. https://doi.org/10.1080/03610926.2021.1963457 doi: 10.1080/03610926.2021.1963457 |
[26] | S. M. Hosseini, A. Nezakati, Complete moment convergence for the dependent linear processes with random coefficients, Acta Math. Sin., English Ser., 35 (2019), 1321–1333. https://doi.org/10.1007/s10114-019-8205-z doi: 10.1007/s10114-019-8205-z |
[27] | B. Meng, D. C. Wang, Q. Y. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables, Commun. Stat.-Theor. M., 51 (2022), 3847–3863. https://doi.org/10.1080/03610926.2020.1804587 doi: 10.1080/03610926.2020.1804587 |
[28] | H. M. Srivastava, B. B. Jena, S. K. Paikray, A certain class of statistical probability convergence and its applications to approximation theorems, Appl. Anal. Discrete Math., 14 (2020), 579–598. https://doi.org/10.2298/AADM190220039S doi: 10.2298/AADM190220039S |
[29] | H. M. Srivastava, B. B. Jena, S. K. Paikray, Statistical probability convergence via the deferred Nörlund mean and its applications to approximation theorems, RACSAM, 114 (2020), 1–14. https://doi.org/10.1007/s13398-020-00875-7 doi: 10.1007/s13398-020-00875-7 |
[30] | H. M. Srivastava, B. B. Jena, S. K. Paikray, U. K. Misra, Statistically and relatively modular deferred-weighted summability and Korovkin-type approximation theorems, Symmetry, 11 (2019), 1–20. https://doi.org/10.3390/sym11040448 doi: 10.3390/sym11040448 |
[31] | H. M. Srivastava, B. B. Jena, S. K. Paikray, Deferred Cesàro statistical probability convergence and its applications to approximation theorems, J. Nonlinear Convex Anal., 20 (2019), 1777–1792. |
[32] | H. M. Srivastava, B. B. Jena, S. K. Paikray, Statistical deferred Nörlund summability and Korovkin-type approximation theorem, Mathematics, 8 (2020), 1–11. https://doi.org/10.3390/math8040636 doi: 10.3390/math8040636 |
[33] | S. K. Paikray, P. Parida, S. A. Mohiuddine, A certain class of relatively equi-statistical fuzzy approximation theorems, Eur. J. Pure Appl. Math., 13 (2020), 1212–1230. https://doi.org/10.29020/nybg.ejpam.v13i5.3711 doi: 10.29020/nybg.ejpam.v13i5.3711 |
[34] | L. X. Zhang, On the laws of the iterated logarithm under sub-linear expectations, Probab. Uncertain. Qua., 6 (2021), 409–460. https://doi.org/10.3934/puqr.2021020 doi: 10.3934/puqr.2021020 |
[35] | S. H. Sung, Moment inequalities and complete monent convergence, J. Inequal. Appl., 2009 (2009), 271265. https://doi.org/10.1155/2009/271265 doi: 10.1155/2009/271265 |