In this paper, we prove the John-Nirenberg theorem of the $ bmo_p $ martingale spaces for the full range $ 0 < p < \infty $. We also consider the John-Nirenberg inequality on symmetric spaces of martingales.
Citation: Changzheng Yao, Congbian Ma. An extension of the classical John-Nirenberg inequality of martingales[J]. AIMS Mathematics, 2023, 8(3): 5175-5180. doi: 10.3934/math.2023259
In this paper, we prove the John-Nirenberg theorem of the $ bmo_p $ martingale spaces for the full range $ 0 < p < \infty $. We also consider the John-Nirenberg inequality on symmetric spaces of martingales.
[1] | T. Bekjan, Z. Chen, M. Raikhan, M. Sun, Interpolation and John-Nirenberg inequality on symmetric spaces of noncommutative martingales, Studia Math., 262 (2021), 241–273. https://doi.org/10.4064/sm200508-11-12 doi: 10.4064/sm200508-11-12 |
[2] | S. Dirksen, Noncommutative Boyd interpolation theorems, T. Am. Math. Soc., 367 (2015), 4079–4110. |
[3] | S. Dirksen, B. dePagter, D. Potapov, F. Sukochev, Rosenthal inequalities in noncommutative symmetric spaces, J. Funct. Anal., 261 (2011), 2890–2925. https://doi.org/10.1016/j.jfa.2011.07.015 doi: 10.1016/j.jfa.2011.07.015 |
[4] | L. Li, A remark John-Nirenberg inequalities for martingales, Ukrainian Math. J., 770 (2019), 1571–1577. |
[5] | J. Lindenstrauss, L. Tzafriri, Classical banach spaces, Berlin: Springer, 1979. |
[6] | R. Long, Martingale spaces and inequalities, Bei Jing: Peking University Press, 1993. |
[7] | F. Weisz, Martingale Hardy spaces and their applications in fourier analysis, Berlin: Springer, 1994. |
[8] | R. Yi, L. Wu, Y. Jiao, New John-Nirenberg inequalities for martingales, Statist. Probab. Lett., 86 (2014), 68–73. https://doi.org/10.1016/j.spl.2013.12.010 doi: 10.1016/j.spl.2013.12.010 |