Research article Special Issues

Probabilistic picture hesitant fuzzy sets and their application to multi-criteria decision-making

  • Received: 29 October 2022 Revised: 05 January 2023 Accepted: 12 January 2023 Published: 06 February 2023
  • MSC : 03E72, 91B06

  • The picture hesitant fuzzy sets (PHFSs), which consider neutral membership degree as well as positive and negative membership degrees, provide decision makers (DMs) a flexible attitude to evaluate criteria values in complex multi-criteria decision-making (MCDM) situations. However, existing MCDM approaches based on PHFSs still have some drawbacks in both evaluation information expression and criteria values fusion. In this paper, our aim is to overcome these shortcomings by proposing new decision-making methods. To achieve this purpose, a new fuzzy information representation tool, called probabilistic picture hesitant fuzzy sets (P-PHFSs), is first introduced by capturing the probability of each element in PHFSs. The characteristic of P-PHFSs is that they provide more freedom to DMs so that criterion values of each alternative can be adequately described. To facilitate the use of P-PHFSs, we define the basic operational rules and comparison method of P-PHFSs. Then we also propose some aggregation operators for P-PHFSs and provide information fusion process. Furthermore, some desirable properties of these operators is discussed, and the relationship between the developed operators and the existing ones is investigated. Based on the proposed operators, two MCDM methods are developed under probabilistic picture hesitant fuzzy environment. Finally, two numerical examples are given to show the application of the developed methods, and a comparison analysis is conducted to demonstrate the effectiveness of the proposed approaches.

    Citation: Min Woo Jang, Jin Han Park, Mi Jung Son. Probabilistic picture hesitant fuzzy sets and their application to multi-criteria decision-making[J]. AIMS Mathematics, 2023, 8(4): 8522-8559. doi: 10.3934/math.2023429

    Related Papers:

  • The picture hesitant fuzzy sets (PHFSs), which consider neutral membership degree as well as positive and negative membership degrees, provide decision makers (DMs) a flexible attitude to evaluate criteria values in complex multi-criteria decision-making (MCDM) situations. However, existing MCDM approaches based on PHFSs still have some drawbacks in both evaluation information expression and criteria values fusion. In this paper, our aim is to overcome these shortcomings by proposing new decision-making methods. To achieve this purpose, a new fuzzy information representation tool, called probabilistic picture hesitant fuzzy sets (P-PHFSs), is first introduced by capturing the probability of each element in PHFSs. The characteristic of P-PHFSs is that they provide more freedom to DMs so that criterion values of each alternative can be adequately described. To facilitate the use of P-PHFSs, we define the basic operational rules and comparison method of P-PHFSs. Then we also propose some aggregation operators for P-PHFSs and provide information fusion process. Furthermore, some desirable properties of these operators is discussed, and the relationship between the developed operators and the existing ones is investigated. Based on the proposed operators, two MCDM methods are developed under probabilistic picture hesitant fuzzy environment. Finally, two numerical examples are given to show the application of the developed methods, and a comparison analysis is conducted to demonstrate the effectiveness of the proposed approaches.



    加载中


    [1] P. Mandal, S. Samanta, M. Pal, A. S. Ranadive, Pythagorean linguistic preference relations and their applications to group decision making using group recommendations based on consistency matrices and feedback mechanism, Int. J. Intell. Syst., 35 (2020), 826–849. https://doi.org/10.1002/int.22226 doi: 10.1002/int.22226
    [2] L. Li, R. T. Zhang, J. Wang, X. P. Shang, K. Y. Bai, A novel approach to multi-attribute group decision-making with q-rung picture linguistic information, Symmetry, 10 (2018), 172. https://doi.org/10.3390/sym10050172 doi: 10.3390/sym10050172
    [3] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [4] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inf. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [5] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [6] K. Atanassov, G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (1989), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4 doi: 10.1016/0165-0114(89)90205-4
    [7] D. Dubois, H. Prade, Fuzzy Sets and systems: Theory and applications, Cambridge: Academic Press, 1980.
    [8] B. C. Cuong, Picture fuzzy sets, JCC, 30 (2015), 409–420. https://doi.org/10.15625/1813-9663/30/4/5032 doi: 10.15625/1813-9663/30/4/5032
    [9] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
    [10] V. Torra, Y. Narukawa, On hesitant fuzzy sets and decision, Proceedings of the 18th IEEE international conference on fuzzy systems, 2009, 1378–1382.
    [11] M. M. Xia, Z. S. Xu, Hesitant fuzzy information aggregation in decision making, Int. J. Approx. Reason., 52 (2011), 395–407. https://doi.org/10.1016/j.ijar.2010.09.002 doi: 10.1016/j.ijar.2010.09.002
    [12] M. M. Xia, Z. S. Xu, N. Chen, Some hesitant fuzzy aggregation operators with their application in group decision making, Group Dec. Negot., 22 (2013), 259–279. https://DOI10.1007/s10726-011-9261-7 doi: 10.1007/s10726-011-9261-7
    [13] B. Zhu, Z. S. Xu, M. M. Xia, Hesitant fuzzy geometric Bonferroni means, Inform. Sci., 205 (2012), 72–85. https://doi.org/10.1016/j.ins.2012.01.048 doi: 10.1016/j.ins.2012.01.048
    [14] G. W. Wei, Hesitant fuzzy prioritized operators and their application to multiple attribute decision making, Knowl.-Based Syst., 31 (2012), 176–182. https://doi.org/10.1016/j.knosys.2012.03.011 doi: 10.1016/j.knosys.2012.03.011
    [15] Z. M. Zhang, Hesitant fuzzy power aggregation operators and their application to multiple attribute group decision making, Inform. Sci., 234 (2013), 150–181. https://doi.org/10.1016/j.ins.2013.01.002 doi: 10.1016/j.ins.2013.01.002
    [16] Z. S. Xu, M. M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci., 181 (2011), 2128–2138. https://doi.org/10.1016/j.ins.2011.01.028 doi: 10.1016/j.ins.2011.01.028
    [17] N. Chen, Z. S. Xu, M. M. Xia, Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis, Applied Math. Modelling, 37 (2013), 2197–2211. https://doi.org/10.1016/j.apm.2012.04.031 doi: 10.1016/j.apm.2012.04.031
    [18] Z. S. Xu, M. M. Xia, Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making, Int. J. Intell. Syst., 27 (2012), 799–822. https://doi.org/10.1002/int.21548 doi: 10.1002/int.21548
    [19] B. Farhadinia, Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets, Inform. Sci., 240 (2013), 129–144. https://doi.org/10.1016/j.ins.2013.03.034 doi: 10.1016/j.ins.2013.03.034
    [20] G. W. Wei, N. Zhang, A multiple criteria hesitant fuzzy decision making with Shapley value-based VIKOR method, J. Intell. Fuzzy Syst., 26 (2014), 1065–1075. https://doi.org/10.3233/ifs-130798 doi: 10.3233/ifs-130798
    [21] Z. S. Xu, M. M. Xia, On distance and correlation measures of hesitant fuzzy information, Int. J. Intell. Syst., 26 (2011), 410–425. https://doi.org/10.1002/int.20474 doi: 10.1002/int.20474
    [22] B. Zhu, Z. S. Xu, M. M. Xia, Dual hesitant fuzzy sets, J. Appl. Math., 2012 (2012), 879629. https://doi.org/10.1155/2012/879629 doi: 10.1155/2012/879629
    [23] B. Zhu, Z. S. Xu, Some results for dual hesitant fuzzy sets, J. Intell. Fuzzy Syst., 26 (2014), 1657–1668. https://doi.org/10.3233/ifs-130845 doi: 10.3233/ifs-130845
    [24] W. Y. Zeng, Y. Xi, Q. Yin, P. Guo, Weighted dual hesitant fuzzy sets and its application in group decision making, Neurocomputing, 458 (2021), 714–726. https://doi.org/10.1016/j.neucom.2020.07.134 doi: 10.1016/j.neucom.2020.07.134
    [25] Z. S. Xu, W. Zhou, Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment, Fuzzy Optim. Decis. Making, 16 (2017), 481–503. https://doi.org/10.1007/s10700-016-9257-5 doi: 10.1007/s10700-016-9257-5
    [26] Z. N. Hao, Z. S. Xu, H. Zhao, Z. Su, Probabilistic dual hesitant fuzzy set and its application in risk evaluation, Knowl-Based Syst., 127 (2017), 16–28. https://doi.org/10.1016/j.knosys.2017.02.033 doi: 10.1016/j.knosys.2017.02.033
    [27] R. Wang, Y. L. Li, Picture hesitant fuzzy set and its application to multiple criteria decision-making, Symmetry, 10 (2018), 295. https://doi.org/10.3390/sym10070295 doi: 10.3390/sym10070295
    [28] S. Zhang, Z. S. Xu, Y. He, Operations and integrations of probabilistic hesitant fuzzy information in decision making, Inf. Fusion, 38 (2017), 1–11. https://doi.org/10.1016/j.inffus.2017.02.001 doi: 10.1016/j.inffus.2017.02.001
    [29] C. Y. Song, Z. S. Xu, H. Zhao, A novel comparison of probabilistic hesitant fuzzy elements in multi-criteria decision making, Symmetry, 10 (2018), 177. https://doi.org/10.3390/sym10050177 doi: 10.3390/sym10050177
    [30] Z. X. Wang, J. Li, Correlation coefficients of probabilistic hesitant fuzzy elements and their applications to evaluation of the alternatives, Symmetry, 9 (2017), 259. https://doi.org/10.3390/sym9110259 doi: 10.3390/sym9110259
    [31] C. Y. Song, X. S. Xu, H. Zhao, New correlation coefficients between probabilistic hesitant fuzzy sets and their applications in cluster analysis, Int. J. Fuzzy Syst., 21 (2019), 355–368. https://doi.org/10.1007/s40815-018-0578-0 doi: 10.1007/s40815-018-0578-0
    [32] Z. Su, Z. S. Xu, H. N. Zhao, Z. Hao, B. Chen, Entropy measures for probabilistic hesitant fuzzy information, IEEE Access, 7 (2019), 65714–65727. https://doi.org/10.1109/ACCESS.2019.2916564 doi: 10.1109/ACCESS.2019.2916564
    [33] Y. M. Liu, F. Zhu, L. L. Jin, Multi-attribute decision-making method based on probabilistic hesitant fuzzy entropy, Control Decis., 34 (2019), 861–870.
    [34] B. Farhadinia, U. Aickelin, H. A. Khorshidi, Uncertainty measures for probabilistic hesitant fuzzy sets in multiple criteria decision making, Int. J. Intell. Syst., 35 (2020), 1646–1679. https://doi.org/10.1002/int.22266 doi: 10.1002/int.22266
    [35] B. Zhu, Z. S. Xu, Probability-hesitant fuzzy sets and the representation of preference relations, Technol. Econ. Dev. Econ., 24 (2018), 1029–1040. https://doi.org/10.3846/20294913.2016.1266529 doi: 10.3846/20294913.2016.1266529
    [36] J. Li, Z. X. Wang, Consensus building for probabilistic hesitant fuzzy preference relations with expected additive consistency, Int. J. Fuzzy Syst., 20 (2018), 1495–1510. https://doi.org/10.1007/s40815-018-0451-1 doi: 10.1007/s40815-018-0451-1
    [37] W. Zhou, Z. S. Xu, Group consistency and group decision making under uncertain probabilistic hesitant fuzzy preference environment, Inform. Sci., 414 (2017), 276–288. https://doi.org/10.1016/j.ins.2017.06.004 doi: 10.1016/j.ins.2017.06.004
    [38] J. Li, J. Q. Wang, An extended QUALIFLEX method under probabilistic hesitant fuzzy environment for slecting green suppliers, Int. J. Fuzzy Syst., 19 (2017), 1866–1879. https://doi.org/10.1007/s40815-017-0310-5 doi: 10.1007/s40815-017-0310-5
    [39] W. K. Zhang, J. Du, X. L. Tian, Finding a promising venture capital project with TODIM under probabilistic hesitant fuzzy circumstance, Technol. Econ. Dev. Econ., 24 (2018), 2026–2044. https://doi.org/10.3846/tede.2018.5494 doi: 10.3846/tede.2018.5494
    [40] X. L. Tian, M. L. Niu, J. S. Ma, Z. S. Xu, A novel TODIM with probabilistic hesitant fuzzy information and its application in green supplier selection, Complexity, 2020 (2020), 2540798. https://doi.org/10.1155/2020/2540798 doi: 10.1155/2020/2540798
    [41] H. F. Song, Z. C. Chen, Multi-attribute decision-making method based distance and COPRAS method with probabilistic hesitant fuzzy environment, Int. J. Comp. Int. Syst., 14 (2021), 1229–1241. https://doi.org/10.2991/ijcis.d.210318.001 doi: 10.2991/ijcis.d.210318.001
    [42] Z. Ren, Z. S. Xu, H. M. Wang, An extended TODIM method under probabilistic dual hesitant fuzzy information and its application on enterprise strategic assessment, Proceeding of the 2017 IEEE international conference on industrial engineering and engineering management, 2017, 1464–1468.
    [43] Z. L. Ren, Z. S. Xu, H. Wang, The strategy selection problem on artificial intelligence with an integrated VIKOR and AHP method under probabilistic dual hesitant fuzzy information, IEEE Access, 7 (2019), 103979–103999. https://doi.org/10.1109/ACCESS.2019.2931405 doi: 10.1109/ACCESS.2019.2931405
    [44] H. Garg, G. Kaur, Algorithm for probabilistic dual hesitant fuzzy multi-criteria decision-making based on aggregation operators with new distance measures, Mathematics, 6 (2018), 280. https://doi.org/10.3390/math6120280 doi: 10.3390/math6120280
    [45] H. Garg, G. Kaur, A robust correlation coefficient for probabilistic dual hesitant fuzzy sets and its applications, Neural Comput. Applic., 32 (2020), 8847–8866. https://doi.org/10.1007/s00521-019-04362-y doi: 10.1007/s00521-019-04362-y
    [46] Q. Zhao, Y. B. Ju, W. Pedrycz, A method based on bivariate almost stochastic dominance for multiple criteria group decision making with probabilistic dual hesitant fuzzy information, IEEE Access, 8 (2020), 203769–203786. https://doi.org/10.1109/ACCESS.2020.3035906 doi: 10.1109/ACCESS.2020.3035906
    [47] J. Song, Z. W. Ni, F. F. Jin, P. Li, W. Y. Wu, A new group decision making approach based on incomplete probabilistic dual hesitant fuzzy preference relations, Complex Intell. Syst., 7 (2021), 3033–3049. https://doi.org/10.1007/s40747-021-00497-5 doi: 10.1007/s40747-021-00497-5
    [48] J. Song, Z. W. Ni, F. F. Jin, W. Y. Wu, P. Li, Consensus-based group decision-making methods with probabilistic dual hesitant fuzzy preference relations and their applications, J. Intell. Fuzzy Syst., 41 (2021), 2111–2128. https://doi.org/10.3233/JIFS-210796 doi: 10.3233/JIFS-210796
    [49] S. T. Shao, X. H. Zhang, Multiobjective programming approaches to obtain the priority vectors under uncertain probabilistic dual hesitant fuzzy preference environment, Int. J. Comput. Intell. Syst., 14 (2021), 1189–1207. https://doi.org/10.2991/ijcis.d.210304.001 doi: 10.2991/ijcis.d.210304.001
    [50] K. Ullah, Z. Ali, N. Jan, T. Mahmood, S. Maqsood, Multi-attribute decision making based on averaging aggregation operators for picture hesitant fuzzy sets, Tech. J., 23 (2018), 84–95.
    [51] Y. Yang, J. H. Hu, Y. M. Liu, X. H. Chen, Alternative selection of end-of-life vehicle management in China: A group decision-making approach based on picture hesitant fuzzy measurements, J. Clean. Prod., 206 (2019), 631–645. https://doi.org/10.1016/j.jclepro.2018.09.188 doi: 10.1016/j.jclepro.2018.09.188
    [52] N. Jan, Z. Ali, K. Ullah, T. Mahmood, Some generalized distance and similarity measures for picture hesitant sets and their applications in building material recognition and multi-attribute decision making, Punjab Univ. J. Math., 51 (2019), 51–70.
    [53] Z. Ali, T. Mahmood, Picture hesitant fuzzy generalized dice similarity measures and their application in pattern recognitions, Tech. J., 25 (2020), 73–94.
    [54] T. Mahmood, Z. Ali, The fuzzy cross-entropy for picture hesitant fuzzy sets and their application in multi criteria decision making, Punjab Univ. J. Math., 52 (2020), 55–82.
    [55] T. Mahmood, M. Ahsen, Z. Ali, Multi-attribute group decision-making based on Bonferroni mean operators for picture hesitant fuzzy numbers, Soft Comput., 25 (2021), 1331513351. https://doi.org/10.1007/s00500-021-06172-8 doi: 10.1007/s00500-021-06172-8
    [56] Z. Ali, T. Mahmood, H. AlSalman, B. F. Alkhamees, M. Rahman, Analysis of medical diagnosis based on variation co-efficient similarity measures under picture hesitant fuzzy sets and their application, Math. Biosci. Eng., 19 (2022), 855–872. https://doi.org/10.3934/mbe.2022039 doi: 10.3934/mbe.2022039
    [57] T. Mahmood, Z. Ahmad, Z. Ali, K. Ullah, TOPSIS method and similarity measures based on cosine function using picture hesitant fuzzy sets and its applications to strategic decision making, Fuzzy Inform. Eng., 12 (2020), 277–299. https://doi.org/10.1080/16168658.2020.1866853 doi: 10.1080/16168658.2020.1866853
    [58] R. Ambrin, M. Ibrar, M. Sen, T. Rabbi, A. Khan, Extended TOPSIS method for supplier selection under picture hesitant fuzzy environment using linguistic variables, J. Math., 2021 (2021), 6652586. https://doi.org/10.1155/2021/6652586 doi: 10.1155/2021/6652586
    [59] R. Yager, Prioritized aggregation operators, Int. J. Approx. Reason., 48 (2008), 263–274. https://doi.org/10.1016/j.ijar.2007.08.009 doi: 10.1016/j.ijar.2007.08.009
    [60] Z. S. Xu, On consistency of the weighted geometric mean complex judgement matrix in AHP, Eur. J. Oper. Res., 126 (2000), 683–687. https://doi.org/10.1016/S0377-2217(99)00082-X doi: 10.1016/S0377-2217(99)00082-X
    [61] V. Torra, Y. Narukawa, Modeling decisions: Information fusion and aggregation operators, Berlin: Springer, 2007.
    [62] G. W. Wei, Picture fuzzy aggregation operators and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 33 (2017), 713–724. https://doi.org/10.3233/JIFS-161798 doi: 10.3233/JIFS-161798
    [63] G. W. Wei, Picture fuzzy cross-entropy for multiple attribute decision making problems, J. Bus. Econ. Manag., 17 (2016), 491–502. https://doi.org/10.3846/16111699.2016.1197147 doi: 10.3846/16111699.2016.1197147
    [64] G. W. Wei, Picture fuzzy Hamacher aggregation operators anf their application to multiple attribute decision making, Fund. Inform., 157 (2018), 271–320. https://doi.org/10.3233/FI-2018-1628 doi: 10.3233/FI-2018-1628
    [65] H. R. Zhang, R. T. Zhang, H. Q. Huang, J. Wang, Some picture fuzzy Dombi Heronian mean operators with their application to multi-attribute decision-making, Symmetry, 10 (2018), 593. https://doi.org/10.3390/sym10110593 doi: 10.3390/sym10110593
    [66] Z. Zhang, Z. L. Li, Y. Gao, Consensus reaching for group decision making with multi-granular unbalanced linguistic information: A bounded confidence and minimum adjustment-based approach, Inf. Fusion, 74 (2021), 96–110. https://doi.org/10.1016/j.inffus.2021.04.006 doi: 10.1016/j.inffus.2021.04.006
    [67] Z. Zhang, Z. L. Li, Consensus-based TOPSIS-Sort-B for multi-criteria sorting in the context of group decision-making, Ann. Oper. Res., 2022. https://doi.org/10.1007/s10479-022-04985-w doi: 10.1007/s10479-022-04985-w
    [68] T. T. Gai, M. S. Cao, F. Chiclana, Z. Zhang, Y. C. Dong, E. Herrera-Viedma, et al., Consensus-trust driven bidirectional feedback mechanism for improving consensus in social network large-group decision making, Group Decis. Negot., 2022. https://doi.org/10.1007/s10726-022-09798-7 doi: 10.1007/s10726-022-09798-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1478) PDF downloads(91) Cited by(4)

Article outline

Figures and Tables

Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog