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1. Introduction

The concepts of ideal and local function were first defined by Kuratowski in [1, 2]. In [3, 4],
Vaidyanathaswamy studied the behavior of the local function of a set using many special ideals such as
the ideal of meager sets, the ideal of nowhere dense sets, the ideal of finite sets, the ideal of countable
sets. Jankovic and Hamlet developed several well-known results in [5]. If you choose the ideal as the
minimal ideal i.e., {∅} in any ideal topological space, the local function of any subset will be equal
to the closure of the subset. If you choose the ideal of finite sets (respectively the ideal of countable
sets), the local function of any set will be equal to the set of ω-accumulation (resp. condensation)
points of the subset. That is, the local function of a set can be thought of as a generalization of the
set of closure, ω-accumulation and condensation points of a set [5]. With the help of the concept of
compatibility in ideal topological space, Freud generalized [6] the Cantor-Bendixson theorem. More
results on compatibility can also be found in [5].

In general topology, there are methods of obtaining new topologies from old topologies such as
product topology, initial topology, final topology, quotient topology and subspace topology. Similarly,
in ideal topological spaces, there is a method of obtaining a new topology from the old topology.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023358


7098

The union of a set and its local function in an ideal topological space creates a Kuratowski closure
operator called star closure. So a new topology is obtained. With the help of ideal, local function
and this star topology, many new space definitions such as I-Baire spaces [7], I-Alexandroff

and Ig-Alexandroff spaces [8], I-Extremally disconnected spaces [9], I-Resolvable spaces and I-
Hyperconnected spaces [10], I-Rothberger spaces [11] have been given in the literature. These spaces
are compared with the definitions given in general topology spaces.

Weak forms of open set such as α-open [12], semi-open [13], pre-open [14], β-open [15] are defined
in general topological spaces. Based on a similar idea, many weak forms of open set such as I-
open [16], α-I-open [17], pre-I-open [18], semi-I-open [17], β-I-open [17] have been defined in
ideal topological spaces. Moreover, the weak forms of the open set in ideal topological spaces and the
weak forms of the open set in general topological spaces are compared. Many new continuity types
were given using these new weak open forms and decompositions of the well-known continuity were
obtained using these continuity types.

The local closure function and ΨΓ-operator were defined by Al-Omari and Noiri in [19]. They
obtained the topologies σ and σ0 with the help of ΨΓ-operator. They left it as an open question to
show that the σ0-topology is strictly thinner than σ-topology. Pavlovic answered [20] this question
with an example. Moreover, he gave a useful theorem [20] showing when the local function and the
local closure function coincide.

Al-Omari and Noiri gave the definition of closure compatibility. They emphasized that [19] every
compatibility space is closure compatibility. However, the counterexample illustrating this situation
was given by Njamcul and Pavlovic in [21]. They characterized closed sets according to the σ-
topology. Moreover, the idempotency of local closure function has been discussed. In recent years,
new local function types such as semi-local [22], semi-closure [23] and weak semi-local [24] functions
have been defined besides the local closure function and the basic properties of these new types of local
function are examined. In [24, 25], local function, local closure and weak semi-local were compared
according to subset relation.

In this study, we define the new type of local function by using well-known local function in the
sense of Kuratowski. We examine the basic properties of this local function and give the definition of
Ψζ∗

Γ
operator. We obtain new topologies using this operator and compare ζ∗

Γ
-compatibility with closure

compatibility. We answer the question of when the concepts of compatibility, closure compatibility and
α∗

Γ
compatibilty coincide. Moreover, we give definitions ∗-nearly discrete space and τ∗-nearly discrete

space. In [5], nearly discrete spaces are also characterized by the local function. With similar thinking,
we characterize ∗-nearly discrete spaces with the help of ζ∗

Γ
-local function.

2. Preliminaries

Let (U, τ) be a topological space. The family of all open neighborhoods of the point x ∈ U is
denoted by τ(x). We show the interior and the closure of subset M as i(M) and c(M), respectively. The
family of all subsets of U is denoted by P(U). The set of natural and real numbers is denoted by N and
R , respectively. The set of natural numbers containing 0 is denoted by ω.

Definition 2.1. ( [2]) Let U be a nonempty subset and I ⊆ P(U). If the following are satisfied

a) ∅ ∈ I.
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b) If M ∈ I and K ⊆ M, then K ∈ I.

c) If M,K ∈ I, then M ∪ K ∈ I.

Then I is called an ideal on U.

The ideal of finite subsets of U is denoted by I f in. If (U, τ) is a topological space with an ideal I on
U, this space is called an ideal topological space, is denoted by the trible (U, τ,I) or briefly I-space.
The subset M is called nowhere dense if i(c(M)) = ∅ in any topological space. In any (U, τ), the family
of nowhere dense subsets forms an ideal on U. This ideal is denoted by Inw. A subset M is called
discrete set if M ∩ Md = ∅ (where Md is derived set of M). In any (U, τ), the family of closed and
discrete subsets forms an ideal on U. This ideal is denoted by Icd.

Definition 2.2. ( [2]) Let (U, τ) be an I-space and M ⊆ U. The operator (.)∗ : P(U) → P(U) is
defined by M∗(I, τ) = {x ∈ U : (O ∩ M) < I for every O ∈ τ(x)} is called local function of the subset
M. M∗(I) or M∗ sometimes is written instead of M∗(I, τ).

Theorem 2.3. ( [2–4]) Let (U, τ) be an I-space and M,K ⊆ U.

a) M∗ = c(M∗) ⊆ c(M)

b) (M ∩ K)∗ ⊆ M∗ ∩ K∗

c) M∗(Inw) = c(i(c(M)))

d) If I ⊆ J , then M∗(J) ⊆ M∗(I).

Theorem 2.4. ( [5]) Let (U, τ) be an I-space and M ⊆ U. The following statements are equivalent:

a) U = U∗.

b) τ ∩ I = {∅}.

c) If M ∈ I, then i(M) = ∅.

d) For every M ∈ τ, M ⊆ M∗.

The ideal space that satisfies any of the above statements is called the Hayashi-Samuel space ( [26,27]).

Definition 2.5. [19] Let (U, τ) be an I-space and M ⊆ U. The operator Γ(.) : P(U) → P(U) is
defined by Γ(M)(I, τ) = {x ∈ U : (c(O) ∩ M) < I for every O ∈ τ(x)} is called local closure function
of the subset M. Γ(M)(I) or Γ(M) sometimes is written instead of Γ(M)(I, τ).

Let (U, τ) be a topological space. A subset M of U is called θ-open [28], if each point of M has an
open neighborhood O such that c(O) ⊆ M. The θ-closure [28] of a subset M in any topological space
(U, τ) is defined by cθ(M) = {x ∈ U : c(O) ∩ M , ∅ for every O ∈ τ(x)}. The family of θ-open subsets
forms the topology on U and is denoted by τθ. Since τθ ⊆ τ, c(M) ⊆ cθ(M) for every M ⊆ U.

Theorem 2.6. [19] Let (U, τ) be an I-space and M ⊆ U. Then, Γ(M) = c(Γ(M)) ⊆ cθ(M).

Theorem 2.7. [19] Let (U, τ) be a topological space and M ∈ τ. Then, c(M) = cθ(M).

Theorem 2.8. [20] Let M be a subset in any ideal topological space. if Inw ⊆ I, then Γ(M)(I) =

M∗(I).
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In [19], Al-Omari and Noiri defined the operator ΨΓ as follows:

Definition 2.9. [19] Let (U, τ) be an I-space and M ⊆ U. An operator ΨΓ : P(X)→ τ is defined by:

Ψζ∗
Γ
(M) = {x ∈ U : there exists O ∈ τ(x) such that c(O) \ M ∈ I} = U \ Γ(U \ M).

Using this operator, the following two topologies and Diagram I are obtained in [19]:

σ = {M ⊆ U : M ⊆ ΨΓ(M)} and σ0 = {M ⊆ U : M ⊆ i(c(ΨΓ(M)))}.

Elements of the topology σ are called σ-open set and elements of the topology σ0 are called σ0-
open set.

θ − open open

σ − open σ0 − open
Diagram I.

3. ζ∗
Γ
-local function

Definition 3.1. Let M be a subset of an I-space (U, τ). An operator ζ∗
Γ

: P(U)→ P(U) is defined by

ζ∗Γ(M)(I, τ) = {x ∈ U : (O∗(I, τ) ∩ M) < I for every O ∈ τ(x)}

is called the ζ∗
Γ
-local function of M with respect to an ideal I and a topology τ on U. We sometimes

write ζ∗
Γ
(M)(I) or ζ∗

Γ
(M) instead of ζ∗

Γ
(M)(I, τ).

Theorem 3.2. Let M be a subset of an I-space (U, τ). Then, ζ∗
Γ
(M)(I, τ) ⊆ Γ(M)(I, τ).

Proof. Let x ∈ ζ∗
Γ
(M). Then, (O∗ ∩ M) < I for every O ∈ τ(x). From Theorem 2.3-a), O∗ ∩ M ⊆

(c(O) ∩ M) < I. So x ∈ Γ(M). �

The following examples show that the relation ζ∗
Γ
(M)(I, τ) ⊆ Γ(M)(I, τ) is strictly holds.

Example 3.3. Let τ = {U, ∅, {d}, {a, c}, {a, c, d}} and I = {∅, {c}, {d}, {c, d}} be a topology and an ideal
on U = {a, b, c, d}, respectively. For the subset M = {b}, M∗ = {b} and Γ(M) = U. The ζ∗

Γ
-local

function of M is ζ∗
Γ
(M) = {a, b, c}.

Example 3.4. Let U = ω + 1 = ω ∪ {ω} and τ = P(ω) ∪ {{ω} ∪ (ω \ K) : K ⊆ ω and K is finite} with
the ideal I f in. For the subset M = ω, Γ(M) = {ω} ( [20]) and M∗ = {ω}. For any x ∈ U and for every
O ∈ τ(x), O∗ = ∅ or O∗ = {ω} . So, (O∗ ∩ M) ∈ I f in for every O ∈ τ(x). Consequently ζ∗

Γ
(M) = ∅.

In Examples 3.3 and 3.4, it is seen that the local function and ζ∗
Γ
-local function are different from

each other. That is, M∗ ( ζ∗
Γ
(M) and ζ∗

Γ
(M) ( M∗ in Examples 3.3 and 3.4, respectively.

Question 1: For a subset M in any I-space, are local function and ζ∗
Γ
-local function always comparable

with respect to the subset relation? So is it always either M∗ ⊆ ζ∗
Γ
(M) or ζ∗

Γ
(M) ⊆ M∗?

Theorem 3.5. Let (U, τ) be an Inw-space and M ⊆ U. Then, Γ(M)(Inw) = M∗(Inw) = ζ∗
Γ
(M)(Inw).
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Proof. For every O ∈ τ, from Theorem 2.3-c),

O∗(Inw) = c(i(c(O)))
= c(i(c(i(O))))
= c(i(O))
= c(O).

Therefore,

ζ∗Γ(M)(Inw) = {x ∈ U : (O∗(Inw) ∩ M) < Inw for every O ∈ τ(x)}
= {x ∈ U : (c(O) ∩ M) < Inw for every O ∈ τ(x)}
= Γ(M)(Inw).

From Theorem 2.8, Γ(M)(Inw) = M∗(Inw) = ζ∗
Γ
(M)(Inw). �

Theorem 3.6. Let (U, τ) be a Hayashi-Samuel I-space and M ⊆ U. Then, M∗(I, τ) ⊆ ζ∗
Γ
(M)(I, τ).

Proof. If x ∈ M∗, then (O∩M) < I for every O ∈ τ(x). From Theorem 2.4-d), (O∩M) ⊆ (O∗∩M) < I.
Therefore x ∈ ζ∗

Γ
(M) and we obtain M∗ ⊆ ζ∗

Γ
(M). �

Theorem 3.7. Let (U, τ) be a topological space, I, J be two ideals on U and M,K be two subsets of
U. Then,

a) If M ⊆ K, then ζ∗
Γ
(M) ⊆ ζ∗

Γ
(K).

b) If I ⊆ J , then ζ∗
Γ
(M)(J) ⊆ ζ∗

Γ
(M)(I).

c) For every M ⊆ U, ζ∗
Γ
(M) = c(ζ∗

Γ
(M)) ⊆ Γ(M) ⊆ cθ(M).

d) If M ⊆ ζ∗
Γ
(M) and ζ∗

Γ
(M) is open set, then ζ∗

Γ
(M) = Γ(M) = cθ(M).

e) If M ∈ I, then ζ∗
Γ
(M) = ∅.

f) ζ∗
Γ
(∅) = ∅.

g) ζ∗
Γ
(M ∪ K) = ζ∗

Γ
(M) ∪ ζ∗

Γ
(K).

Proof. a) Let M ⊆ K and x ∈ ζ∗
Γ
(M). Then, (O∗∩M) < I for every O ∈ τ(x). Therefore, (O∗∩M) ⊆

(O∗ ∩ K) < I. Consequently, x ∈ ζ∗
Γ
(K) and ζ∗

Γ
(M) ⊆ ζ∗

Γ
(K).

b) Let x < ζ∗
Γ
(M)(I). There exists an O ∈ τ(x) such that (O∗(I) ∩ M) ∈ I ⊆ J . From Theorem 2.3-

d), (O∗(J) ∩ M) ∈ I ⊆ J . Consequently, x < ζ∗
Γ
(M)(J) and ζ∗

Γ
(M)(J) ⊆ ζ∗

Γ
(M)(I).

c) We have ζ∗
Γ
(M) ⊆ c(ζ∗

Γ
(M)). We only prove that c(ζ∗

Γ
(M)) ⊆ ζ∗

Γ
(M). Let x ∈ c(ζ∗

Γ
(M)). (O ∩

ζ∗
Γ
(M)) , ∅ for every O ∈ τ(x). Let y ∈ (O ∩ ζ∗

Γ
(M)). Then y ∈ O and y ∈ ζ∗

Γ
(M). Moreover,

O ∈ τ(y). Since y ∈ ζ∗
Γ
(M), (O∗ ∩ M) < I. Consequently, x ∈ ζ∗

Γ
(M) and c(ζ∗

Γ
(M)) = ζ∗

Γ
(M). From

Theorems 3.2 and 2.6, ζ∗
Γ
(M) = c(ζ∗

Γ
(M)) ⊆ Γ(M) ⊆ cθ(M).
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d) Since M ⊆ ζ∗
Γ
(M), cθ(M) ⊆ cθ(ζ∗Γ(M)). From Theorems 2.6, 2.7 and the previous feature c),

Γ(M) ⊆ cθ(M) ⊆ cθ(ζ∗Γ(M)) = c(ζ∗Γ(M)) = ζ∗Γ(M) ⊆ Γ(M) ⊆ cθ(M).

Therefore, ζ∗
Γ
(M) = Γ(M) = cθ(M).

e) Let M ∈ I. Since (O∗ ∩ M) ⊆ M for every O ∈ τ(x), (O∗ ∩ M) ∈ I. So, ζ∗
Γ
(M) = ∅.

f) From e), it is obvious.

g) Since M ⊆ M ∪ K and K ⊆ M ∪ K, by using a), ζ∗
Γ
(M) ⊆ ζ∗

Γ
(M ∪ K) and ζ∗

Γ
(K) ⊆ ζ∗

Γ
(M ∪ K) .

Therefore ζ∗
Γ
(M) ∪ ζ∗

Γ
(K) ⊆ ζ∗

Γ
(M ∪ K).

Let x < (ζ∗
Γ
(M) ∪ ζ∗

Γ
(K)). Then, x < ζ∗

Γ
(M) and x < ζ∗

Γ
(K). Therefore, x has open neigborhoods

O,V ∈ τ(x) such that (O∗∩M) ∈ I and (V∗∩K) ∈ I. From the definition of ideal, (O∗∩V∗)∩M ∈
I and (O∗ ∩ V∗) ∩ K ∈ I. Moreover (O∗ ∩ V∗) ∩ (M ∪ K) ∈ I. Since (O ∩ V) ∈ τ(x) and
(O ∩ V)∗ ⊆ (O∗ ∩ V∗) (Theorem 2.3-b)), (O ∩ V)∗ ∩ (M ∪ K) ∈ I. So x < ζ∗

Γ
(M ∪ K) and the

desired result is obtained.
�

Theorem 3.8. Let (U, τ) be an I-space and O ∈ τθ. Then, (O∩ζ∗
Γ
(M)) = (O∩ζ∗

Γ
(O∩M)) ⊆ ζ∗

Γ
(O∩M).

Proof. Let x ∈ (O ∩ ζ∗
Γ
(M)). Then x ∈ O and x ∈ ζ∗

Γ
(M). Since O ∈ τθ, there exists a W ∈ τ such that

x ∈ W ⊆ c(W) ⊆ O. Let V be any open neighborhood of x. Then (V ∩W) ∈ τ(x). Since x ∈ ζ∗
Γ
(M),

[(V ∩W)∗ ∩ M] < I. From Theorem 2.3-b) and a),

[(V ∩W)∗ ∩ M] ⊆ (V∗ ∩W∗) ∩ M

⊆ (V∗ ∩ c(W)) ∩ M

⊆ [V∗ ∩ (O ∩ M)] < I.

Therefore x ∈ ζ∗
Γ
(O ∩ M) and we obtain that O ∩ ζ∗

Γ
(M) ⊆ O ∩ ζ∗

Γ
(O ∩ M). From Theorem 3.7-a),

O ∩ ζ∗
Γ
(O ∩ M) ⊆ O ∩ ζ∗

Γ
(M). Therefore (O ∩ ζ∗

Γ
(M)) = (O ∩ ζ∗

Γ
(O ∩ M)) ⊆ ζ∗

Γ
(O ∩ M). �

Theorem 3.9. Let (U, τ) be an I-space and M,K ⊆ U. Then, (ζ∗
Γ
(M) \ ζ∗

Γ
(K)) = ζ∗

Γ
(M \ K) \ ζ∗

Γ
(K).

Proof. Since M = [(M \ K) ∪ (M ∩ K)] and Theorem 3.7-g) and a) ,

ζ∗Γ(M) = ζ∗Γ((M \ K) ∪ (M ∩ K))
= ζ∗Γ(M \ K) ∪ ζ∗Γ(M ∩ K)
⊆ ζ∗Γ(M \ K) ∪ ζ∗Γ(K).

Therefore (ζ∗
Γ
(M) \ ζ∗

Γ
(K)) ⊆ ζ∗

Γ
(M \ K) \ ζ∗

Γ
(K). From Theorem 3.7-a), ζ∗

Γ
(M \ K) ⊆ ζ∗

Γ
(M) and

ζ∗
Γ
(M \ K) \ ζ∗

Γ
(K) ⊆ (ζ∗

Γ
(M) \ ζ∗

Γ
(K)). As a result (ζ∗

Γ
(M) \ ζ∗

Γ
(K)) = ζ∗

Γ
(M \ K) \ ζ∗

Γ
(K).

�

Theorem 3.10. Let (U, τ) be an I-space and M,K ⊆ U. If K ∈ I, then ζ∗
Γ
(M∪K) = ζ∗

Γ
(M) = ζ∗

Γ
(M\K).

Proof. Since K ∈ I, ζ∗
Γ
(K) = ∅. From Theorem 3.9, ζ∗

Γ
(M \ K) = ζ∗

Γ
(M). From Theorem 3.7-g),

ζ∗Γ(M \ K) = ζ∗Γ(M) = ζ∗Γ(M) ∪ ζ∗Γ(K) = ζ∗Γ(M ∪ K).

. �
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4. Ψζ∗
Γ

operator

Definition 4.1. Let (U, τ) be an I-space. For any subset M of U, an operator Ψζ∗
Γ

: P(U) → τ is
defined by:

Ψζ∗
Γ
(M) = {x ∈ U : there exists O ∈ τ(x) such that (O∗(I, τ) \ M) ∈ I}.

It is also obvious that Ψζ∗
Γ
(M) = U \ ζ∗

Γ
(U \ M).

Theorem 4.2. Let (U, τ) be an I-space. The operator Ψζ∗
Γ

satisfies the following properties:

a) For M ⊆ U, Ψζ∗
Γ
(M) is open set.

b) If M ⊆ K, then Ψζ∗
Γ
(M) ⊆ Ψζ∗

Γ
(K).

c) If M,K ⊆ U, then Ψζ∗
Γ
(M ∩ K) = Ψζ∗

Γ
(M) ∩ Ψζ∗

Γ
(K).

d) For M ⊆ U, Ψζ∗
Γ
(Ψζ∗

Γ
(M)) = U \ ζ∗

Γ
(ζ∗

Γ
(U \ M)).

e) For every subset M ⊆ U, Ψζ∗
Γ
(M) = Ψζ∗

Γ
(Ψζ∗

Γ
(M))⇔ ζ∗

Γ
(U \ M) = ζ∗

Γ
(ζ∗

Γ
(U \ M)).

f) If M ∈ I, then Ψζ∗
Γ
(M) = U \ ζ∗

Γ
(U).

g) If M ⊆ U and K ∈ I, then Ψζ∗
Γ
(M \ K) = Ψζ∗

Γ
(M).

h) If M ⊆ U and K ∈ I, then Ψζ∗
Γ
(M ∪ K) = Ψζ∗

Γ
(M).

i) If (M \ K) ∪ (K \ M) ∈ I, then Ψζ∗
Γ
(M) = Ψζ∗

Γ
(K).

Proof. a) Since ζ∗
Γ
(U \ M) is a closed set, Ψζ∗

Γ
(M) is an open set.

b) From Theorem 3.7-a), it is obtained.

c) From Theorem 3.7-g),

Ψζ∗
Γ
(M∩K) = U\ζ∗

Γ
(U\(M∩K)) = U\[ζ∗

Γ
(U\M)∪ζ∗

Γ
(U\K)] = [U\ζ∗

Γ
(U\M)]∩[U\ζ∗

Γ
(U\K)] =

Ψζ∗
Γ
(M) ∩ Ψζ∗

Γ
(K).

d) Using Definition 4.1,

Ψζ∗
Γ
(Ψζ∗

Γ
(M)) = Ψζ∗

Γ
(U \ ζ∗

Γ
(U \ M)) = U \ ζ∗

Γ
(U \ (U \ ζ∗

Γ
(U \ M)) = U \ ζ∗

Γ
(ζ∗

Γ
(U \ M)).

e) Using previous proposition, Ψζ∗
Γ
(Ψζ∗

Γ
(M)) = Ψζ∗

Γ
(M) ⇔ U \ ζ∗

Γ
(ζ∗

Γ
(U \ M)) = U \ ζ∗

Γ
(U \ M) ⇔

ζ∗
Γ
(ζ∗

Γ
(U \ M)) = ζ∗

Γ
(U \ M).

f) Let M ∈ I. Then, U \ ζ∗
Γ
(U \ M) = U \ ζ∗

Γ
(U) from Theorem 3.10. So, Ψζ∗

Γ
(M) = U \ ζ∗

Γ
(U).

g) From Theorem 3.7-e) and g), Ψζ∗
Γ
(M \ K) = U \ ζ∗

Γ
(U \ (M \ K)) = U \ ζ∗

Γ
((U \ M) ∪ K) =

U \ [ζ∗
Γ
(U \ M) ∪ ζ∗

Γ
(K)] = U \ ζ∗

Γ
(U \ M) = Ψζ∗

Γ
(M).

h) Using Theorem 3.10, Ψζ∗
Γ
(M ∪ K) = U \ ζ∗

Γ
(U \ (M ∪ K)) = U \ ζ∗

Γ
((U \ M) ∩ (U \ K)) =

U \ ζ∗
Γ
((U \ M) \ K) = U \ ζ∗

Γ
(U \ M) = Ψζ∗

Γ
(M).
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i) Let (M\K)∪(K \M) ∈ I. From the definition of ideal, (M\K) ∈ I and (K \M) ∈ I. Using g) and
h), Ψζ∗

Γ
(M) = Ψζ∗

Γ
(M \(M \K)) = Ψζ∗

Γ
((M \(M \K))∪(K \M)) = Ψζ∗

Γ
((M∩K)∪(K \M)) = Ψζ∗

Γ
(K).
�

Definition 4.3. In any I-space (U, τ), the subset M is called σζ∗
Γ
-open if M ⊆ Ψζ∗

Γ
(M).

Theorem 4.4. In any I-space (U, τ), the family of σζ∗
Γ
-open sets forms a topology. That is, σζ∗

Γ
= {M ⊆

U : M ⊆ Ψζ∗
Γ
(M)} is a topology on U.

Proof. It is obvious that ∅,U ∈ σζ∗
Γ
. Let M,K ∈ σζ∗

Γ
. Since M ⊆ Ψζ∗

Γ
(M) and K ⊆ Ψζ∗

Γ
(K), M ∩ K ⊆

Ψζ∗
Γ
(M) ∩ Ψζ∗

Γ
(K) = Ψζ∗

Γ
(M ∩ K) from Theorem 4.2-c). Therefore, M ∩ K ∈ σζ∗

Γ
. Let {Mα}α∈I be a

family of subsets of σζ∗
Γ

for any index set I. Since Mα ⊆ Ψζ∗
Γ
(Mα) for every α ∈ I, Mα ⊆ Ψζ∗

Γ
(Mα) ⊆

Ψζ∗
Γ
(∪α∈I Mα). Then, ∪α∈I Mα ⊆ Ψζ∗

Γ
(∪α∈I Mα). Hence ∪α∈I Mα ∈ σζ∗

Γ
. Consequently, σζ∗

Γ
is a topology on

U. �

Lemma 4.5. In any I-space (U, τ), ΨΓ(M) ⊆ Ψζ∗
Γ
(M) for every subset M.

Proof. From Theorem 3.2, we have ζ∗
Γ
(U \ M) ⊆ Γ(U \ M) . Hence, Ψζ∗

Γ
(M) = U \ ζ∗

Γ
(U \ M) ⊇

U \ Γ(U \ M) = ΨΓ(M).
�

Theorem 4.6. In any I-space (U, τ), every σ-open subset is σζ∗
Γ
-open.

Proof. If M is a σ-open set, then M ⊆ ΨΓ(M). From Lemma 4.5, M ⊆ ΨΓ(M) ⊆ Ψζ∗
Γ
(M). �

Definition 4.7. In any I-space (U, τ), the subset M is called σζ∗
Γ
0-open if M ⊆ i(c(Ψζ∗

Γ
(M))).

Lemma 4.8. [19] Let (U, τ) be a topological space and let M, K be subsets of U. If either M ∈ τ or
K ∈ τ, then

i(c(M ∩ K)) = i(c(M)) ∩ i(c(K)).

Theorem 4.9. In any I-space (U, τ), the family of σζ∗
Γ
0-open sets forms a topology. That is, σζ∗

Γ
0 =

{M ⊆ U : M ⊆ i(c(Ψζ∗
Γ
(M)))} is a topology on U.

Proof. It is obvious that ∅,U ∈ σζ∗
Γ
0. Let M,K ∈ σζ∗

Γ
0. So, M ⊆ i(c(Ψζ∗

Γ
(M))) and K ⊆ i(c(Ψζ∗

Γ
(K))).

From Theorem 4.2-a), c) and Lemma 4.8, we have M∩K ⊆ i(c(Ψζ∗
Γ
(M)))∩ i(c(Ψζ∗

Γ
(K))) = i(c(Ψζ∗

Γ
(M)∩

Ψζ∗
Γ
(K))) = i(c(Ψζ∗

Γ
(M ∩ K))). Therefore, M ∩ K ∈ σζ∗

Γ
0. Let {Mα}α∈I be a family of subsets of σζ∗

Γ
0 for

any index set I. Since Mα ⊆ i(c(Ψζ∗
Γ
(Mα))) for every α ∈ I, Mα ⊆ i(c(Ψζ∗

Γ
(Mα))) ⊆ i(c(Ψζ∗

Γ
(∪α∈I Mα))).

Then ∪α∈I Mα ⊆ i(c(Ψζ∗
Γ
(∪α∈I Mα))). Therefore, ∪α∈I Mα ∈ σζ∗

Γ
. Consequently, σζ∗

Γ
0 is a topology on U.

�

Theorem 4.10. In any I-space (U, τ), every σ0-open subset is σζ∗
Γ
0-open.

Proof. From Lemma 4.5, ΨΓ(M) ⊆ Ψζ∗
Γ
(M) and so i(c(ΨΓ(M))) ⊆ i(c(Ψζ∗

Γ
(M))). �

Theorem 4.11. In any I-space (U, τ), every σζ∗
Γ
-open set is a σζ∗

Γ
0-open set.

Proof. Let M be σζ∗
Γ
-open. Therefore, M ⊆ Ψζ∗

Γ
(M). Since Theorem 4.2-a), M ⊆ Ψζ∗

Γ
(M) ⊆

i(c(Ψζ∗
Γ
(M))). Consequently, M is σζ∗

Γ
0-open. �

From Theorems 4.6, 4.10, 4.11 and Diagram I, we obtain the following:
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θ-open → open
↓

σ-open → σ0-open
↓ ↓

σζ∗
Γ
-open → σζ∗

Γ
0-open

Diagram II.

The necessary examples for Diagram II are given below.

Example 4.12. Let τ = {U, ∅, {a}, {c}, {a, c}, {a, c, d}, {a, b, c}} be a topology on U = {a, b, c, d} and
I = {∅, {a}, {c}, {a, c}}. For the subset M = {a, b}, ΨΓ(M) = i(c(ΨΓ(M))) = ∅, Ψζ∗

Γ
(M) = {a, b, c}

and i(c(Ψζ∗
Γ
(M))) = U. Although M is both σζ∗

Γ
-open and σζ∗

Γ
0-open but it is neither σ-open set nor

σ0-open.

Example 4.13. Let’s consider the topological space in the Example 4.12 with the ideal I = {∅, {c}}.
The subset M = {a} is open subset in this space. Since Ψζ∗

Γ
(M) = i(c(Ψζ∗

Γ
(M))) = {c}, M = {a} is neither

σζ∗
Γ
-open nor σζ∗

Γ
0-open. For the subset K = {a, b, d}, Ψζ∗

Γ
(K) = i(c(Ψζ∗

Γ
(K))) = U. Therefore the subset

K is both σζ∗
Γ
-open and σζ∗

Γ
0-open. But K is not an open set.

Example 4.14. Let us consider the usual topology on the set of real numbers R with the ideal Icd on
R. For the subset M = R \ { 1n : n ∈ N},

Ψζ∗
Γ
(M) = R \ ζ∗Γ(R \ M) = R \ ζ∗Γ({

1
n

: n ∈ N}) = R \ {0}.

So, the subset M is not σζ∗
Γ
-open. Since i(c(Ψζ∗

Γ
(M))) = R, the subset M is σζ∗

Γ
0-open. Similarly,

ΨΓ(M) = R \ {0} and i(c(ΨΓ(M))) = R. Therefore, the subset M is not σ-open and it is σ0-open.

“Is there an example which shows that σ $ σ0 ?” was asked in [19]. This question was answered
by Pavlović in [20]. Pavlović gave an example that there exists a σ0-open set but it is not a σ-open set.
In Example 4.14, since the subset M is not σ-open and it is σ0-open, this example is a new alternative
answer to the question in [19]. In addition, the following example is an answer to the mentioned
question. In this way, we have given two different answers to the open question given in [19].

Example 4.15. Let us consider the topology τ1 = {M ⊆ R : 1 < M} ∪ {R} on R with the ideal I f in on
R. For the subset M = {1},

ΨΓ(M) = R \ Γ(R \ {1}) = R \ {1}.

Therefore M = {1} is not a σ-open set. But, it is a σ0-open set since M ⊆ i(c(ΨΓ(M))) = R.

Theorem 4.16. The subset M is closed in (U, σζ∗
Γ
) if and only if ζ∗

Γ
(M) ⊆ M.

Proof.

M is closed in (U, σζ∗
Γ
)⇔ U \ M is open in (U, σζ∗

Γ
)

⇔ U \ M ⊆ Ψζ∗
Γ
(U \ M)

⇔ U \ M ⊆ U \ ζ∗Γ(M)
⇔ ζ∗Γ(M) ⊆ M.

�
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Theorem 4.17. The subset M is closed in (U, σζ∗
Γ
0) if and only if c(i(ζ∗

Γ
(M))) ⊆ M.

Proof.

M is closed in (U, σζ∗
Γ
0)⇔ U \ M is open in (U, σζ∗

Γ
0)

⇔ U \ M ⊆ i(c(Ψζ∗
Γ
(U \ M))

⇔ U \ M ⊆ i(c(U \ ζ∗Γ(M)))
⇔ U \ M ⊆ U \ (c(i(ζ∗Γ(M))))
⇔ c(i(ζ∗Γ(M))) ⊆ M.

�

ζ∗
Γ
-local function does not always have to be idempotent. That is, it doesn’t always have to ζ∗

Γ
(ζ∗

Γ
(M)) ⊆

ζ∗
Γ
(M). This situation is illustrated in the example below.

Example 4.18. Consider the topological space in Example 3.3 with minimal I = {∅}. For the subset
M = {d}, ζ∗

Γ
(M) = {b, d} and ζ∗

Γ
(ζ∗

Γ
(M)) = U. That is, ζ∗

Γ
(ζ∗

Γ
(M)) * ζ∗

Γ
(M).

Theorem 4.19. Let M be a subset in any I-space (U, τ). Then,

ζ∗Γ(ζ∗Γ(M)) ⊆ ζ∗Γ(M)⇔ Ψζ∗
Γ
(U \ M) ⊆ Ψζ∗

Γ
(Ψζ∗

Γ
(U \ M)).

Proof.

ζ∗Γ(ζ∗Γ(M)) ⊆ ζ∗Γ(M)⇔ U \ ζ∗Γ(M) ⊆ U \ ζ∗Γ(ζ∗Γ(M))
⇔ U \ ζ∗Γ(U \ (U \ M)) ⊆ U \ ζ∗Γ(U \ (U \ ζ∗Γ(U \ (U \ M))))
⇔ Ψζ∗

Γ
(U \ M) ⊆ Ψζ∗

Γ
(Ψζ∗

Γ
(U \ M)).

�

Corollary 4.20. The following conditions are equivalent in any I-space:

a) ζ∗
Γ
(ζ∗

Γ
(M)) ⊆ ζ∗

Γ
(M) for every subset M.

b) Ψζ∗
Γ
(M) ⊆ Ψζ∗

Γ
(Ψζ∗

Γ
(M)) for every subset M.

Theorem 4.21. Let M be a subset in any I-space (U, τ). Then,

c(i(ζ∗Γ(c(i(ζ∗Γ(M)))))) ⊆ c(i(ζ∗Γ(M)))⇔ i(c(Ψζ∗
Γ
(U \ M))) ⊆ i(c(Ψζ∗

Γ
(i(c(Ψζ∗

Γ
(U \ M)))))).

Proof. If we pursue the following, we obtain the desired result:

c(i(ζ∗
Γ
(c(i(ζ∗

Γ
(M)))))) ⊆ c(i(ζ∗

Γ
(M)))

⇔

U \ c(i(ζ∗
Γ
(M))) ⊆ U \ c(i(ζ∗

Γ
(c(i(ζ∗

Γ
(M))))))

⇔

i(c(U \ ζ∗
Γ
(U \ U \ M))) ⊆ i(c(U \ ζ∗

Γ
(c(i(ζ∗

Γ
(M))))))

⇔
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i(c(Ψζ∗
Γ
(U \ M))) ⊆ i(c(U \ ζ∗

Γ
(c(i(U \ U \ ζ∗

Γ
(U \ U \ M))))))

⇔

i(c(Ψζ∗
Γ
(U \ M))) ⊆ i(c(U \ ζ∗

Γ
(c(i(U \ Ψζ∗

Γ
(U \ M))))))

⇔

i(c(Ψζ∗
Γ
(U \ M))) ⊆ i(c(U \ ζ∗

Γ
(U \ i(c(Ψζ∗

Γ
(U \ M))))))

⇔

i(c(Ψζ∗
Γ
(U \ M))) ⊆ i(c(Ψζ∗

Γ
(i(c(Ψζ∗

Γ
(U \ M)))))).

�

Corollary 4.22. The following conditions are equivalent in any I-space:

a) c(i(ζ∗
Γ
(c(i(ζ∗

Γ
(M)))))) ⊆ c(i(ζ∗

Γ
(M))) for every subset M.

b) i(c(Ψζ∗
Γ
(M))) ⊆ i(c(Ψζ∗

Γ
(i(c(Ψζ∗

Γ
(M)))))) for every subset M.

The closure of the set M with respect to the topology (U, σζ∗
Γ
) , we denote by cσζ∗

Γ

(M).

Theorem 4.23. Let (U, τ) be an I-space and ζ∗
Γ
(ζ∗

Γ
(M)) ⊆ ζ∗

Γ
(M) for every M ⊆ U. Then, the subset

M∪ζ∗
Γ
(M) is the smallest closed set in (U, σζ∗

Γ
) containing the subset M . That is, cσζ∗

Γ

(M) = M∪ζ∗
Γ
(M).

Proof. Since Theorem 4.16 and

ζ∗Γ(M ∪ ζ∗Γ(M)) = ζ∗Γ(M) ∪ ζ∗Γ(ζ∗Γ(M))
⊆ ζ∗Γ(M)
⊆ M ∪ ζ∗Γ(M).

(M ∪ ζ∗
Γ
(M)) is closed in (U, σζ∗

Γ
). Let us show that it is the smallest closed set in (U, σζ∗

Γ
) containing

M. Let x ∈ M ∪ ζ∗
Γ
(M). If x ∈ M, then x ∈ cσζ∗

Γ

(M). Let x ∈ ζ∗
Γ
(M). Then O∗ ∩ M < I for every

O ∈ τ(x). From the definition of ideal, (O∗ ∩ M) ⊆ (O∗ ∩ cσζ∗
Γ

(M)) < I, Therefore, x ∈ ζ∗
Γ
(cσζ∗

Γ

(M)).
Since Theorem 4.16 and cσζ∗

Γ

(M) is closed set in (U, σζ∗
Γ
), x ∈ ζ∗

Γ
(cσζ∗

Γ

(M)) ⊆ cσζ∗
Γ

(M). As a result
M ∪ ζ∗

Γ
(M) ⊆ cσζ∗

Γ

(M). Since cσζ∗
Γ

(M) is the smallest closed set in (U, σζ∗
Γ
) containing M, M ∪ ζ∗

Γ
(M) =

cσζ∗
Γ

(M). �

The closure of the set M with respect to the topology (U, σζ∗
Γ
0) , we denote by cσζ∗

Γ
0
(M).

Theorem 4.24. Let (U, τ) be an I-space and ζ∗
Γ
(c(i(ζ∗

Γ
(M)))) ⊆ c(i(ζ∗

Γ
(M))) for every M ⊆ U. Then,

the subset M ∪ c(i(ζ∗
Γ
(M))) is the smallest closed set in (U, σζ∗

Γ
0) containing the subset M . That is,

cσζ∗
Γ

0
(M) = M ∪ c(i(ζ∗

Γ
(M))).

Proof. Since Theorem 4.17 and ζ∗
Γ
(M) is closed set,

c[i[ζ∗Γ(M ∪ c(i(ζ∗Γ(M))))]] = c[i[ζ∗Γ(M) ∪ ζ∗Γ(c(i(ζ∗Γ(M))))]]
⊆ c[i[ζ∗Γ(M) ∪ c(i(ζ∗Γ(M))]]
= c(i(ζ∗Γ(M)))
⊆ M ∪ c(i(ζ∗Γ(M))).
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From Theorem 4.17, M∪c(i(ζ∗
Γ
(M))) is closed in (U, σζ∗

Γ
0) . Let us show that it is the smallest closed set

in (U, σζ∗
Γ
0) containing M . Let x ∈ M ∪ c(i(ζ∗

Γ
(M))). If x ∈ M, then x ∈ cσζ∗

Γ
0
(M). Let x ∈ c(i(ζ∗

Γ
(M))).

Since M ⊆ cσζ∗
Γ

0
(M), x ∈ c(i(ζ∗

Γ
(M))) ⊆ c(i(ζ∗

Γ
(cσζ∗

Γ
0
(M)))). Since cσζ∗

Γ
0
(M) is closed in (U, σζ∗

Γ
0) and

Theorem 4.17, x ∈ cσζ∗
Γ

0
(M). As a result M ∪ c(i(ζ∗

Γ
(M))) ⊆ cσζ∗

Γ
0
(M). Since cσζ∗

Γ
0
(M) is the smallest

closed set in (U, σζ∗
Γ
0) containing M, M ∪ c(i(ζ∗

Γ
(M))) = cσζ∗

Γ
0
(M). �

Theorem 4.25. Let ζ∗
Γ

be idempotent in I-space (U, τ). Then (Ψζ∗
Γ
(M) \K) ∈ σζ∗

Γ
for the subset M ⊆ U

and K ∈ I.

Proof. Using Corollary 4.20 and Theorem 4.2-g),

(Ψζ∗
Γ
(M) \ K) ⊆ Ψζ∗

Γ
(M)

⊆ Ψζ∗
Γ
(Ψζ∗

Γ
(M))

= Ψζ∗
Γ
(Ψζ∗

Γ
(M) \ K).

Therefore Ψζ∗
Γ
(M) \ K is σζ∗

Γ
-open. �

The following result is obtained by Theorems 4.11 and 4.25.

Corollary 4.26. Let ζ∗
Γ

be idempotent in I-space (U, τ). Then (Ψζ∗
Γ
(M)\K) ∈ σζ∗

Γ
0 for the subset M ⊆ U

and K ∈ I.

Theorem 4.27. Let c(i(ζ∗
Γ
(c(i(ζ∗

Γ
(M)))))) ⊆ c(i(ζ∗

Γ
(M))) for every subset M in I-space (U, τ). Then

(i(c(Ψζ∗
Γ
(M))) \ K) ∈ σζ∗

Γ
0 for the subset M ⊆ U and K ∈ I.

Proof. Using Corollary 4.22 and Theorem 4.2-g),

(i(c(Ψζ∗
Γ
(M))) \ K) ⊆ i(c(Ψζ∗

Γ
(M)))

⊆ i(c(Ψζ∗
Γ
(i(c(Ψζ∗

Γ
(M))))))

= i(c(Ψζ∗
Γ
((i(c(Ψζ∗

Γ
(M))) \ K)))).

Therefore (i(c(Ψζ∗
Γ
(M))) \ K) is σζ∗

Γ
0-open. �

5. ζ∗
Γ
-compatibility

Definition 5.1. Let (U, τ) be an I-space. If for every M ⊆ U the condition

∀ x ∈ M ∃O ∈ τ(x) (O ∩ M) ∈ I

implies M ∈ I, τ is compatible [5] with I, denoted by τ ∼ I.

If for every M ⊆ U the condition

∀ x ∈ M ∃O ∈ τ(x) (c(O) ∩ M) ∈ I

implies M ∈ I, τ is closure compatible [19] with I, denoted by τ ∼Γ I.
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Definition 5.2. Let (U, τ) be an I-space. If for every M ⊆ U the condition

∀ x ∈ M ∃O ∈ τ(x) (O∗(I, τ) ∩ M) ∈ I

implies M ∈ I, then we say τ is ζ∗
Γ
-compatible with I, denoted by τ ∼ζ∗

Γ
I.

Theorem 5.3. Let (U, τ) be an I-space. If τ ∼ζ∗
Γ
I, then τ ∼Γ I.

Proof. Let τ ∼ζ∗
Γ
I and M ⊆ U. Suppose that for every x ∈ M there exists an O ∈ τ(x) such that

c(O) ∩ M ∈ I. Since O∗ ⊆ c(O), O∗ ∩ M ∈ I. Therefore, M ∈ I. Consequently τ ∼Γ I. �

In the following example [21], we show that the converse of this theorem is not true.

Example 5.4. Let κ be an infinite cardinal number and κ+1 be the ordinal succeeding κ. Let the family
Bκ = {{λ, κ} : λ < κ} ∪ {{κ}} be the base of the topology τκ on κ + 1. If this space is considered with the
ideal of the set of cardinality less than κ, Iκ = {M ⊆ κ + 1 : |M| < κ}, then τκ ∼Γ Iκ [21]. For the same
reason as in [21], τκ is not ζ∗

Γ
-compatible with the ideal Iκ.

Question 2: Are there any examples that the concepts of compatibility and ζ∗
Γ
-compatibility are

different from each other?

Theorem 5.5. In any I-space (U, τ), the following are equivalent:

a) τ ∼ζ∗
Γ
I.

b) If M has a cover of open sets each of whose local function intersection with M is in I, then
M ∈ I.

c) For every M ⊆ U, M ∩ ζ∗
Γ
(M) = ∅ implies M ∈ I.

d) For every M ⊆ U, M \ ζ∗
Γ
(M) ∈ I.

e) For every M ⊆ U, M contains no nonempty the subset K such that K ⊆ ζ∗
Γ
(K), then M ∈ I.

Proof. a)⇒ b) It is obvious.
b)⇒ c) Suppose that M ∩ ζ∗

Γ
(M) = ∅. So, x < ζ∗

Γ
(M) if x ∈ M. Then, for every x ∈ M, there exists an

Ox ∈ τ(x) such that O∗x ∩ M ∈ I. Since M ⊆
⋃
{Ox ∈ τ : x ∈ M} and b), M ∈ I.

c)⇒ d) For every M ⊆ U, since M\ζ∗
Γ
(M) ⊆ M, (M\ζ∗

Γ
(M))∩ζ∗

Γ
(M\ζ∗

Γ
(M)) ⊆ (M\ζ∗

Γ
(M))∩ζ∗

Γ
(M) = ∅.

By c), M \ ζ∗
Γ
(M) ∈ I.

d)⇒ e) For every M ⊆ U, by d), M \ ζ∗
Γ
(M) ∈ I. Since M = (M \ ζ∗

Γ
(M)) ∪ (M ∩ ζ∗

Γ
(M)),

ζ∗Γ(M) = ζ∗Γ((M \ ζ∗Γ(M)) ∪ (M ∩ ζ∗Γ(M))
= ζ∗Γ((M \ ζ∗Γ(M)) ∪ ζ∗Γ((M ∩ ζ∗Γ(M))
= ζ∗Γ(M ∩ ζ∗Γ(M)).

Moreover M ∩ ζ∗
Γ
(M) = M ∩ ζ∗

Γ
(M ∩ ζ∗

Γ
(M)) ⊆ ζ∗

Γ
(M ∩ ζ∗

Γ
(M)) and M ∩ ζ∗

Γ
(M) ⊆ M. By assumption

M ∩ ζ∗
Γ
(M) = ∅, M = M \ ζ∗

Γ
(M) ∈ I.

e) ⇒ a) Let M ⊆ U. Suppose that for every x ∈ M there exists an O ∈ τ(x) such that O∗ ∩ M ∈ I.
Therefore, M ∩ ζ∗

Γ
(M) = ∅. If M contains the subset K such that K ⊆ ζ∗

Γ
(K), then K = K ∩ ζ∗

Γ
(K) ⊆

M ∩ ζ∗
Γ
(M) = ∅. So, M contains no nonempty subset K such that K ⊆ ζ∗

Γ
(K). By e), M ∈ I. �
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Theorem 5.6. If τ ∼ζ∗
Γ
I in any I-space (U, τ), then the following statements are equivalent for every

M ⊆ U:

a) M ∩ ζ∗
Γ
(M) = ∅ implies ζ∗

Γ
(M) = ∅

b) ζ∗
Γ
(M \ ζ∗

Γ
(M)) = ∅

c) ζ∗
Γ
(M ∩ ζ∗

Γ
(M)) = ζ∗

Γ
(M).

Proof. Let τ ∼ζ∗
Γ
I and M ∩ ζ∗

Γ
(M) = ∅. Then, from Theorem 5.5-c), M ∈ I. Therefore, ζ∗

Γ
(M) = ∅.

That is, a) is satisfied if τ ∼ζ∗
Γ
I.

a)⇒ b) Suppose that a) is satisfied. Then,

(M \ ζ∗Γ(M)) ∩ ζ∗Γ(M \ ζ∗Γ(M)) = (M ∩ (U \ ζ∗Γ(M))) ∩ ζ∗Γ(M ∩ (U \ ζ∗Γ(M)))
⊆ (M ∩ (U \ ζ∗Γ(M))) ∩ (ζ∗Γ(M) ∩ ζ∗Γ(U \ ζ∗Γ(M)))
= ∅.

From a), ζ∗
Γ
(M \ ζ∗

Γ
(M)) = ∅.

b)⇒ c) Since M = (M \ ζ∗
Γ
(M)) ∪ (M ∩ ζ∗

Γ
(M)) and b),

ζ∗Γ(M) = ζ∗Γ((M \ ζ∗Γ(M)) ∪ (M ∩ ζ∗Γ(M)))
= ζ∗Γ((M \ ζ∗Γ(M)) ∪ ζ∗Γ((M ∩ ζ∗Γ(M))
= ζ∗Γ(M ∩ ζ∗Γ(M)).

c)⇒ a) Let M ∩ ζ∗
Γ
(M) = ∅ for every M ⊆ U. From c), ζ∗

Γ
(M ∩ ζ∗

Γ
(M)) = ζ∗

Γ
(∅) = ∅ = ζ∗

Γ
(M).

�

Theorem 5.7. In any I-space (U, τ), τ ∼ζ∗
Γ
I if and only if Ψζ∗

Γ
(M) \ M ∈ I for every M ⊆ U.

Proof. We have M \ K = (U \ K) \ (U \ M) for every M,K ⊆ U. Moreover, using Theorem 5.5- d),

τ ∼ζ∗
Γ
I ⇔ ∀ M ⊆ U, M \ ζ∗Γ(M) ∈ I

⇔ ∀ M ⊆ U, (U \ M) \ ζ∗Γ(U \ M) ∈ I
⇔ ∀ M ⊆ U, (U \ M) \ [U \ (U \ ζ∗Γ(U \ M))] ∈ I
⇔ ∀ M ⊆ U, (U \ M) \ (U \ Ψζ∗

Γ
(M)) ∈ I

⇔ ∀ M ⊆ U,Ψζ∗
Γ
(M) \ M ∈ I.

�

Theorem 5.8. Let ζ∗
Γ

be idempotent in I-space (U, τ) and τ ∼ζ∗
Γ
I. Then

σζ∗
Γ

= {Ψζ∗
Γ
(M) \ K : M ⊆ U and K ∈ I}.
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Proof. From Theorem 4.25, {Ψζ∗
Γ
(M) \ K : M ⊆ U and K ∈ I} ⊆ σζ∗

Γ
.

Conversely, let M ∈ σζ∗
Γ
. Therefore M ⊆ Ψζ∗

Γ
(M). From Theorem 5.7, we have K = (Ψζ∗

Γ
(M) \ M) ∈ I.

Then

M = Ψζ∗
Γ
(M) ∩ ((U \ Ψζ∗

Γ
(M)) ∪ M)

= Ψζ∗
Γ
(M) ∩ (U \ (Ψζ∗

Γ
(M) ∩ (U \ M))

= Ψζ∗
Γ
(M) \ (Ψζ∗

Γ
(M) \ M)

= Ψζ∗
Γ
(M) \ K.

Therefore M ∈ {Ψζ∗
Γ
(M) \ K : M ⊆ U and K ∈ I}. Consequently, we obtain σζ∗

Γ
= {Ψζ∗

Γ
(M) \ K : M ⊆

U and K ∈ I}.
�

Theorem 5.9. In any I-space (U, τ),

a) Let M∗ = ζ∗
Γ
(M) for every M ⊆ U. Then, τ ∼ζ∗

Γ
I if and only if τ ∼ I.

b) Let Γ(M) = ζ∗
Γ
(M) for every M ⊆ U. Then, τ ∼ζ∗

Γ
I if and only if τ ∼Γ I.

Proof. a) It is obtained by Theorem 4.5-c) in [5] and Theorem 5.5-c).

b) It is obtained by Theorem 3.4-3 in [19] and Theorem 5.5-c).
�

Corollary 5.10. Let (U, τ) be an Inw-space. Then,

τ ∼ζ∗
Γ
Inw ⇔ τ ∼ Inw ⇔ τ ∼Γ Inw

Proof. It is obtained by Theorems 5.9 and 3.5. �

6. ∗-Nearly discrete and τ∗-nearly discrete spaces

A topological space is nearly discrete (or sometimes said to be locally finite) if each point has a
finite neigborhood. In [5], Jankovic and Hamlet showed that in I f in-space (U, τ), “(U, τ) is nearly
discrete if and only if U∗(I f in) = ∅”. In [20], Pavlović showed that “if Γ(U)(I f in) = ∅, (U, τ) is nearly
discrete”. Pavlović also gave an example in which the reverse of this theorem is not true. Now, we give
the definitions of two new spaces.

Definition 6.1. Let (U, τ) be an I-space. (U, τ) is a ∗-nearly discrete space if for every x ∈ U, there
exists M ∈ τ(x) such that M∗ is finite.

Definition 6.2. Let (U, τ) be an I-space. (U, τ) is a τ∗-nearly discrete space if every x ∈ U has a finite
τ∗-open neighborhood.

Theorem 6.3. Every nearly discrete space is a τ∗-nearly discrete space.

Proof. Since τ ⊆ τ∗, it is obvious. �

The converse of this theorem is not true in general. Moreover, concepts of ∗-nearly discrete space
and τ∗-nearly discrete space, nearly discrete space are independent of each other.
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Example 6.4. Consider the usual topology τu on the set of real numbers R with the ideal I = P(R).
Since the topology τ∗u = P(R), (R, τu) is τ∗u-nearly discrete space. But (R, τu) is not nearly discrete.

Example 6.5. Let us consider the topology τ1 = {M ⊆ R : 1 < M} ∪ {R} on R with the ideal I f in on
R. For every M ∈ τ1, M∗ = ∅ or M∗ = {1}. Therefore this space is a ∗-nearly discrete space. The point
x = 1 has not finite neighborhood in both τ1 and τ∗1. That is, this space is neither nearly discrete nor
τ∗-nearly discrete.

Example 6.6. Let us consider the topology τ′1 = {M ⊆ R : 1 ∈ M} ∪ {∅} on R with the ideal I = {∅}.
This space is a nearly discrete and so τ′∗1 -nearly discrete. Since M∗ = R for every M ∈ τ′1 \ {∅}, this is
not a ∗-nearly discrete space.

Theorem 6.7. Let (U, τ) be an I f in-space. ζ∗
Γ
(U)(I f in) = ∅ if and only if (U, τ) is a ∗-nearly discrete

space.

Proof. Let ζ∗
Γ
(U)(I f in) = ∅. For every x ∈ U there exists an O ∈ τ(x) such that O∗ ∩ U = O∗ ∈ I f in.

Therefore this space is a ∗-nearly discrete space.
Conversely, let it be a ∗-nearly discrete space. So, for every x ∈ U there exists an O ∈ τ(x) such that
O∗ ∈ I f in. Consequently, ζ∗

Γ
(U)(I f in) = ∅. �

Theorem 6.8. Let (U, τ) be an I f in-space. If (U, τ) is nearly discrete, then it is a ∗-nearly discrete
space.

Proof. Let (U, τ) be an I f in-space. Then U∗(I f in) = ∅. Therefore for every O ∈ τ, O∗(I f in) = ∅ and
O∗(I f in) ∩ U = ∅ ∈ I f in. That is ζ∗

Γ
(U)(I f in) = ∅. From Theorem 6.7, (U, τ) is a ∗-nearly discrete

space. �

In Example 6.5, it is shown that converse of this theorem is not true.

Corollary 6.9. Let (U, τ) be an I f in-space. If U∗(I f in) = ∅, then (U, τ) is a ∗-nearly discrete space.

Theorem 6.10. Let (U, τ) be an I-space and I ∩ τ = {∅}. If (U, τ) is a ∗-nearly discrete space, then it
is a nearly discrete.

Proof. Let (U, τ) be a ∗-nearly discrete space. Then for every x ∈ U there exists an O ∈ τx such that
O∗ is finite. From Theorem 2.4, O ⊆ O∗ Therefore O is finite. �

In Example 6.6, it is shown that converse of this theorem is not true.

Corollary 6.11. Let (U, τ) be an I-space and I∩ τ = {∅}. If ζ∗
Γ
(U) = ∅, then (U, τ) is a nearly discrete

space.

Corollary 6.12. Let (U, τ) be an I f in-space and I f in ∩ τ = {∅}. (U, τ) is a nearly discrete space if and
only if it is a ∗-nearly discrete space.

7. Conclusions

We defined the concepts of ζ∗
Γ
-local function, the operator Ψζ∗

Γ
, ζ∗

Γ
-compatibility, ∗-nearly discrete

space and τ∗-nearly discrete space. We obtained two new topologies with help the operator Ψζ∗
Γ
. We

answered the open question in [19] with two different examples apart from the example given in [20].
In addition, we have given two open questions in this text.
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