In this study, a $ \zeta^*_\Gamma $-local function is defined and its properties are examined. This newly defined local function is compared with the well-known local function and the local closure function according to the relation of being a subset. With the help of this new local function, the $ \Psi_{\zeta^*_\Gamma} $ operator is defined and topologies are obtained. Moreover, alternative answers are given to an open question found in the literature. $ \Psi_{\zeta^*_\Gamma} $-compatibility is defined and its properties are examined. $ \Psi_{\zeta^*_\Gamma} $-compatibility is characterized with the help of the new operator. Finally, new spaces were defined and characterized.
Citation: Ferit Yalaz, Aynur Keskin Kaymakcı. A new local function and a new compatibility type in ideal topological spaces[J]. AIMS Mathematics, 2023, 8(3): 7097-7114. doi: 10.3934/math.2023358
In this study, a $ \zeta^*_\Gamma $-local function is defined and its properties are examined. This newly defined local function is compared with the well-known local function and the local closure function according to the relation of being a subset. With the help of this new local function, the $ \Psi_{\zeta^*_\Gamma} $ operator is defined and topologies are obtained. Moreover, alternative answers are given to an open question found in the literature. $ \Psi_{\zeta^*_\Gamma} $-compatibility is defined and its properties are examined. $ \Psi_{\zeta^*_\Gamma} $-compatibility is characterized with the help of the new operator. Finally, new spaces were defined and characterized.
[1] | K. Kuratowski, Topologie I, Warszawa, 1933. |
[2] | K. Kuratowski, Topology Volume I, Academic Press, New York-London, 1966. |
[3] | R. Vaidyanathswamy, The localisation theory in set topology, P. Indian AS-Math. Sci., 20 (1945), 51–61. https://doi.org/10.1007/BF03048958 doi: 10.1007/BF03048958 |
[4] | R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, 1960. |
[5] | D. Janković, T. R. Hamlett, New topologies from old via ideals, Am. Math. Mon., 97 (1990), 295–310. |
[6] | G. Freud, Ein beitrag zu dem satze von Cantor und Bendixson, Acta Math. Hung., 9 (1958), 333–336. https://doi.org/10.1007/BF02020262 doi: 10.1007/BF02020262 |
[7] | Z. Li, F. Lin, On I-Baire spaces, Filomat, 27 (2013), 301–310. |
[8] | E. Ekici, On I-Alexandroff and $I_{g}$-Alexandroff ideal topological spaces, Filomat, 25 (2011), 99–108. |
[9] | A. Keskin, Ş. Yüksel, T. Noiri, On I-extremally disconnected spaces, Commun. Fac. Sci. Univ., 56 (2007), 33–40. |
[10] | J. Dontchev, M. Ganster, D. A. Rose, Ideal resolvability, Topol. Appl., 93 (1999), 1–16. https://doi.org/10.1016/S0166-8641(97)00257-5 |
[11] | A. Güldürdek, Ideal Rothberger spaces, Hacet. J. Math. Stat., 47 (2018), 69–75. https://doi.org/10.15672/HJMS.2017.445 |
[12] | O. Njastad, On some classes of nearly open sets, Pac. J. Math., 15 (1965), 961–970. https://doi.org/10.2140/pjm.1965.15.961 doi: 10.2140/pjm.1965.15.961 |
[13] | N. Levine, Semi-open sets and semi-continuity in topological spaces, Am. Math. Mon., 70 (1963), 36–41. https://doi.org/10.2307/2312781 https://doi.org/10.2307/2312781 doi: 10.2307/2312781 |
[14] | A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53. |
[15] | M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, $\beta$-open sets and $\beta$-continuous mapping, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90. |
[16] | D. Jankovic, Compatible extensions of ideals, Boll. Unione Mat. Ital., 6 (1992), 453–465. |
[17] | E. Hatir, T. Noiri, On decompositions of continuity via idealization, Acta Math. Hung., 96 (2002), 341–349. |
[18] | J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, 1999. Available from: https://arXiv.org/abs/math/9901017v1. |
[19] | A. Al-Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math., 43 (2013), 139–149. |
[20] | A. Pavlović, Local function versus local closure function in ideal topological spaces, Filomat, 30 (2016), 3725–3731. https://doi.org/10.2298/FIL1614725P doi: 10.2298/FIL1614725P |
[21] | A. Njamcul, A. Pavlović, On closure compatibility of ideal topological spaces and idempotency of the local closure function, Period. Math. Hung., 84 (2021), 221–224. https://doi.org/10.1007/s10998-021-00401-1 doi: 10.1007/s10998-021-00401-1 |
[22] | M. Khan, T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2 2010, 36–42. https://doi.org/10.5373/jarpm.237.100909 |
[23] | M. M. Islam, S. Modak, Second approximation of local functions in ideal topological spaces, Acta Comment. Univ. Ta., 22 (2018), 245–255. https://doi.org/10.12697/ACUTM.2018.22.20 doi: 10.12697/ACUTM.2018.22.20 |
[24] | F. Yalaz, A. K. Kaymakcı, Weak semi-local functions in ideal topological spaces, Turk. J. Math. Comput. Sci., 11 (2019), 137–140. |
[25] | F. Yalaz, A. K. Kaymakcı, New topologies from obtained operators via weak semi-local function and some comparisons, Filomat, 15 (2021), 5073–5081. https://doi.org/10.2298/FIL2115073Y doi: 10.2298/FIL2115073Y |
[26] | P. Samuels, A topology formed from a given topology and ideal, J. London Math. Soc., 10 (1975), 409–416. https://doi.org/10.1112/jlms/s2-10.4.409 doi: 10.1112/jlms/s2-10.4.409 |
[27] | E. Hayashi, Topologies defined by local properties, Math. Ann., 156 (1964), 205–215. https://doi.org/10.1007/BF01363287 doi: 10.1007/BF01363287 |
[28] | N. V. Veličko, H-closed topological spaces, Am. Math. Soc., 78 (1968), 103–118. |