In this paper, we first introduce the concepts of $ d $- and $ d^{-1} $-proximal Ćirić contraction mappings. Also, we present new definitions and notations by taking into account the lack of symmetry property of quasi-metric spaces. Moreover, we give some examples to support our definitions and notations. Then, we prove some right and left best proximity point results for these mappings on best orbitally complete quasi-metric spaces. Hence, we obtain some generalizations of famous results in the literature.
Citation: Mustafa Aslantas, Hakan Sahin, Raghad Jabbar Sabir Al-Okbi. Some best proximity point results on best orbitally complete quasi metric spaces[J]. AIMS Mathematics, 2023, 8(4): 7967-7980. doi: 10.3934/math.2023401
In this paper, we first introduce the concepts of $ d $- and $ d^{-1} $-proximal Ćirić contraction mappings. Also, we present new definitions and notations by taking into account the lack of symmetry property of quasi-metric spaces. Moreover, we give some examples to support our definitions and notations. Then, we prove some right and left best proximity point results for these mappings on best orbitally complete quasi-metric spaces. Hence, we obtain some generalizations of famous results in the literature.
[1] | S. Chen, B. Ma, K. Zhang, On the similarity metric and the distance metric, Theor. Comput. Sci., 410 (2009), 2365–2376. https://doi.org/10.1016/j.tcs.2009.02.023 doi: 10.1016/j.tcs.2009.02.023 |
[2] | H. P. A. Künzi, Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology, In: Handbook of the history of general topology, History of Topology, Vol 3. Springer, Dordrecht, 2001. https://doi.org/10.1007/978-94-017-0470-0_3 |
[3] | M. S. Waterman, T. F. Smith, W. A. Beyer, Some biological sequence metrics, Adv. Math., 20 (1976), 367–387. https://doi.org/10.1016/0001-8708(76)90202-4 doi: 10.1016/0001-8708(76)90202-4 |
[4] | W. A. Wilson, On quasi-metric spaces, Am. J. Math., 53 (1931), 675–684. https://doi.org/10.2307/2371174 doi: 10.2307/2371174 |
[5] | J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., s3-13 (1963), 71–89. https://doi.org/10.1112/plms/s3-13.1.71 doi: 10.1112/plms/s3-13.1.71 |
[6] | I. L. Reilly, P. V. Subrahmanyam, M. K. Vamanamurthy, Cauchy sequences in quasi-pseudo-metric spaces, Monatsh. Math., 93 (1982), 127–140. https://doi.org/10.1007/BF01301400 doi: 10.1007/BF01301400 |
[7] | I. Altun, M. Olgun, G. Mınak, Classification of completeness of quasi metric space and some new fixed point results, Nonlinear Funct. Anal. Appl., 22 (2017), 371–384. |
[8] | H. Aydi, $\alpha $-implicit contractive pair of mappings on quasi $b$-metric spaces and an application to integral equations, J. Nonlinear Convex Anal., 17 (2016), 2417–2433. |
[9] | R. Dutta, P. K. Nayak, H. S. Mondal, On quasi $b$-metric space with index k and fixed point results, J. Anal., 30 (2022), 919–940. https://doi.org/10.1007/s41478-021-00378-7 doi: 10.1007/s41478-021-00378-7 |
[10] | E. Karapınar, S. Romaguera, P. Tirado, Contractive multivalued maps in terms of $Q$-functions on complete quasimetric spaces, Fixed Point Theory Appl., 2014 (2014), 1–15. https://doi.org/10.1186/1687-1812-2014-53 doi: 10.1186/1687-1812-2014-53 |
[11] | F. Khan, M. Sarwar, A. Khan, M. Azeem, H. Aydi, A. Mukheimer, Some generalized fixed point results via a $\tau $-distance and applications, AIMS Math., 7 (2022), 1346–1365. https://doi.org/10.3934/math.2022080 doi: 10.3934/math.2022080 |
[12] | J. Marín, S. Romaguera, P. Tirado, $Q$-functions on quasimetric spaces and fixed points for multivalued maps, Fixed Point Theory Appl., 2011 (2011), 1–10. |
[13] | A. F. Roldán-López-de-Hierro, E. Karapınar, M. de la Sen, Coincidence point theorems in quasi-metric spaces without assuming the mixed monotone property and consequences in $G$-metric spaces, Fixed Point Theory Appl., 2014 (2014), 1–29. https://doi.org/10.1186/1687-1812-2014-184 doi: 10.1186/1687-1812-2014-184 |
[14] | M. Aslantas, Some best proximity point results via a new family of $F$-contraction and an application to homotopy theory, J. Fixed Point Theory Appl., 23 (2021), 1–20. https://doi.org/10.1007/s11784-021-00895-9 doi: 10.1007/s11784-021-00895-9 |
[15] | S. S. Basha, P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math., 63 (1997), 289–300. |
[16] | M. Aslantas, Finding a solution to an optimization problem and an application, J. Optim. Theory Appl., 194 (2022), 121–141. https://doi.org/10.1007/s10957-022-02011-4 doi: 10.1007/s10957-022-02011-4 |
[17] | M. Aslantas, H. Sahin, I. Altun, Ćirić type cyclic contractions and their best cyclic periodic points, Carpathian J. Math., 38 (2022), 315–326. https://doi.org/10.37193/CJM.2022.02.04 doi: 10.37193/CJM.2022.02.04 |
[18] | H. Aydi, A. Felhi, Best proximity points for cyclic Kannan-Chatterjea-Ćirić type contractions on metric-like spaces, Nonlinear Sci. Appl., 9 (2016), 2458–2466. http://dx.doi.org/10.22436/jnsa.009.05.45 doi: 10.22436/jnsa.009.05.45 |
[19] | H. Aydi, H. Lakzian, Z. D. Mitrović, S. Radenović, Best proximity points of MT-cyclic contractions with property UC, Numer. Funct. Anal. Optim., 41 (2020), 871–882. https://doi.org/10.1080/01630563.2019.1708390 doi: 10.1080/01630563.2019.1708390 |
[20] | S. S. Basha, Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim., 31 (2010), 569–576. https://doi.org/10.1080/01630563.2010.485713 doi: 10.1080/01630563.2010.485713 |
[21] | S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl., 62 (1978), 104–113. https://doi.org/10.1016/0022-247X(78)90222-6 doi: 10.1016/0022-247X(78)90222-6 |
[22] | S. Reich, A. J. Zaslavski, Best approximations and porous sets, Comment. Math. Univ. Ca., 44 (2003), 681–689. |
[23] | H. Sahin, A new kind of $F$-contraction and some best proximity point results for such mappings with an application, Turkish J. Math., 46 (2022), 2151–2166. https://doi.org/10.55730/1300-0098.3260 doi: 10.55730/1300-0098.3260 |
[24] | W. Sintunavarat, P. Kumam, The existence and convergence of best proximity points for generalized proximal contraction mappings, Fixed Point Theory Appl., 2014 (2014), 1–16. https://doi.org/10.1186/1687-1812-2014-228 doi: 10.1186/1687-1812-2014-228 |
[25] | H. Sahin, M. Aslantas, I. Altun, Best proximity and best periodic points for proximal nonunique contractions, J. Fixed Point Theory Appl., 23 (2021), 1–14. https://doi.org/10.1007/s11784-021-00889-7 doi: 10.1007/s11784-021-00889-7 |
[26] | L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Am. Math. Soc., 45 (1974), 267–273. https://doi.org/10.2307/2040075 doi: 10.2307/2040075 |