The framework of this paper is behavioral finance and, more specifically, intertemporal choice when individuals exhibit decreasing impatience in their decision-making processes. After characterizing the two main types of decreasing impatience (moderately and strongly decreasing impatience), the main objective of this paper is to generalize these concepts when the criterion of time increase is given by an arbitrary function which describes such increments. In general, the methodology is mathematical calculus but particularly the concept of derivative according to the function which rules the increase of time. The main contribution of this paper is the characterization of this extension of the concept of decreasing impatience by using the aforementioned novel derivative and the well-known Prelec's index.
Citation: Salvador Cruz Rambaud, Fabrizio Maturo, Javier Sánchez García. Generalizing the concept of decreasing impatience[J]. AIMS Mathematics, 2023, 8(4): 7990-7999. doi: 10.3934/math.2023403
The framework of this paper is behavioral finance and, more specifically, intertemporal choice when individuals exhibit decreasing impatience in their decision-making processes. After characterizing the two main types of decreasing impatience (moderately and strongly decreasing impatience), the main objective of this paper is to generalize these concepts when the criterion of time increase is given by an arbitrary function which describes such increments. In general, the methodology is mathematical calculus but particularly the concept of derivative according to the function which rules the increase of time. The main contribution of this paper is the characterization of this extension of the concept of decreasing impatience by using the aforementioned novel derivative and the well-known Prelec's index.
[1] | S. Cruz Rambaud, B. Torrecillas Jover, An extension of the concept of derivative: Its application to intertemporal choice, Mathematics, 8 (2020), 696. https://doi.org/10.3390/math8050696 doi: 10.3390/math8050696 |
[2] | S. Cruz Rambaud, I. González Fernández, A measure of inconsistencies in intertemporal choice, PloS ONE, 14 (2019), e0224242. https://doi.org/10.1371/journal.pone.0224242 doi: 10.1371/journal.pone.0224242 |
[3] | S. Cruz Rambaud, I. González Fernández, A new approach to intertemporal choice: The delay function, Symmetry, 12 (2020), 807. https://doi.org/10.3390/sym12050807 doi: 10.3390/sym12050807 |
[4] | S. Cruz Rambaud, I. González Fernández, V. Ventre, Modeling the inconsistency in intertemporal choice: The generalized Weibull discount function and its extension, Ann. Financ., 14 (2018), 415–426. https://doi.org/10.1007/s10436-018-0318-3 doi: 10.1007/s10436-018-0318-3 |
[5] | S. Cruz Rambaud, M. J. Muñoz Torrecillas, A generalization of the $q$-exponential discounting function, Phys. A Stat. Mech. Appl., 392 (2013), 3045–3050. https://doi.org/10.1016/j.physa.2013.03.009 doi: 10.1016/j.physa.2013.03.009 |
[6] | S. Cruz Rambaud, M. J. Muñoz Torrecillas, T. Takahashi, Observed and normative discount functions in addiction and other diseases, Front. Pharmacol., 8 (2017), 416. https://doi.org/10.3389/fphar.2017.00416 doi: 10.3389/fphar.2017.00416 |
[7] | S. Cruz Rambaud, V. Ventre, Deforming time in a nonadditive discount function, Int. J. Intell. Syst., 32 (2017), 467–480. https://doi.org/10.1002/int.21842 doi: 10.1002/int.21842 |
[8] | L. S. dos Santos, A. S. Martinez, Inconsistency and subjective time dilation perception in intertemporal decision making, Front. Appl. Math. Stat., 4 (2018), 54. https://doi.org/10.3389/fams.2018.00054 doi: 10.3389/fams.2018.00054 |
[9] | P. C. Fishburn, A. Rubinstein, Time preference, Int. Econ. Rev., 23 (1982), 677–694. https://doi.org/10.2307/2526382 doi: 10.2307/2526382 |
[10] | J. M. Karpoff, The relation between price changes and trading volume: A survey, The Journal of Financial and Quantitative Analysis, 22 (1987), 109–126. https://doi.org/10.2307/2330874 doi: 10.2307/2330874 |
[11] | G. Loewenstein, D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation, The Quarterly Journal of Economics, 107 (1992), 573–597. https://doi.org/10.2307/2118482 doi: 10.2307/2118482 |
[12] | G. Loewenstein, R. H. Thaler, Anomalies: Intertemporal choice, J. Econ. Perspect., 3 (1989), 181–193. https://doi.org/10.1257/jep.3.4.181 doi: 10.1257/jep.3.4.181 |
[13] | D. Prelec, Decreasing impatience: A criterion for non-stationary time preference and "hyperbolic" discounting, Scand. J. Econ., 106 (2004), 511–532. https://doi.org/10.1111/j.0347-0520.2004.00375.x doi: 10.1111/j.0347-0520.2004.00375.x |
[14] | H. Rachlin, Notes on discounting, J. Exp. Anal. Behav., 85 (2006), 425–435. https://doi.org/10.1901/jeab.2006.85-05 doi: 10.1901/jeab.2006.85-05 |
[15] | D. Read, Intertemporal Choice. Working Paper LSEOR 03.58. London School of Economics and Political Science, 2003. |
[16] | P. H. M. P. Roelofsma, D. Read, Intransitive intertemporal choice, J. Behav. Decis. Making, 13 (2000), 161–177. https://doi.org/10.1002/(SICI)1099-0771(200004/06)13:2<161::AID-BDM348>3.0.CO;2-P doi: 10.1002/(SICI)1099-0771(200004/06)13:2<161::AID-BDM348>3.0.CO;2-P |
[17] | K. I. M. Rohde, Measuring decreasing and increasing impatience, Manage. Sci., 65 (2019), 1700–1716. https://doi.org/10.1287/mnsc.2017.3015 doi: 10.1287/mnsc.2017.3015 |
[18] | P. A. Samuelson, A note on measurement of utility, Rev. Econ. Stud., 4 (1937), 155–161. https://doi.org/10.2307/2967612 doi: 10.2307/2967612 |
[19] | S. S. Stevens, On the psychophysical law, Psychol. Rev., 64 (1957), 153–181. https://doi.org/10.1037/h0046162 doi: 10.1037/h0046162 |
[20] | T. Takahashi, A comparison of intertemporal choices for oneself versus someone else based on Tsallis' statistics, Phys. A Stat. Mech. Appl., 385 (2007), 637–644. https://doi.org/10.1016/j.physa.2007.07.020 doi: 10.1016/j.physa.2007.07.020 |
[21] | T. Takahashi, H. Oono, M. H. B. Radford, Empirical estimation of consistency parameter in intertemporal choice based on Tsallis' statistics, Phys. A Stat. Mech. Appl., 381 (2007), 338–342. https://doi.org/10.1016/j.physa.2007.03.038 doi: 10.1016/j.physa.2007.03.038 |
[22] | T. Takahashi, H. Oono, M. H. B. Radford, Psychophysics of time perception and intertemporal choice models, Phys. A Stat. Mech. Appl., 387 (2008), 2066–2074, https://doi.org/10.1016/j.physa.2007.11.047 doi: 10.1016/j.physa.2007.11.047 |