Research article

Interpolative contractions and intuitionistic fuzzy set-valued maps with applications

  • Received: 11 December 2021 Revised: 20 March 2022 Accepted: 24 March 2022 Published: 31 March 2022
  • MSC : 46S40, 47H10, 54H25

  • Over time, the interpolative approach in fixed point theory (FPT) has been investigated only in the setting of crisp mathematics, thereby dropping-off a significant amount of useful results. As an attempt to fill up the aforementioned gaps, this paper initiates certain hybrid concepts under the names of interpolative Hardy-Rogers-type (IHRT) and interpolative Reich-Rus-Ciric type (IRRCT) intuitionistic fuzzy contractions in the frame of metric space (MS). Adequate criteria for the existence of intuitionistic fuzzy fixed point (FP) for such contractions are examined. On the basis that FP of a single-valued mapping obeying interpolative type contractive inequality is not always unique, and thereby making the ideas more suitable for FP theorems of multi-valued mappings, a few special cases regarding point-to-point and non-fuzzy set-valued mappings which include the conclusions of some well-known results in the corresponding literature are highlighted and discussed. In addition, comparative examples which dwell on the generality of our obtained results are constructed.

    Citation: Mohammed Shehu Shagari, Saima Rashid, Fahd Jarad, Mohamed S. Mohamed. Interpolative contractions and intuitionistic fuzzy set-valued maps with applications[J]. AIMS Mathematics, 2022, 7(6): 10744-10758. doi: 10.3934/math.2022600

    Related Papers:

  • Over time, the interpolative approach in fixed point theory (FPT) has been investigated only in the setting of crisp mathematics, thereby dropping-off a significant amount of useful results. As an attempt to fill up the aforementioned gaps, this paper initiates certain hybrid concepts under the names of interpolative Hardy-Rogers-type (IHRT) and interpolative Reich-Rus-Ciric type (IRRCT) intuitionistic fuzzy contractions in the frame of metric space (MS). Adequate criteria for the existence of intuitionistic fuzzy fixed point (FP) for such contractions are examined. On the basis that FP of a single-valued mapping obeying interpolative type contractive inequality is not always unique, and thereby making the ideas more suitable for FP theorems of multi-valued mappings, a few special cases regarding point-to-point and non-fuzzy set-valued mappings which include the conclusions of some well-known results in the corresponding literature are highlighted and discussed. In addition, comparative examples which dwell on the generality of our obtained results are constructed.



    加载中


    [1] A. Azam, R. Tabassum, M. Rashid, Coincidence and fixed point theorems of intuitionistic fuzzy mappings with applications, J. Math. Anal., 8 (2017), 56–77.
    [2] A. Azam, R. Tabassum, Existence of common coincidence point of intuitionistic fuzzy maps, J. Intell. Fuzzy Syst., 35 (2018), 4795–4805. https://doi.org/10.3233/jifs-18411 doi: 10.3233/jifs-18411
    [3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [5] L. B. Ciric, A generalization of Banach's contraction principle, P. Am. Math. Soc., 45 (1974), 267–273. https://doi.org/10.2307/2040075 doi: 10.2307/2040075
    [6] I. Demir, Fixed point theorems in complex valued fuzzy $b$-metric space with application to integral equation, Miskolc Math. Notes, 22 (2021), 153–171. https://doi.org/10.18514/mmn.2021.3173 doi: 10.18514/mmn.2021.3173
    [7] G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/cmb-1973-036-0 doi: 10.4153/cmb-1973-036-0
    [8] N. Hussain, P. Salimi, V. Parvaneh, Fixed point results for various contractions in parametric and fuzzy $b$-MS, J. Nonlinear Sci. Appl., 8 (2015), 719–739. https://doi.org/10.22436/jnsa.008.05.24 doi: 10.22436/jnsa.008.05.24
    [9] S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247x(81)90141-4 doi: 10.1016/0022-247x(81)90141-4
    [10] E. Karapınar, O. Alqahtani, H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry, 11 (2019), 8. https://doi.org/10.3390/sym11010008 doi: 10.3390/sym11010008
    [11] E. Karapınar, R. Agarwal, H. Aydi, Interpolative Reich–Rus–Ćirić type contractions on partial metric space, Mathematics, 6 (2018), 256. https://doi.org/10.3390/math6110256 doi: 10.3390/math6110256
    [12] E. Karapınar, Revisiting the Kannan type contractions via interpolation, Adv. Theor. Nonlinear Anal. Appl., 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135
    [13] E. Karapınar, R. P. Agarwal, Interpolative Rus-Reich-Ćirić type contractions via simulation functions, An. Sti. Ovid. Co. Mat., 27 (2019), 137–152. https://doi.org/10.2478/auom-2019-0038 doi: 10.2478/auom-2019-0038
    [14] E. Karapınar, A. Fulga, New Hybrid Contractions on $b$-Metric Spaces, Mathematics, 7 (2019), 578. https://doi.org/10.3390/math7070578 doi: 10.3390/math7070578
    [15] A. Maysaa, S. S. Mohammed, R. Saima, Y. S. Hamed, S. M. Mohamed, Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions, AIMS Math., 7 (2022), 315–333. https://doi.org/10.3934/math.2022022 doi: 10.3934/math.2022022
    [16] S. S. Mohammed, A. Azam, Fixed points of soft-set valued and fuzzy set-valued maps with applications, J. Intell. Fuzzy Syst., 37 (2019), 3865–3877. https://doi.org/10.3233/jifs-190126 doi: 10.3233/jifs-190126
    [17] S. S. Mohammed, M. Alansari, A. Azam, S. Kanwal, Fixed points of $(\varphi, F)$-weak contractions on metric-like spaces with applications to integral equation on time scales, Bol. Soc. Mat. Mex., 39 (2021), 39. https://doi.org/10.1007/s40590-021-00347-x doi: 10.1007/s40590-021-00347-x
    [18] S. S. Mohammed, A. Azam, Fixed point theorems of fuzzy set-valued maps with applications, Probl. Anal. Issues Anal., 9 (2020), 68–86. https://doi.org/10.15393/j3.art.2020.6750 doi: 10.15393/j3.art.2020.6750
    [19] S. S. Mohammed, R. Saima, M. A. Khadijah, A. Monairah, On nonlinear fuzzy set-valued $\varphi$-contractions with applications, AIMS Math., 6 (2021), 10431–10448. http://doi.org/2010.3934/math.2021605
    [20] S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475
    [21] A. F. Roldán López de Hierro, E. Karapınar, A. Fulga, Multiparametric contractions and related Hardy-Roger type fixed point theorems, Mathematics, 8 (2020), 957. https://doi.org/10.3390/math8060957 doi: 10.3390/math8060957
    [22] I. A. Rus, Generalized contractions and applications, Cluj University Press, 2001.
    [23] I. A. Rus, Basic problems of the metric fixed point theory revisited (Ⅱ), Stud. Univ. Babes-Bolyai, 36 (1991), 81–99.
    [24] S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/cmb-1971-024-9 doi: 10.4153/cmb-1971-024-9
    [25] S. Reich, A fixed point theorem for locally contractive multi-valued functions, Rev. Roumaine Math. Pures Appl., 17 (1972), 569–572.
    [26] M. S. Shagari, A. I. Fulatan, New fuzzy fixed point results with related applications, New Math. Nat. Comput., 17 (2021), 529–552. https://doi.org/10.1142/S1793005721500265 doi: 10.1142/S1793005721500265
    [27] R. Saadati, On the topology of fuzzy metric type spaces, Filomat, 29 (2015), 133–141. https://doi.org/10.2298/fil1501133s doi: 10.2298/fil1501133s
    [28] R. Tabassum, A. Azam, S. S. Mohammed, Existence results of delay and fractional differential equation via fuzzy weakly contraction mapping principle, Appl. Gen. Topol., 20 (2019), 449–469. https://doi.org/10.4995/agt.2019.11683 doi: 10.4995/agt.2019.11683
    [29] L. A. Zadeh, Information and control, Fuzzy set., 8 (1965), 338–353.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1644) PDF downloads(67) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog