Research article

A novel decision aid approach based on spherical hesitant fuzzy Aczel-Alsina geometric aggregation information

  • Correction on: AIMS Mathematics 8: 13787-13788.
  • Received: 13 October 2022 Revised: 23 November 2022 Accepted: 04 December 2022 Published: 13 December 2022
  • MSC : 03B52, 03E72

  • Taking into account the significance of spherical hesitant fuzzy sets, this research concentrates on an innovative multi-criteria group decision-making technique for dealing with spherical hesitant fuzzy (SHF) situations. To serve this purpose, we explore SHF Aczel Alsina operational laws such as the Aczel-Alsina sum, Aczel-Alsina product and Aczel-Alsina scalar multiplication as well as their desirable characteristics. This work is based on the fact that aggregation operators have significant operative adaptability to aggregate the uncertain information under the SHF context. With the aid of Aczel-Alsina operators, we develop SHF Aczel-Alsina geometric aggregation operators to address the complex hesitant uncertain information. In addition, we describe and verify several essential results of the newly invented aggregation operators. Furthermore, a decision aid methodology based on the proposed operators is developed using SHF information. The applicability and viability of the proposed methodology is demonstrated by using a case study related to breast cancer treatment. Comprehensive parameter analysis and a systematic comparative study are also carried out to ensure the dependability and validity of the works under consideration.

    Citation: Aziz Khan, Shahzaib Ashraf, Saleem Abdullah, Muhammad Ayaz, Thongchai Botmart. A novel decision aid approach based on spherical hesitant fuzzy Aczel-Alsina geometric aggregation information[J]. AIMS Mathematics, 2023, 8(3): 5148-5174. doi: 10.3934/math.2023258

    Related Papers:

  • Taking into account the significance of spherical hesitant fuzzy sets, this research concentrates on an innovative multi-criteria group decision-making technique for dealing with spherical hesitant fuzzy (SHF) situations. To serve this purpose, we explore SHF Aczel Alsina operational laws such as the Aczel-Alsina sum, Aczel-Alsina product and Aczel-Alsina scalar multiplication as well as their desirable characteristics. This work is based on the fact that aggregation operators have significant operative adaptability to aggregate the uncertain information under the SHF context. With the aid of Aczel-Alsina operators, we develop SHF Aczel-Alsina geometric aggregation operators to address the complex hesitant uncertain information. In addition, we describe and verify several essential results of the newly invented aggregation operators. Furthermore, a decision aid methodology based on the proposed operators is developed using SHF information. The applicability and viability of the proposed methodology is demonstrated by using a case study related to breast cancer treatment. Comprehensive parameter analysis and a systematic comparative study are also carried out to ensure the dependability and validity of the works under consideration.



    加载中


    [1] Z. Abbas, S. Rehman, An overview of cancer treatment modalities, Neoplasm, 2018,139–157. https://doi.org/10.5772/intechopen.76558 doi: 10.5772/intechopen.76558
    [2] J. Aczél, C. Alsina, Characterizations of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements, Aequationes Math., 25 (1982), 313–315. https://doi.org/10.1007/BF02189626 doi: 10.1007/BF02189626
    [3] M. Akram, A. Luqman, J. C. R. Alcantud, An integrated ELECTRE-Ⅰ approach for risk evaluation with hesitant Pythagorean fuzzy information, Expert Syst. Appl., 200 (2022), 116945. https://doi.org/10.1016/j.eswa.2022.116945 doi: 10.1016/j.eswa.2022.116945
    [4] M. Akram, K. Zahid, J. C. R. Alcantud, A new outranking method for multicriteria decision making with complex Pythagorean fuzzy information, Neural Comput. Appl., 34 (2022), 8069–8102. https://doi.org/10.1007/s00521-021-06847-1 doi: 10.1007/s00521-021-06847-1
    [5] K. P. Akhtar, S. S. Alam, Assessment keys for some important diseases of mango, Pak. J. Biol. Sci., 5 (2002), 246–250. https://doi.org/10.3923/pjbs.2002.246.250 doi: 10.3923/pjbs.2002.246.250
    [6] R. Arora, H. Garg, Group decision-making method based on prioritized linguistic intuitionistic fuzzy aggregation operators and its fundamental properties, Comput. Appl. Math., 38 (2019), 1–32. https://doi.org/10.1007/s40314-019-0764-1 doi: 10.1007/s40314-019-0764-1
    [7] S. Ashraf, T. Mahmood, S. Abdullah, Q. Khan, Different approaches to multi-criteria group decision making problems for picture fuzzy environment, B. Braz. Math. Soc., 50 (2019), 373–397. https://doi.org/10.1007/s00574-018-0103-y doi: 10.1007/s00574-018-0103-y
    [8] S. Ashraf, S. Abdullah, T. Mahmood, M. Aslam, Cleaner production evaluation in gold mines using novel distance measure method with cubic picture fuzzy numbers, Int. J. Fuzzy Syst., 21 (2019), 2448–2461. https://doi.org/10.1007/s40815-019-00681-3 doi: 10.1007/s40815-019-00681-3
    [9] S. Ashraf, S. Ahmad, M. Naeem, M. Riaz, M. Alam, Novel EDAS methodology based on single-valued neutrosophic Aczel-Alsina aggregation information and their application in complex decision-making, Complexity, 2022 (2022). https://doi.org/10.1155/2022/2394472 doi: 10.1155/2022/2394472
    [10] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. https://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
    [11] S. Ashraf, S. Abdullah, Spherical aggregation operators and their application in multiattribute group decision-making, Int. J. Intell. Syst., 34 (2019), 493–523. https://doi.org/10.1002/int.22062 doi: 10.1002/int.22062
    [12] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set Syst., Physica, Heidelberg, 35 (1999). https://doi.org/10.1007/978-3-7908-1870-3
    [13] P. D. Bith, "Mango illness": Health decisions and the use of biomedical and traditional therapies in Cambodia, University of Hawai'i at Manoa, 2004.
    [14] B. C. Cuong, Picture fuzzy sets-first results, part 1, seminar neuro-fuzzy systems with applications, Institute of Mathematics, Hanoi, 2013.
    [15] H. Garg, Some picture fuzzy aggregation operators and their applications to multicriteria decision-making, Arab. J. Sci. Engin., 42 (2017), 5275–5290. https://doi.org/10.1007/s13369-017-2625-9 doi: 10.1007/s13369-017-2625-9
    [16] GOP, Economic survey of Pakistan, Economic advisor's wing, Ministry of finance, Government of Pakistan, 2020.
    [17] GOP, Agricultural statistics of Pakistan, 2012.
    [18] R. Gupta, R. D. Sharma, M. Singh, Energy dissipation and photosynthetic electron flow during the transition from juvenile red to mature green leaves in mango (Mangifera indica L.), Plant Biosyst., 155 (2021). https://doi.org/10.1080/11263504.2020.1810807 doi: 10.1080/11263504.2020.1810807
    [19] S. U. Haq, P. Shahbaz, I. Boz, I. C. Yildirim, M. R. Murtaza, Exploring the determinants of technical inefficiency in mango enterprise: A case of Muzafargarh, Pakistan, Cust. Egronegócio., 13 (2017). https://doi.org/10.4324/9780429356971-8 doi: 10.4324/9780429356971-8
    [20] M. Hasan, I. E. Büyüktahtakın, E. Elamin, A multi-criteria ranking algorithm (mcra) for determining breast cancer therapy, Omega, 82 (2019), 83–101. https://doi.org/10.1016/j.omega.2017.12.005 doi: 10.1016/j.omega.2017.12.005
    [21] D. H. Henry, H. N. Viswanathan, E. P. Elkin, S. Traina, S. Wade, D. Cella, Symptoms and treatment burden associated with cancer treatment: Results from a cross-sectional national survey in the us, Support. Care Cancer, 16 (2008), 791–801. https://doi.org/10.1007/s00520-007-0380-2 doi: 10.1007/s00520-007-0380-2
    [22] P. A. Hollington, Technological breakthroughs in screening/breeding wheat varieties for salt tolerance, In Proceedings of the national conference on salinity management in agriculture, Karnal, India, 1998.
    [23] S. Hussen, Z. Yimer, Assessment of production potentials and constraints of mango (Mangifera indica) at Bati, Oromia zone, Ethiopia, Int. J. Sci. Basic Appl. Res., 11 (2013), 1–9.
    [24] C. Jana, T. Senapati, M. Pal, R. R. Yager, Picture fuzzy Dombi aggregation operators: Application to MADM process, Appl. Soft Comput., 74 (2019), 99–109. https://doi.org/10.1016/j.asoc.2018.10.021 doi: 10.1016/j.asoc.2018.10.021
    [25] W. Jiang, B. Wei, X. Liu, X. Li, H. Zheng, Intuitionistic fuzzy power aggregation operator based on entropy and its application in decision making, Int. J. Intell. Syst., 33 (2018), 49–67. https://doi.org/10.1002/int.21939 doi: 10.1002/int.21939
    [26] M. M. Jonczyk, J. Jean, R. Graham, A. Chatterjee, Surgical trends in breast cancer: A rise in novel operative treatment options over a 12 year analysis, Breast Cancer Res. Tr., 173 (2019), 267–274. https://doi.org/10.1007/s10549-018-5018-1 doi: 10.1007/s10549-018-5018-1
    [27] A. Khan, S. S. Abosuliman, S. Ashraf, S. Abdullah, Hospital admission and care of COVID-19 patients problem based on spherical hesitant fuzzy decision support system, Int. J. Intell. Syst., 36 (2021), 4167–4209. https://doi.org/10.1002/int.22455 doi: 10.1002/int.22455
    [28] M. I. Khaskheli, M. A. Pathan, M. M. Jiskani, M. A. Abro, G. B. Poussio, A. J. Khaskheli, Effectiveness of different fungicides against predominant and virulent fungus Fusarium nivale the cause of mango malformation disease, Pakistan J. Phytopathol., 29 (2017), 137–143. https://doi.org/10.33866/phytopathol.029.01.0227 doi: 10.33866/phytopathol.029.01.0227
    [29] M. J. Khan, P. Kumam, P. Liu, W. Kumam, S. Ashraf, A novel approach to generalized intuitionistic fuzzy soft sets and its application in decision support system, Mathematics, 7 (2019), 742. https://doi.org/10.3390/math7080742 doi: 10.3390/math7080742
    [30] M. J. Khan, P. Kumam, S. Ashraf, W. Kumam, Generalized picture fuzzy soft sets and their application in decision support systems, Symmetry, 11 (2019), 415. https://doi.org/10.3390/sym11030415 doi: 10.3390/sym11030415
    [31] S. Khan, S. Abdullah, S. Ashraf, Picture fuzzy aggregation information based on Einstein operations and their application in decision making, Math. Sci., 13 (2019), 213–229. https://doi.org/10.1007/s40096-019-0291-7 doi: 10.1007/s40096-019-0291-7
    [32] S. Khan, S. Abdullah, L. Abdullah, S. Ashraf, Logarithmic aggregation operators of picture fuzzy numbers for multi-attribute decision making problems, Mathematics, 7 (2019), 608. https://doi.org/10.3390/math7070608 doi: 10.3390/math7070608
    [33] X. Li, Y. Ju, D. Ju, W. Zhang, P. Dong, A. Wang, Multi-attribute group decision making method based on EDAS under picture fuzzy environment, IEEE Access, 7 (2019), 141179–141192. https://doi.org/10.1109/ACCESS.2019.2943348 doi: 10.1109/ACCESS.2019.2943348
    [34] M. Iida, K. Tsuboi, T. Niwa, T. Ishida, S. I. Hayashi, Compensatory role of insulin-like grow factor 1 receptor in estrogen receptor signaling pathway and possible therapeutic target for hormone therapy-resistant breast cancer, Breast Cancer, 26 (2019), 272–281. https://doi.org/10.1007/s12282-018-0922-0 doi: 10.1007/s12282-018-0922-0
    [35] P. Liu, P. Wang, Some improved linguistic intuitionistic fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Inform. Tech. Decis., 16 (2017), 817–850. https://doi.org/10.1142/S0219622017500110 doi: 10.1142/S0219622017500110
    [36] T. Mahmood, U. Ur Rehman, Z. Ali, Analysis and application of Aczel-Alsina aggregation operators based on bipolar complex fuzzy information in multiple attribute decision making, Inform. Sci., 2022. https://doi.org/10.1016/j.ins.2022.11.067 doi: 10.1016/j.ins.2022.11.067
    [37] A. Masood, S. Saeed, N. Erbilgin, Y. J. Kwon, Role of stressed mango host conditions in attraction of and colonization by the mango bark beetle Hypocryphalus mangiferae Stebbing (Coleoptera: Curculionidae: Scolytinae) and in the symptom development of quick decline of mango trees in Pakistan, Entomol. Res., 40 (2010), 316–327. https://doi.org/10.1111/j.1748-5967.2010.00304.x doi: 10.1111/j.1748-5967.2010.00304.x
    [38] G. Mustafa, M. S. Akhtar, Crops and methods to control soil salinity, In Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches, Singapore, Springer, 2019,237–251.
    [39] M. Naeem, Y. Khan, S. Ashraf, W. Weera, B. Batool, A novel picture fuzzy Aczel-Alsina geometric aggregation information: Application to determining the factors affecting mango crops, AIMS Math., 7 (2022), 12264–12288. https://doi.org/10.3934/math.2022681 doi: 10.3934/math.2022681
    [40] M. Naeem, A. Khan, S. Abdullah, S. Ashraf, A. A. A. Khammash, Solid waste collection system selection based on sine trigonometric spherical hesitant fuzzy aggregation information, Intell. Autom. Soft Comput., 28 (2021), 459–476. https://doi.org/10.32604/iasc.2021.016822 doi: 10.32604/iasc.2021.016822
    [41] R. Naz, M. Shah, A. Ullah, I. Alam, Y. Khan, An assessment of effects of climate change on human lives in context of local response to agricultural production in district Buner, Sarhad J. Agricul., 36 (2020). https://doi.org/10.17582/journal.sja/2020/36.1.110.119 doi: 10.17582/journal.sja/2020/36.1.110.119
    [42] M. Qiyas, S. Abdullah, S. Ashraf, M. Aslam, Utilizing linguistic picture fuzzy aggregation operators for multiple-attribute decision-making problems, Int. J. Fuzzy Syst., 22 (2020), 310–320. https://doi.org/10.1007/s40815-019-00726-7 doi: 10.1007/s40815-019-00726-7
    [43] S. Y. Qin, A. Q. Zhang, S. X. Cheng, L. Rong, X. Z. Zhang, Drug self-delivery systems for cancer therapy, Biomaterials, 112 (2017), 234–247. https://doi.org/10.1016/j.biomaterials.2016.10.016 doi: 10.1016/j.biomaterials.2016.10.016
    [44] M. Riaz, H. M. A. Farid, D. Pamucar, S. Tanveer, Spherical fuzzy information aggregation based on Aczel-Alsina operations and data analysis for supply chain, Math. Probl. Eng., 2022 (2022). https://doi.org/10.1155/2022/9657703 doi: 10.1155/2022/9657703
    [45] T. Senapati, G. Chen, R. R. Yager, Aczel-Alsina aggregation operators and their application to intuitionistic fuzzy multiple attribute decision making, Int. J. Intell. Syst., 37 (2022), 1529–1551. https://doi.org/10.1002/int.22684 doi: 10.1002/int.22684
    [46] T. Senapati, G. Chen, R. Mesiar, R. R. Yager, Novel Aczel-Alsina operations-based interval-valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision-making process, Int. J. Intell. Syst., 37 (2022), 5059–5081. https://doi.org/10.1002/int.22751 doi: 10.1002/int.22751
    [47] M. R. Seikh, U. Mandal, Intuitionistic fuzzy Dombi aggregation operators and their application to multiple attribute decision-making, Granular Comput., 6 (2021), 473–488. https://doi.org/10.1007/s41066-019-00209-y doi: 10.1007/s41066-019-00209-y
    [48] M. R. Seikh, U. Mandal, Q-rung orthopair fuzzy Frank aggregation operators and its application in multiple attribute decision-making with unknown attribute weights, Granular Comput., 7 (2022), 709–730. https://doi.org/10.1007/s41066-021-00290-2 doi: 10.1007/s41066-021-00290-2
    [49] M. R. Seikh, U. Mandal, Some picture fuzzy aggregation operators based on Frank t-norm and t-conorm: Application to MADM process, Informatica, 45 (2021). https://doi.org/10.31449/inf.v45i3.3025 doi: 10.31449/inf.v45i3.3025
    [50] M. R. Seikh, U. Mandal, Multiple attribute decision-making based on 3, 4-quasirung fuzzy sets, Granular Comput., 7 (2022), 965–978. https://doi.org/10.1007/s41066-021-00308-9 doi: 10.1007/s41066-021-00308-9
    [51] F. Shen, X. Ma, Z. Li, Z. Xu, D. Cai, An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation, Inform. Sci., 428 (2018), 105–119. https://doi.org/10.1016/j.ins.2017.10.045 doi: 10.1016/j.ins.2017.10.045
    [52] Z. Singh, H. J. D. Lalel, S. Nair, A review of mango fruit aroma volatile compounds-state of the art research, ISHS Acta Hortic., 645 (2002), 519–527. https://doi.org/10.17660/ActaHortic.2004.645.68 doi: 10.17660/ActaHortic.2004.645.68
    [53] R. Soumarová, L. Rušinová, Cardiotoxicity of breast cancer radiotherapy-overview of current results, Rep. Pract. Oncol. Radi., 25 (2020), 182–186. https://doi.org/10.1016/j.rpor.2019.12.008 doi: 10.1016/j.rpor.2019.12.008
    [54] R. Wang, Y. Li, Picture hesitant fuzzy set and its application to multiple criteria decision-making, Symmetry, 10 (2018), 295. https://doi.org/10.3390/sym10070295 doi: 10.3390/sym10070295
    [55] W. Wang, X. Liu, Intuitionistic fuzzy information aggregation using Einstein operations, IEEE T. Fuzzy Syst., 20 (2012), 923–938. https://doi.org/10.1109/TFUZZ.2012.2189405 doi: 10.1109/TFUZZ.2012.2189405
    [56] G. Wei, Picture fuzzy aggregation operators and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 33 (2017), 713–724. https://doi.org/10.3233/JIFS-161798 doi: 10.3233/JIFS-161798
    [57] G. Wei, Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making, Fund. Inform., 157 (2018), 271–320. https://doi.org/10.3233/FI-2018-1628 doi: 10.3233/FI-2018-1628
    [58] M. C. Wu, T. Y. Chen, The ELECTRE multicriteria analysis approach based on Atanassov's intuitionistic fuzzy sets, Expert Syst. Appl., 38 (2011), 12318–12327. https://doi.org/10.1016/j.eswa.2011.04.010 doi: 10.1016/j.eswa.2011.04.010
    [59] Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE T. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [60] Z. Xu, R. R. Yager, Intuitionistic fuzzy Bonferroni means, IEEE T. Syst. Man Cy., 41 (2010), 568–578. https://doi.org/10.1109/TSMCB.2010.2072918 doi: 10.1109/TSMCB.2010.2072918
    [61] Y. X. Xue, J. X. You, X. D. Lai, H. C. Liu, An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information, Appl. Soft Comput., 38 (2016), 703–713. https://doi.org/10.1016/j.asoc.2015.10.010 doi: 10.1016/j.asoc.2015.10.010
    [62] A. Yadav, S. Mangaraj, R. Singh, N. Kumar, S. Arora, Biopolymers as packaging material in food and allied industry, Int. J. Chem. Stud., 6 (2018), 2411–2418.
    [63] X. Yu, Z. Xu, Prioritized intuitionistic fuzzy aggregation operators, Inform. Fusion, 14 (2013), 108–116. https://doi.org/10.1016/j.inffus.2012.01.011 doi: 10.1016/j.inffus.2012.01.011
    [64] D. Yu, Intuitionistic fuzzy information aggregation under confidence levels, Appl. Soft Comput., 19 (2014), 147–160. https://doi.org/10.1016/j.asoc.2014.02.001 doi: 10.1016/j.asoc.2014.02.001
    [65] D. Yu, Intuitionistic fuzzy geometric Heronian mean aggregation operators, Appl. Soft Comput., 13 (2013), 1235–1246. https://doi.org/10.1016/j.asoc.2012.09.021 doi: 10.1016/j.asoc.2012.09.021
    [66] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [67] H. Zhao, Z. Xu, M. Ni, S. Liu, Generalized aggregation operators for intuitionistic fuzzy sets, Int. J. Intell. Syst., 25 (2010), 1–30. https://doi.org/10.1002/int.20386 doi: 10.1002/int.20386
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1252) PDF downloads(94) Cited by(3)

Article outline

Figures and Tables

Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog