The existing F-test of linearity cannot be applied when data has indeterminacy and uncertainty. The present paper introduces the F-test of testing linearity under neutrosophic statistics. We will develop F-test under neutrosophic statistics and neutrosophic analysis of the variance (NANOVA) table. The application of the proposed test will be given using the data of dry bulb temperature and relative humidity. From the analysis and comparison studies, it is found that the proposed F-test under neutrosophic statistics gives the results in indeterminate intervals and measures of indeterminacy. In addition, the proposed test is more flexible, adequate, and more informative than the F-test under classical statistics.
Citation: Muhammad Aslam, Muhammad Saleem. Neutrosophic test of linearity with application[J]. AIMS Mathematics, 2023, 8(4): 7981-7989. doi: 10.3934/math.2023402
The existing F-test of linearity cannot be applied when data has indeterminacy and uncertainty. The present paper introduces the F-test of testing linearity under neutrosophic statistics. We will develop F-test under neutrosophic statistics and neutrosophic analysis of the variance (NANOVA) table. The application of the proposed test will be given using the data of dry bulb temperature and relative humidity. From the analysis and comparison studies, it is found that the proposed F-test under neutrosophic statistics gives the results in indeterminate intervals and measures of indeterminacy. In addition, the proposed test is more flexible, adequate, and more informative than the F-test under classical statistics.
[1] | S. Ghosal, Prediction of the number of deaths in India due to SARS-CoV-2 at 5–6 weeks, Diabetes Metab. Synd., 2020. |
[2] | S. Biedermann, H. Dette, Testing linearity of regression models with dependent errors by kernel based methods, Test, 9 (2000), 417–438. https://doi.org/10.1007/BF02595743 doi: 10.1007/BF02595743 |
[3] | T. Panagiotidis, Testing the assumption of linearity, Econ. B., 3 (2002), 1–9. |
[4] | S. Niermann, Testing for linearity in simple regression models, AStA-Adv. Stat. Anal., 91 (2007), 129. https://doi.org/10.1007/s10182-007-0025-2 doi: 10.1007/s10182-007-0025-2 |
[5] | S. Wang, H. Cui, Generalized F test for high dimensional linear regression coefficients, J. Multivariate Anal., 117 (2013), 134–149. https://doi.org/10.1016/j.jmva.2013.02.010 doi: 10.1016/j.jmva.2013.02.010 |
[6] | W. Lan, P. S. Zhong, R. Li, H. Wang, C. L. Tsai, Testing a single regression coefficient in high dimensional linear models, J. Econometrics, 195 (2016), 154–168. https://doi.org/10.1016/j.jeconom.2016.05.016 doi: 10.1016/j.jeconom.2016.05.016 |
[7] | N. Li, X. Xu, P. Jin, Testing the linearity in partially linear models, J. Nonparametr. Stat., 23 (2011), 99–114. https://doi.org/10.1080/10485251003615574 doi: 10.1080/10485251003615574 |
[8] | S. Wang, H. Cui, Generalized F-test for high dimensional regression coefficients of partially linear models, J. Syst. Sci. Complex., 30 (2017), 1206–1226. https://doi.org/10.1007/s11424-017-6012-0 doi: 10.1007/s11424-017-6012-0 |
[9] | D. Martin, A spreadsheet tool for learning the multiple regression F-test, t-tests, and multicollinearity, J. Stat. Educ., 16 (2008). https://doi.org/10.1080/10691898.2008.11889573 doi: 10.1080/10691898.2008.11889573 |
[10] | D. C. Montgomery, E. A. Peck, G. G. Vining, Introduction to linear regression analysis, 821 (2012), John Wiley & Sons. |
[11] | R. Signor, F. S. Westphal, R. Lamberts, Regression analysis of electric energy consumption and architectural variables of conditioned commercial buildings in 14 Brazilian cities, In Seventh International IBPSA Conference, Rio de Janeiro, Brazil, 2001. |
[12] | C. Schoen, A new empirical model of the temperature-humidity index, J. Appl. Meteorol., 44 (2005), 1413–1420. https://doi.org/10.1175/JAM2285.1 doi: 10.1175/JAM2285.1 |
[13] | H. Ojobo, B. U. Wakawa, A. Umar, Influence of temperature and humidity on the physiological indices of stress in the obudu mountain landscape environment, Nigeria, Environ. Nat. Resour. Res., 7 (2017). https://doi.org/10.5539/enrr.v7n1p11 doi: 10.5539/enrr.v7n1p11 |
[14] | L. Bastistella, P. Rousset, A. Aviz, A. Caldeira-Pires, G. Humbert, M. Nogueira, Statistical modelling of temperature and moisture uptake of biochars exposed to selected relative humidity of air, Bioengineering, 5 (2018), 13. https://doi.org/10.3390/bioengineering5010013 doi: 10.3390/bioengineering5010013 |
[15] | K. A. McKinnon, A. Poppick, Estimating changes in the observed relationship between humidity and temperature using noncrossing quantile smoothing splines, J. Agr. Biol. Environ.. Stat., 25 (2020), 292–314. https://doi.org/10.1007/s13253-020-00393-4 doi: 10.1007/s13253-020-00393-4 |
[16] | J. Almedeij, Modeling pan evaporation for Kuwait by multiple linear regression, The Scientific World J., 2012 (2012). https://doi.org/10.1100/2012/574742 doi: 10.1100/2012/574742 |
[17] | H. Guan, S. Beecham, H. Xu, G. Ingleton, Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption, Environ. Res. Lett., 12 (2017), 024021. https://doi.org/10.1088/1748-9326/aa57a9 doi: 10.1088/1748-9326/aa57a9 |
[18] | B. Oliveiros, L. Caramelo, N. C. Ferreira, F. Caramelo, Role of temperature and humidity in the modulation of the doubling time of COVID-19 cases, medRxiv, 2020. https://doi.org/10.1101/2020.03.05.20031872 doi: 10.1101/2020.03.05.20031872 |
[19] | S. Pourahmad, S. M. T. Ayatollahi, S. M. Taheri, Z. H. Agahi, Fuzzy logistic regression based on the least squares approach with application in clinical studies, Comput. Math. Appl., 62 (2011), 3353–3365. https://doi.org/10.1016/j.camwa.2011.08.050 doi: 10.1016/j.camwa.2011.08.050 |
[20] | P. Kovac, D. Rodic, V. Pucovsky, B. Savkovic, M. Gostimirovic, Application of fuzzy logic and regression analysis for modeling surface roughness in face milliing, J. Intell. Manuf., 24 (2012), 755–762. https://doi.org/10.1007/s10845-012-0623-z doi: 10.1007/s10845-012-0623-z |
[21] | C. Tzimopoulos, C. Evangelides, C. Vrekos, N. Samarinas, Fuzzy linear regression of rainfall-altitude relationship, In multidisciplinary digital publishing institute proceedings, 2018. https://doi.org/10.3390/proceedings2110636 |
[22] | F. Gkountakou, B. Papadopoulos, The use of fuzzy linear regression and ANFIS methods to predict the compressive strength of cement, Symmetry, 12 (2020), 1295. https://doi.org/10.3390/sym12081295 doi: 10.3390/sym12081295 |
[23] | U. T. Khan, C. Valeo, A new fuzzy linear regression approach for dissolved oxygen prediction, Hydrolog. Sci. J., 60 (2015), 1096–1119. https://doi.org/10.1080/02626667.2014.900558 doi: 10.1080/02626667.2014.900558 |
[24] | F. Smarandache, Neutrosophy neutrosophic probability, set, and logic, ProQuest information and learning, Ann Arbor, Michigan, USA, 105 (1998), 118–123. |
[25] | M. Abdel-Basset, M. Mohamed, M. Elhoseny, L. H. Son, F. Chiclana, A. E. H. Zaied, Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases, Artif. Intell. Med., 101 (2019), 101735. https://doi.org/10.1016/j.artmed.2019.101735 doi: 10.1016/j.artmed.2019.101735 |
[26] | M. Abdel-Basset, N. A. Nabeeh, H. A. El-Ghareeb, A. Aboelfetouh, Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises, Enterp. Inform. Syst., 2019, 1–21. https://doi.org/10.1080/17517575.2019.1633690 doi: 10.1080/17517575.2019.1633690 |
[27] | N. A. Nabeeh, F. Smarandache, M. Abdel-Basset, H. A. El-Ghareeb, A. Aboelfetouh, An integrated neutrosophic-topsis approach and its application to personnel selection: A new trend in brain processing and analysis, IEEE Access, 7 (2019), 29734–29744. https://doi.org/10.1109/ACCESS.2019.2899841 doi: 10.1109/ACCESS.2019.2899841 |
[28] | F. Smarandache, Introduction to neutrosophic statistics, Infinite Study, 2014. |
[29] | J. Chen, J. Ye, S. Du, Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics, Symmetry, 9 (2017), 208. https://doi.org/10.3390/sym9100208 doi: 10.3390/sym9100208 |
[30] | J. Chen, J. Ye, S. Du, R. Yong, Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers, Symmetry, 9 (2017), 123. https://doi.org/10.3390/sym9070123 doi: 10.3390/sym9070123 |
[31] | M. Aslam, M. Sattam, Analyzing alloy melting points data using a new mann-whitney test under indeterminacy, J. King Saud Univ.-Sci., 32 (2020), 2831–2834. https://doi.org/10.1016/j.jksus.2020.07.005 doi: 10.1016/j.jksus.2020.07.005 |
[32] | M. Aslam, Design of the Bartlett and Hartley tests for homogeneity of variances under indeterminacy environment, J. Taibah Univ. Sci., 14 (2020), 6–10. https://doi.org/10.1080/16583655.2019.1700675 doi: 10.1080/16583655.2019.1700675 |
[33] | M. Aslam, On detecting outliers in complex data using Dixon's test under neutrosophic statistics, J. King Saud Univ.-Sci., 32 (2020), 2005–2008. https://doi.org/10.1016/j.jksus.2020.02.003 doi: 10.1016/j.jksus.2020.02.003 |
[34] | P. Singh, A neutrosophic-entropy based adaptive thresholding segmentation algorithm: A special application in MR images of Parkinson's disease, Artif. Intell. Med., 104 (2020) 101838. https://doi.org/10.1016/j.artmed.2020.101838 doi: 10.1016/j.artmed.2020.101838 |
[35] | P. Singh, S. S. Bose, Ambiguous D-means fusion clustering algorithm based on ambiguous set theory: Special application in clustering of CT scan images of COVID-19, Knowl.-Based Syst., 231 (2021), 107432. https://doi.org/10.1016/j.knosys.2021.107432 doi: 10.1016/j.knosys.2021.107432 |
[36] | P. Singh, A type-2 neutrosophic-entropy-fusion based multiple thresholding method for the brain tumor tissue structures segmentation, Appl. Soft Comput., 103 (2021), 107119. https://doi.org/10.1016/j.asoc.2021.107119 doi: 10.1016/j.asoc.2021.107119 |
[37] | G. K. Kanji, 100 statistical tests, Sage, 2006. https://doi.org/10.4135/9781849208499 |
[38] | F. Smarandache, Introduction to neutrosophic statistics, Romania-Educational Publisher, Columbus, Ohio, USA, 123 (2014). |