Research article

An extension of the classical John-Nirenberg inequality of martingales

  • Received: 19 October 2022 Revised: 23 November 2022 Accepted: 29 November 2022 Published: 13 December 2022
  • MSC : 60G42, 60G46

  • In this paper, we prove the John-Nirenberg theorem of the $ bmo_p $ martingale spaces for the full range $ 0 < p < \infty $. We also consider the John-Nirenberg inequality on symmetric spaces of martingales.

    Citation: Changzheng Yao, Congbian Ma. An extension of the classical John-Nirenberg inequality of martingales[J]. AIMS Mathematics, 2023, 8(3): 5175-5180. doi: 10.3934/math.2023259

    Related Papers:

  • In this paper, we prove the John-Nirenberg theorem of the $ bmo_p $ martingale spaces for the full range $ 0 < p < \infty $. We also consider the John-Nirenberg inequality on symmetric spaces of martingales.



    加载中


    [1] T. Bekjan, Z. Chen, M. Raikhan, M. Sun, Interpolation and John-Nirenberg inequality on symmetric spaces of noncommutative martingales, Studia Math., 262 (2021), 241–273. https://doi.org/10.4064/sm200508-11-12 doi: 10.4064/sm200508-11-12
    [2] S. Dirksen, Noncommutative Boyd interpolation theorems, T. Am. Math. Soc., 367 (2015), 4079–4110.
    [3] S. Dirksen, B. dePagter, D. Potapov, F. Sukochev, Rosenthal inequalities in noncommutative symmetric spaces, J. Funct. Anal., 261 (2011), 2890–2925. https://doi.org/10.1016/j.jfa.2011.07.015 doi: 10.1016/j.jfa.2011.07.015
    [4] L. Li, A remark John-Nirenberg inequalities for martingales, Ukrainian Math. J., 770 (2019), 1571–1577.
    [5] J. Lindenstrauss, L. Tzafriri, Classical banach spaces, Berlin: Springer, 1979.
    [6] R. Long, Martingale spaces and inequalities, Bei Jing: Peking University Press, 1993.
    [7] F. Weisz, Martingale Hardy spaces and their applications in fourier analysis, Berlin: Springer, 1994.
    [8] R. Yi, L. Wu, Y. Jiao, New John-Nirenberg inequalities for martingales, Statist. Probab. Lett., 86 (2014), 68–73. https://doi.org/10.1016/j.spl.2013.12.010 doi: 10.1016/j.spl.2013.12.010
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1051) PDF downloads(101) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog