In this manuscript, we aim to establish a connection between the concept of inequalities and the novel Center-Radius order relation. The idea of a Center-Radius (CR)-order interval-valued Godunova-Levin (GL) function is introduced by referring to a total order relation between two intervals. Consequently, convexity and nonconvexity contribute to different kinds of inequalities. In spite of this, convex theory turns to Godunova-Levin functions because they are more efficient at determining inequality terms than other convexity classes. Our application of these new definitions has led to many classical and novel special cases that illustrate the key findings of the paper. Using total order relations between two intervals, this study introduces CR-$ (h_1, h_2) $-Goduova-Levin functions. It is clear from their properties and widespread usage that the Center-Radius order relation is an ideal tool for studying inequalities. This paper discusses various inequalities based on the Center-Radius order relation. With the CR-order relation, we can first derive Hermite-Hadamard ($ \mathcal{H.H} $) inequalities and then develop Jensen-type inequality for interval-valued functions ($ \mathcal{IVFS} $) of type $ (h_1, h_2) $-Godunova-Levin function. Furthermore, the study includes examples to support its conclusions.
Citation: Waqar Afzal, Khurram Shabbir, Thongchai Botmart, Savin Treanţă. Some new estimates of well known inequalities for $ (h_1, h_2) $-Godunova-Levin functions by means of center-radius order relation[J]. AIMS Mathematics, 2023, 8(2): 3101-3119. doi: 10.3934/math.2023160
In this manuscript, we aim to establish a connection between the concept of inequalities and the novel Center-Radius order relation. The idea of a Center-Radius (CR)-order interval-valued Godunova-Levin (GL) function is introduced by referring to a total order relation between two intervals. Consequently, convexity and nonconvexity contribute to different kinds of inequalities. In spite of this, convex theory turns to Godunova-Levin functions because they are more efficient at determining inequality terms than other convexity classes. Our application of these new definitions has led to many classical and novel special cases that illustrate the key findings of the paper. Using total order relations between two intervals, this study introduces CR-$ (h_1, h_2) $-Goduova-Levin functions. It is clear from their properties and widespread usage that the Center-Radius order relation is an ideal tool for studying inequalities. This paper discusses various inequalities based on the Center-Radius order relation. With the CR-order relation, we can first derive Hermite-Hadamard ($ \mathcal{H.H} $) inequalities and then develop Jensen-type inequality for interval-valued functions ($ \mathcal{IVFS} $) of type $ (h_1, h_2) $-Godunova-Levin function. Furthermore, the study includes examples to support its conclusions.
[1] | R. E. Moore, Interval analysis, Prentice-Hall, 1966. |
[2] | R. E. Moore, Methods and applications of interval analysis, Philadelphia, 1979. |
[3] | J. M. Snyder, Interval analysis for computer graphics, Comput. Graphics, 26 (1992), 121–130. https:///doi.org/10.1145/133994.134024 doi: 10.1145/133994.134024 |
[4] | Y. H. Qian, J. Y. Liang, C. Y. Dang, Interval ordered information systems, Comput. Math. Appl., 56 (2009), 1994–2009. https://doi.org/10.1016/j.camwa.2008.04.021 doi: 10.1016/j.camwa.2008.04.021 |
[5] | M. S. Rahman, A. A. Shaikh, A. K. Bhunia, Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function, Comput. Ind. Eng., 147 (2020), 106634. https://doi.org/10.1016/j.cie.2020.106634 doi: 10.1016/j.cie.2020.106634 |
[6] | E. Rothwell, M. J. Cloud, Automatic error analysis using intervals, IEEE T. Educ., 55 (2011), 9–15. https://doi.org/10.1109/TE.2011.2109722 doi: 10.1109/TE.2011.2109722 |
[7] | E. Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE T. Educ., 20 (2009), 638–653. https://doi.org/10.1109/TNN.2008.2011267 doi: 10.1109/TNN.2008.2011267 |
[8] | W. Gao, C. Song, F. Tin-Loi, Probabilistic interval analysis for structures with uncertainty, Struct. Saf., 32 (2010), 191–199. https://doi.org/10.1016/j.strusafe.2010.01.002 doi: 10.1016/j.strusafe.2010.01.002 |
[9] | X. J. Wang, L. Wang, Z. P. Qiu, A feasible implementation procedure for interval analysis method from measurement data, Appl. Math. Model., 38 (2014), 2377–2397. https://doi.org/10.1016/j.apm.2013.10.049 doi: 10.1016/j.apm.2013.10.049 |
[10] | S. Faisal, M. A Khan, S. Iqbal, Generalized Hermite-Hadamard-Mercer type inequalities via majorization, Filomat, 36 (2022), 469–483. https://doi.org/10.2298/FIL2202469F doi: 10.2298/FIL2202469F |
[11] | S. Faisal, M. A. Khan, T. U. Khan, T. Saeed, A. M. Alshehri, E. R. Nwaeze, New conticrete Hermite-Hadamard-Jensen-Mercer fractional inequalities, Symmetry, 14 (2022), 294. https://doi.org/10.3390/sym14020294 doi: 10.3390/sym14020294 |
[12] | S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices, J. Math. Inequal., 11 (2017), 241–259. https://doi.org/10.7153/jmi-11-23 doi: 10.7153/jmi-11-23 |
[13] | M. Kamenskii, G. Petrosyan, C. F. Wen, An existence result for a periodic boundary value problem of fractional semilinear di Kerential equations in a Banach space, J. Nonlinear Var. Anal., 5 (2021), 155–177. https://doi.org/10.23952/jnva.5.2021.1.10 doi: 10.23952/jnva.5.2021.1.10 |
[14] | D. Zhao, T. An, G. Ye, D. F. M. Torres, On Hermite-Hadamard type inequalities for harmonical $h$-convex interval-valued functions, Math. Inequal. Appl., 23 (2020), 95–105. https://doi.org/10.7153/mia-2020-23-08 doi: 10.7153/mia-2020-23-08 |
[15] | M. B. Khan, J. E. Macas-Diaz, S. Treanta, M. S. Soliman, H. G. Zaini, Hermite-Hadamard inequalities in fractional calculus for left and right harmonically convex functions via interval-valued settings, Fractal Fract., 6 (2022), 178. https://doi.org/10.3390/fractalfract6040178 doi: 10.3390/fractalfract6040178 |
[16] | M. V. Mihai, M. U. Awan, M. A. Noor, J. K. Kim, Hermite-Hadamard inequalities and their applications, J. Inequal. Appl., 2018 (2018), 309. https://doi.org//10.1186/s13660-018-1895-4 doi: 10.1186/s13660-018-1895-4 |
[17] | C. P. Niculescu, L. E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exch., 29 (2003), 663–686. https://doi.org/10.14321/realanalexch.29.2.0663 doi: 10.14321/realanalexch.29.2.0663 |
[18] | T. Abdeljawad, S. Rashid, H. Khan, Y. M. Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 1 (2020), 1–17. https://doi.org/10.1186/s13662-020-02782-y doi: 10.1186/s13662-020-02782-y |
[19] | E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions, Adv. Differ. Equ., 1 (2020), 1–17. https://doi.org/10.1186/s13662-020-02977-3 doi: 10.1186/s13662-020-02977-3 |
[20] | M. Nowicka, A. Witkowski, Applications of the Hermite-Hadamard inequality, arXiv, 1 (2016). https://doi.org/1603.07170 |
[21] | L. Xiao, G. Lu, A new refinement of Jensen's inequality with applications in information theory, Open Math., 18 (2018), 1748–1759. https:///doi.org/10.1515/math-2020-0123 doi: 10.1515/math-2020-0123 |
[22] | M. U. Awan, M. A. Noor, F. Safdar, A. Islam, Hermite-Hadamard type inequalities with applications, Miskolc Math. Notes, 21 (2020), 593–614. https:///doi.org/10.18514/MMN.2020.2837 doi: 10.18514/MMN.2020.2837 |
[23] | W. W. Breckner, Continuity of generalized convex and generalized concave set-valued functions, Rev. Danaly. Numer. Theo. Lapprocim., 22 (1993), 39–51. |
[24] | Y. Chalco-Cano, A. Flores-Franulic, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472. https://doi.org/10.1590/S1807-03022012000300002 doi: 10.1590/S1807-03022012000300002 |
[25] | T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci., 420 (2017), 110–115. https://doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055 |
[26] | H. Bai, M. S. Saleem, W. Nazeer, M. S. Zahoor, Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function, J. Math., 2020 (2020), 3945384. https://doi.org/10.1155/2020/3945384 doi: 10.1155/2020/3945384 |
[27] | D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for $h$-convex interval-valued functions, J. Inequal. Appl., 1 (2018), 1–14. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3 |
[28] | W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Math., 8 (2022), 1696–1712. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064 |
[29] | J. E. Macias-Diaz, M. B. Khan, M. A Noor, A. A. A. Allah, S. M. Alghamdi, Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus, AIMS Math., 7 (2022), 4266–4292. https://doi.org/10.3934/math.2022236 doi: 10.3934/math.2022236 |
[30] | M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex functions via fuzzy-interval-valued settings, Fractal Fract., 6 (2022), 83. https://doi.org/10.3390/fractalfract6020083 doi: 10.3390/fractalfract6020083 |
[31] | M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex functions via fuzzy-interval-valued settings, Fractal Fract., 6 (2022), 83. https://doi.org/10.3390/fractalfract6020083 doi: 10.3390/fractalfract6020083 |
[32] | M. U. Awan, M. A. Noor, K. I. Noor, A. G. Khan, Some new classes of convex functions and inequalities, Miskolc Math. Notes, 19 (2018), 2179. https://doi.org/10.18514/MMN.2018.2179 doi: 10.18514/MMN.2018.2179 |
[33] | R. Liu, R. Xu, Hermite-Hadamard type inequalities for harmonical $(h1, h2)$-convex interval-valued functions, Math. Found. Comput., 4 (2021), 89. https://doi.org/10.3934/mfc.2021005 doi: 10.3934/mfc.2021005 |
[34] | W. G. Yang, Hermite-Hadamard type inequalities for $(p1, h1)$-$(p2, h2)$-convex functions on the co-ordinates., Tamkang J. Math., 3 (2016), 289–322. https://doi.org/10.5556/j.tkjm.47.2016.1958 doi: 10.5556/j.tkjm.47.2016.1958 |
[35] | D. P. Shi, B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for (m, h1, h2)-convex functions via Riemann-Liouville fractional integrals, Turkish J. Anal. Number Theory, 2 (2014), 22–27. https://doi.org/10.12691/tjant-2-1-6 doi: 10.12691/tjant-2-1-6 |
[36] | S. K. Sahoo, P. O. Mohammed, D. O. Regan, M. Tariq, New Hermite-Hadamard type inequalities in connection with interval-valued generalized harmonically $(h_1, h_2)$-Godunova-Levin functions, Symmetry, 14 (2022), 1964. https://doi.org/10.3390/sym14101964 doi: 10.3390/sym14101964 |
[37] | W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued ($h$$_{1}$, $h$$_{2}$)-Godunova-Levin functions, AIMS Math., 7 (2022), 19372–19387. https://doi.org/2010.3934/math.20221064 |
[38] | Y. An, G. Ye, D. Zhao, W. Liu, Hermite-Hadamard type inequalities for interval $(h_1, h_2)$-convex functions, Mathematics, 7 (2022), 436. https://doi.org/10.3390/math7050436 doi: 10.3390/math7050436 |
[39] | X. J. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite-Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova-Levin functions, J. Math., 2022 (2022), 3830324. https://doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324 |
[40] | S. Ali, R. S. Ali, M. Vivas-Cortez, S. Mubeen, G. Rahman, K. S. Nisar, Some fractional integral inequalities via $h$-Godunova-Levin preinvex function, AIMS Math., 8 (2022), 13832–13844. https://doi/10.3934/math.2022763 doi: 10.3934/math.2022763 |
[41] | A. K. Bhunia, S. S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169–178. https://doi/10.1016/j.cie.2014.05.014 doi: 10.1016/j.cie.2014.05.014 |
[42] | F. F. Shi, G. J. Ye, W. Liu, D. F. Zhao, cr-$h$-convexity and some inequalities for cr-$h$-convex function, Filomat, 10 (2022). |
[43] | W. Liu, F. Shi, G. J. Ye, D. F. Zhao, The properties of harmonically cr-$h$-convex function and its applications, Mathematics, 10 (2022), 2089. https://doi/10.3390/math10122089 doi: 10.3390/math10122089 |
[44] | W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical ($h$$_{1}$, $h$$_{2}$)-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970 |
[45] | W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanţă, Some $h$-Godunova-Levin function inequalities using center radius (cr) order, Fractal Fract., 6 (2022), 518. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518 |