Research article

Some novel estimates of Jensen and Hermite-Hadamard inequalities for h-Godunova-Levin stochastic processes

  • Received: 14 August 2022 Revised: 02 December 2022 Accepted: 09 December 2022 Published: 12 January 2023
  • MSC : 26A48, 26A51, 33B10, 39A12, 39B62

  • It is undeniable that convex and non-convex functions play an important role in optimization. As a result of its behavior, convexity also plays a significant role in discussing inequalities. It is clear that convexity and stochastic processes are intertwined. The stochastic process is a mathematical model that describes how systems or phenomena fluctuate randomly. Probability theory generally says that the convex function applied to the expected value of a random variable is bounded above by the expected value of the random variable's convex function. Furthermore, the deep connection between convex inequalities and stochastic processes offers a whole new perspective on the study of inequality. Although Godunova-Levin functions are well known in convex theory, their properties enable us to determine inequality terms with greater accuracy than those obtained from convex functions. In this paper, we established a more refined form of Hermite-Hadamard and Jensen type inequalities for generalized interval-valued h-Godunova-Levin stochastic processes. In addition, we provide some examples to demonstrate the validity of our main findings.

    Citation: Waqar Afzal, Thongchai Botmart. Some novel estimates of Jensen and Hermite-Hadamard inequalities for h-Godunova-Levin stochastic processes[J]. AIMS Mathematics, 2023, 8(3): 7277-7291. doi: 10.3934/math.2023366

    Related Papers:

  • It is undeniable that convex and non-convex functions play an important role in optimization. As a result of its behavior, convexity also plays a significant role in discussing inequalities. It is clear that convexity and stochastic processes are intertwined. The stochastic process is a mathematical model that describes how systems or phenomena fluctuate randomly. Probability theory generally says that the convex function applied to the expected value of a random variable is bounded above by the expected value of the random variable's convex function. Furthermore, the deep connection between convex inequalities and stochastic processes offers a whole new perspective on the study of inequality. Although Godunova-Levin functions are well known in convex theory, their properties enable us to determine inequality terms with greater accuracy than those obtained from convex functions. In this paper, we established a more refined form of Hermite-Hadamard and Jensen type inequalities for generalized interval-valued h-Godunova-Levin stochastic processes. In addition, we provide some examples to demonstrate the validity of our main findings.



    加载中


    [1] R. E. Moore, Interval analysis, Englewood Cliffs: Prentice-Hall, 1966.
    [2] J. M. Snyder, Interval analysis for computer graphics, Proceedings of the 19th annual conference on computer graphics and interactive techniques, 1992,121–130.
    [3] N. A. Gasilov, Ş. Emrah Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Comput., 22 (2018), 3817–3828.
    [4] D. Singh, B. A. Dar, Sufficiency and duality in non-smooth interval valued programming problems, J. Ind. Manag. Optim., 15 (2019), 647–665. https://doi.org/10.3934/jimo.2018063 doi: 10.3934/jimo.2018063
    [5] E. de Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE T. Neural Networ., 20 (2009), 638–653. http://doi.org/10.1109/TNN.2008.2011267 doi: 10.1109/TNN.2008.2011267
    [6] S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.
    [7] A. Almutairi, A. Kılıçman, New refinements of the Hadamard inequality on coordinated convex function, J. Inequal. Appl., 2019 (2019), 192. https://doi.org/10.1186/s13660-019-2143-2 doi: 10.1186/s13660-019-2143-2
    [8] X. N. Leng, T. Feng, X. Z. Meng. Stochastic inequalities and applications to dynamics analysis of a novel sivs epidemic model with jumps, J. Inequal. Appl., 2017 (2017), 138. https://doi.org/10.1186/s13660-017-1418-8 doi: 10.1186/s13660-017-1418-8
    [9] S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices, J. Math. Inequal., 11 (2017), 241–259. http://doi.org/10.7153/jmi-11-23 doi: 10.7153/jmi-11-23
    [10] K. Nikodem, On convex stochastic processes, Aeq. Math., 20 (1980), 184–197. http://doi.org/10.1007/BF02190513 doi: 10.1007/BF02190513
    [11] A. Skowronski, On some properties ofj-convex stochastic processes, Aeq. Math., 44 (1992), 249–258. http://doi.org/10.1007/BF01830983 doi: 10.1007/BF01830983
    [12] D. Kotrys, Hermite–Hadamard inequality for convex stochastic processes, Aequat. Math., 83 (2012), 143–152. http://doi.org/10.1007/s00010-011-0090-1 doi: 10.1007/s00010-011-0090-1
    [13] D. Kotrys, Remarks on strongly convex stochastic processes, Aequat. Math., 86 (2013), 91–98. http://doi.org/10.1007/s00010-012-0163-9 doi: 10.1007/s00010-012-0163-9
    [14] H. Agahi, Refinements of mean-square stochastic integral inequalities on convex stochastic processes, Aequat. Math., 90 (2016), 765–772. http://doi.org/10.1007/s00010-015-0378-7 doi: 10.1007/s00010-015-0378-7
    [15] H. Agahi, A. Babakhani, On fractional stochastic inequalities related to Hermite–Hadamard and Jensen types for convex stochastic processes, Aequat. Math., 90 (2016), 1035–1043. http://doi.org/10.1007/s00010-016-0425-z doi: 10.1007/s00010-016-0425-z
    [16] W. Afzal, K. Shabbir, T. Botmart, S. Treanţă, Some new estimates of well known inequalities for $(h_1, h_2)$-Godunova-Levin functions by means of center-radius order relation, AIMS Mathematics, 8 (2022), 3101–3119. https://doi.org/10.3934/math.2023160 doi: 10.3934/math.2023160
    [17] H. Agahi, M. Yadollahzadeh, On stochastic pseudo-integrals with applications, Stat. Probabil. Lett., 124 (2017), 41–48. https://doi.org/10.1016/j.spl.2017.01.001 doi: 10.1016/j.spl.2017.01.001
    [18] F. Ma, W. Nazeer, M. Ghafoor, Hermite-Hadamard, Jensen, and fractional integral inequalities for generalized-convex stochastic processes, J. Math., 2021 (2021), 5524780. http://doi.org/10.1155/2021/5524780 doi: 10.1155/2021/5524780
    [19] W. Afzal, K. Shabbir, S. Treanţă, K. Nonlaopon, Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions, AIMS Mathematics, 8 (2022), 3303–3321. https://doi.org/10.3934/math.2023170 doi: 10.3934/math.2023170
    [20] H. Zhou, MS. Saleem, M. Ghafoor, J. J. Li, Generalization of-convex stochastic processes and some classical inequalities, Math. Probl. Eng., 2020 (2020), 1583807.
    [21] T. Saeed, W. Afzal, K. Shabbir, S. Treanţă, M. D. Sen, Some novel estimates of Hermite-Hadamard and Jensen type inequalities for $(h_1, h_2)$-convex functions pertaining to total order relation, Mathematics, 10 (2022), 4777. https://doi.org/10.3390/math10244777 doi: 10.3390/math10244777
    [22] W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical $(h_1, h_2)$-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970
    [23] W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Mathematics, 8 (2023), 1696–1712. https://doi.org/10.3934/math.2023087 doi: 10.3934/math.2023087
    [24] S. Varoşanec, On h-convexity, J Math. Anal. Appl., 326 (2007), 303–311.
    [25] M. Bombardelli, S. Varoşanec, Properties of h-convex functions related to the Hermite–Hadamard–Fejér inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. https://doi.org/10.1016/j.camwa.2009.07.073 doi: 10.1016/j.camwa.2009.07.073
    [26] W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanţă, Some h-Godunova–Levin function inequalities using center radius (Cr) order, Fractal Fract., 6 (2022), 518. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518
    [27] W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued $(h_1, h_2)$-Godunova-Levin functions, AIMS Mathematics, 7 (2022), 19372–19387. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064
    [28] X. J. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova Levin functions, J. Math, 2022 (2022), 3830324. http://dx.doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324
    [29] T. Saeed, W. Afzal, M. Abbas, S. Treanţă, M. D. Sen, Some new generalizations of integral inequalities for harmonical cr-$(h_1, h_2)$-Godunova Levin functions and applications, Mathematics, 10 (2022), 4540. https://doi.org/10.3390/math10234540 doi: 10.3390/math10234540
    [30] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones J. Math., 34 (2015), 323–341.
    [31] D. Barráez, L. González, N. Merentes, On h-convex stochastic processes, Math. Aeterna, 5 (2015), 571–581.
    [32] D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, New jensen and Hermite-Hadamard type inequalities for $h$-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
    [33] O. Almutairi, A. Kiliıcman, Some integral inequalities for $h$-Godunova-Levin preinvexity, Symmetry, 11 (2019), 1500. https://doi.org/10.3390/sym11121500 doi: 10.3390/sym11121500
    [34] A. Rakhlin, O. Shamir, K. Sridharan, Making gradient descent optimal for strongly convex stochastic optimization, 2011. Available from: https://arXiv.org/abs/1109.5647
    [35] H. Q. Jin, Z. Q. Xu, X. Y. Zhou, A convex stochastic optimization problem arising from portfolio selection, Int. J. Math.,, 18 (2008), 171–183. https://doi.org/10.1111/j.1467-9965.2007.00327.x
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1247) PDF downloads(87) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog