It is undeniable that convex and non-convex functions play an important role in optimization. As a result of its behavior, convexity also plays a significant role in discussing inequalities. It is clear that convexity and stochastic processes are intertwined. The stochastic process is a mathematical model that describes how systems or phenomena fluctuate randomly. Probability theory generally says that the convex function applied to the expected value of a random variable is bounded above by the expected value of the random variable's convex function. Furthermore, the deep connection between convex inequalities and stochastic processes offers a whole new perspective on the study of inequality. Although Godunova-Levin functions are well known in convex theory, their properties enable us to determine inequality terms with greater accuracy than those obtained from convex functions. In this paper, we established a more refined form of Hermite-Hadamard and Jensen type inequalities for generalized interval-valued h-Godunova-Levin stochastic processes. In addition, we provide some examples to demonstrate the validity of our main findings.
Citation: Waqar Afzal, Thongchai Botmart. Some novel estimates of Jensen and Hermite-Hadamard inequalities for h-Godunova-Levin stochastic processes[J]. AIMS Mathematics, 2023, 8(3): 7277-7291. doi: 10.3934/math.2023366
It is undeniable that convex and non-convex functions play an important role in optimization. As a result of its behavior, convexity also plays a significant role in discussing inequalities. It is clear that convexity and stochastic processes are intertwined. The stochastic process is a mathematical model that describes how systems or phenomena fluctuate randomly. Probability theory generally says that the convex function applied to the expected value of a random variable is bounded above by the expected value of the random variable's convex function. Furthermore, the deep connection between convex inequalities and stochastic processes offers a whole new perspective on the study of inequality. Although Godunova-Levin functions are well known in convex theory, their properties enable us to determine inequality terms with greater accuracy than those obtained from convex functions. In this paper, we established a more refined form of Hermite-Hadamard and Jensen type inequalities for generalized interval-valued h-Godunova-Levin stochastic processes. In addition, we provide some examples to demonstrate the validity of our main findings.
[1] | R. E. Moore, Interval analysis, Englewood Cliffs: Prentice-Hall, 1966. |
[2] | J. M. Snyder, Interval analysis for computer graphics, Proceedings of the 19th annual conference on computer graphics and interactive techniques, 1992,121–130. |
[3] | N. A. Gasilov, Ş. Emrah Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Comput., 22 (2018), 3817–3828. |
[4] | D. Singh, B. A. Dar, Sufficiency and duality in non-smooth interval valued programming problems, J. Ind. Manag. Optim., 15 (2019), 647–665. https://doi.org/10.3934/jimo.2018063 doi: 10.3934/jimo.2018063 |
[5] | E. de Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE T. Neural Networ., 20 (2009), 638–653. http://doi.org/10.1109/TNN.2008.2011267 doi: 10.1109/TNN.2008.2011267 |
[6] | S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341. |
[7] | A. Almutairi, A. Kılıçman, New refinements of the Hadamard inequality on coordinated convex function, J. Inequal. Appl., 2019 (2019), 192. https://doi.org/10.1186/s13660-019-2143-2 doi: 10.1186/s13660-019-2143-2 |
[8] | X. N. Leng, T. Feng, X. Z. Meng. Stochastic inequalities and applications to dynamics analysis of a novel sivs epidemic model with jumps, J. Inequal. Appl., 2017 (2017), 138. https://doi.org/10.1186/s13660-017-1418-8 doi: 10.1186/s13660-017-1418-8 |
[9] | S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices, J. Math. Inequal., 11 (2017), 241–259. http://doi.org/10.7153/jmi-11-23 doi: 10.7153/jmi-11-23 |
[10] | K. Nikodem, On convex stochastic processes, Aeq. Math., 20 (1980), 184–197. http://doi.org/10.1007/BF02190513 doi: 10.1007/BF02190513 |
[11] | A. Skowronski, On some properties ofj-convex stochastic processes, Aeq. Math., 44 (1992), 249–258. http://doi.org/10.1007/BF01830983 doi: 10.1007/BF01830983 |
[12] | D. Kotrys, Hermite–Hadamard inequality for convex stochastic processes, Aequat. Math., 83 (2012), 143–152. http://doi.org/10.1007/s00010-011-0090-1 doi: 10.1007/s00010-011-0090-1 |
[13] | D. Kotrys, Remarks on strongly convex stochastic processes, Aequat. Math., 86 (2013), 91–98. http://doi.org/10.1007/s00010-012-0163-9 doi: 10.1007/s00010-012-0163-9 |
[14] | H. Agahi, Refinements of mean-square stochastic integral inequalities on convex stochastic processes, Aequat. Math., 90 (2016), 765–772. http://doi.org/10.1007/s00010-015-0378-7 doi: 10.1007/s00010-015-0378-7 |
[15] | H. Agahi, A. Babakhani, On fractional stochastic inequalities related to Hermite–Hadamard and Jensen types for convex stochastic processes, Aequat. Math., 90 (2016), 1035–1043. http://doi.org/10.1007/s00010-016-0425-z doi: 10.1007/s00010-016-0425-z |
[16] | W. Afzal, K. Shabbir, T. Botmart, S. Treanţă, Some new estimates of well known inequalities for $(h_1, h_2)$-Godunova-Levin functions by means of center-radius order relation, AIMS Mathematics, 8 (2022), 3101–3119. https://doi.org/10.3934/math.2023160 doi: 10.3934/math.2023160 |
[17] | H. Agahi, M. Yadollahzadeh, On stochastic pseudo-integrals with applications, Stat. Probabil. Lett., 124 (2017), 41–48. https://doi.org/10.1016/j.spl.2017.01.001 doi: 10.1016/j.spl.2017.01.001 |
[18] | F. Ma, W. Nazeer, M. Ghafoor, Hermite-Hadamard, Jensen, and fractional integral inequalities for generalized-convex stochastic processes, J. Math., 2021 (2021), 5524780. http://doi.org/10.1155/2021/5524780 doi: 10.1155/2021/5524780 |
[19] | W. Afzal, K. Shabbir, S. Treanţă, K. Nonlaopon, Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions, AIMS Mathematics, 8 (2022), 3303–3321. https://doi.org/10.3934/math.2023170 doi: 10.3934/math.2023170 |
[20] | H. Zhou, MS. Saleem, M. Ghafoor, J. J. Li, Generalization of-convex stochastic processes and some classical inequalities, Math. Probl. Eng., 2020 (2020), 1583807. |
[21] | T. Saeed, W. Afzal, K. Shabbir, S. Treanţă, M. D. Sen, Some novel estimates of Hermite-Hadamard and Jensen type inequalities for $(h_1, h_2)$-convex functions pertaining to total order relation, Mathematics, 10 (2022), 4777. https://doi.org/10.3390/math10244777 doi: 10.3390/math10244777 |
[22] | W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical $(h_1, h_2)$-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970 |
[23] | W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Mathematics, 8 (2023), 1696–1712. https://doi.org/10.3934/math.2023087 doi: 10.3934/math.2023087 |
[24] | S. Varoşanec, On h-convexity, J Math. Anal. Appl., 326 (2007), 303–311. |
[25] | M. Bombardelli, S. Varoşanec, Properties of h-convex functions related to the Hermite–Hadamard–Fejér inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. https://doi.org/10.1016/j.camwa.2009.07.073 doi: 10.1016/j.camwa.2009.07.073 |
[26] | W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanţă, Some h-Godunova–Levin function inequalities using center radius (Cr) order, Fractal Fract., 6 (2022), 518. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518 |
[27] | W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued $(h_1, h_2)$-Godunova-Levin functions, AIMS Mathematics, 7 (2022), 19372–19387. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064 |
[28] | X. J. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova Levin functions, J. Math, 2022 (2022), 3830324. http://dx.doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324 |
[29] | T. Saeed, W. Afzal, M. Abbas, S. Treanţă, M. D. Sen, Some new generalizations of integral inequalities for harmonical cr-$(h_1, h_2)$-Godunova Levin functions and applications, Mathematics, 10 (2022), 4540. https://doi.org/10.3390/math10234540 doi: 10.3390/math10234540 |
[30] | S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones J. Math., 34 (2015), 323–341. |
[31] | D. Barráez, L. González, N. Merentes, On h-convex stochastic processes, Math. Aeterna, 5 (2015), 571–581. |
[32] | D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, New jensen and Hermite-Hadamard type inequalities for $h$-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3 |
[33] | O. Almutairi, A. Kiliıcman, Some integral inequalities for $h$-Godunova-Levin preinvexity, Symmetry, 11 (2019), 1500. https://doi.org/10.3390/sym11121500 doi: 10.3390/sym11121500 |
[34] | A. Rakhlin, O. Shamir, K. Sridharan, Making gradient descent optimal for strongly convex stochastic optimization, 2011. Available from: https://arXiv.org/abs/1109.5647 |
[35] | H. Q. Jin, Z. Q. Xu, X. Y. Zhou, A convex stochastic optimization problem arising from portfolio selection, Int. J. Math.,, 18 (2008), 171–183. https://doi.org/10.1111/j.1467-9965.2007.00327.x |