Research article Special Issues

Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations

  • Received: 15 December 2021 Revised: 15 December 2021 Accepted: 09 February 2022 Published: 17 February 2022
  • MSC : 65N35, 35G05

  • In this paper, we propose a numerical scheme to solve generalized space fractional partial differential equations (GFPDEs). The proposed scheme uses Shifted Chebyshev fifth-kind polynomials with the spectral collocation approach. Besides, the proposed GFPDEs represent a great generalization of significant types of fractional partial differential equations (FPDEs) and their applications, which contain many previous reports as a special case. The fractional differential derivatives are expressed in terms of the Caputo sense. Moreover, the Chebyshev collocation method together with the finite difference method is used to reduce these types of differential equations to a system of differential equations which can be solved numerically. In addition, the classical fourth-order Runge-Kutta method is also used to treat the differential system with the collocation method which obtains a great accuracy. Numerical approximations performed by the proposed method are presented and compared with the results obtained by other numerical methods. The introduced numerical experiments are fractional-order mathematical physics models, as advection-dispersion equation (FADE) and diffusion equation (FDE). The results reveal that our method is a simple, easy to implement and effective numerical method.

    Citation: Khalid K. Ali, Mohamed A. Abd El Salam, Mohamed S. Mohamed. Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations[J]. AIMS Mathematics, 2022, 7(5): 7759-7780. doi: 10.3934/math.2022436

    Related Papers:

  • In this paper, we propose a numerical scheme to solve generalized space fractional partial differential equations (GFPDEs). The proposed scheme uses Shifted Chebyshev fifth-kind polynomials with the spectral collocation approach. Besides, the proposed GFPDEs represent a great generalization of significant types of fractional partial differential equations (FPDEs) and their applications, which contain many previous reports as a special case. The fractional differential derivatives are expressed in terms of the Caputo sense. Moreover, the Chebyshev collocation method together with the finite difference method is used to reduce these types of differential equations to a system of differential equations which can be solved numerically. In addition, the classical fourth-order Runge-Kutta method is also used to treat the differential system with the collocation method which obtains a great accuracy. Numerical approximations performed by the proposed method are presented and compared with the results obtained by other numerical methods. The introduced numerical experiments are fractional-order mathematical physics models, as advection-dispersion equation (FADE) and diffusion equation (FDE). The results reveal that our method is a simple, easy to implement and effective numerical method.



    加载中


    [1] R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. http://dx.doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039
    [2] D. Kumar, D. Baleanu, Fractional calculus and its applications in physics, Front. Phys., 7 (2019), 81. https://doi.org/10.3389/fphy.2019.00081
    [3] H. G. Sun, Y. Z. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. http://dx.doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [4] S. K. Vanani, A. Aminataei, On the numerical solution of fractional partial differential equations, Math. Comput. Appl., 17 (2012), 140–151. http://dx.doi.org/10.3390/mca17020140 doi: 10.3390/mca17020140
    [5] F. Yin, J. Song, Y. Wu, L. Zhang, Numerical solution of the fractional partial differential equations by the two-dimensional fractional-order Legendre functions, Abstr. Appl. Anal., 2013 (2013), 562140. http://dx.doi.org/10.1155/2013/562140 doi: 10.1155/2013/562140
    [6] A. Ahmadian, F. Ismail, S. Salahshour, D. Baleanu, F. Ghaemi, Uncertain viscoelastic models with fractional order: A new spectral tau method to study the numerical simulations of the solution, Commun. Nonlinear Sci., 53 (2017), 44–64. http://dx.doi.org/10.1016/j.cnsns.2017.03.012 doi: 10.1016/j.cnsns.2017.03.012
    [7] H. M. Srivastava, K. M. Saad, M. M. Khader, An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus, Chaos, Solitons Fract., 140 (2020), 110174. http://dx.doi.org/10.1016/j.chaos.2020.110174 doi: 10.1016/j.chaos.2020.110174
    [8] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, I. K. Youssef, Spectral Galerkin schemes for a class of multi-order fractional pantograph equations, J. Comput. Appl. Math., 384 (2021), 113157. http://dx.doi.org/10.1016/j.cam.2020.113157 doi: 10.1016/j.cam.2020.113157
    [9] W. M. Abd-Elhameed, Y. H. Youssri, New formulas of the high-order derivatives of fifth-kind Chebyshev polynomials: Spectral solution of the convection-diffusion equation, Numer. Meth. Part. D. E., 2021 (2021), 1–17. http://dx.doi.org/10.1002/num.22756 doi: 10.1002/num.22756
    [10] K. Sadri, K. Hosseini, D. Baleanu, A. Ahmadian, S. Salahshour, Bivariate Chebyshev polynomials of the fifth kind for variable-order time-fractional partial integro-differential equations with weakly singular kernel, Adv. Differ. Equ., 2021 (2021), 1–26. http://dx.doi.org/10.1186/s13662-021-03507-5 doi: 10.1186/s13662-021-03507-5
    [11] K. Sadri, H. Aminikhah, A new efficient algorithm based on fifth-kind Chebyshev polynomials for solving multi-term variable-order time-fractional diffusion-wave equation, Int. J. Comput. Math., 2021, 1–27. http://dx.doi.org/10.1080/00207160.2021.1940977
    [12] A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, Y. H. Youssri, Shifted fifth-kind Chebyshev Galerkin treatment for linear hyperbolic first-order partial differential equations, Appl. Numer. Math., 167 (2021), 237–256. http://dx.doi.org/10.1016/j.apnum.2021.05.010 doi: 10.1016/j.apnum.2021.05.010
    [13] W. M. Abd-Elhameed, Y. H. Youssri, Neoteric formulas of the monic orthogonal Chebyshev polynomials of the sixth-kind involving moments and linearization formulas, Adv. Differ. Equ., 2021 (2021), 1–19. http://dx.doi.org/10.1186/s13662-021-03244-9 doi: 10.1186/s13662-021-03244-9
    [14] W. M. Abd-Elhameed, Y. H. Youssri, Sixth-kind Chebyshev spectral approach for solving fractional differential equations, Int. J. Nonlinear Sci. Num., 20 (2019), 191–203. http://dx.doi.org/10.1515/ijnsns-2018-0118 doi: 10.1515/ijnsns-2018-0118
    [15] M. Masjed-Jamei, Some new classes of orthogonal polynomials and special functions: A symmetric generalization of Sturm-Liouville problems and its consequences, Department of Mathematics, University of Kassel, 2006.
    [16] W. M. Abd-Elhameed, Y. H. Youssri, Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations, Comput. Appl. Math., 37 (2018), 2897–2921. http://dx.doi.org/10.1007/s40314-017-0488-z doi: 10.1007/s40314-017-0488-z
    [17] R. W. Ibrahim, Existence and uniqueness of holomorphic solutions for fractional Cauchy problem, J. Math. Anal. Appl., 380 (2011), 232–240. http://dx.doi.org/10.1016/j.jmaa.2011.03.001 doi: 10.1016/j.jmaa.2011.03.001
    [18] H. R. Marasi, H. Afshari, C. B. Zhai, Some existence and uniqueness results for nonlinear fractional partial differential equations, Rocky Mt. J. Math., 47 (2017), 571–585. http://dx.doi.org/10.1216/RMJ-2017-47-2-571 doi: 10.1216/RMJ-2017-47-2-571
    [19] Z. Ouyang, Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay, Comput. Math. Appl., 61 (2011), 860–870. http://dx.doi.org/10.1016/j.camwa.2010.12.034 doi: 10.1016/j.camwa.2010.12.034
    [20] X. Chen, J. S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differ. Equations, 212 (2005), 62–84. http://dx.doi.org/10.1016/j.jde.2004.10.028 doi: 10.1016/j.jde.2004.10.028
    [21] X. Li, C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), 1016–1051. http://dx.doi.org/10.4208/cicp.020709.221209a doi: 10.4208/cicp.020709.221209a
    [22] A. Allwright, A. Atangana, Fractal advection-dispersion equation for groundwater transport in fractured aquifers with self-similarities, Eur. Phys. J. Plus, 133 (2018), 1–20. http://dx.doi.org/10.1140/epjp/i2018-11885-3 doi: 10.1140/epjp/i2018-11885-3
    [23] R. Hilfer, P. L. Butzer, U. Westphal, An introduction to fractional calculus, Appl. Fract. Calc. Phys., 2010, 1–85.
    [24] R. M. Ganji, H. Jafari, D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos, Solitons Fract., 130 (2020), 109405. http://dx.doi.org/10.1016/j.chaos.2019.109405 doi: 10.1016/j.chaos.2019.109405
    [25] K. K. Ali, M. A. Abd El Salam, E. M. H. Mohamed, B. Samet, S. Kumar, M. S. Osman, Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series, Adv. Differ. Equ., 2020 (2020), 1–23. http://dx.doi.org/10.1186/s13662-020-02951-z doi: 10.1186/s13662-020-02951-z
    [26] M. A. Ramadan, M. A. Abd El Salam, Spectral collocation method for solving continuous population models for single and interacting species by means of exponential Chebyshev approximation, Int. J. Biomath., 11 (2018), 1850109. http://dx.doi.org/10.1142/S1793524518501097 \newpage doi: 10.1142/S1793524518501097
    [27] N. H. Sweilam, A. M. Nagy, A. A. El-Sayed, Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation, Chaos, Solitons Fract., 73 (2015), 141–147. http://dx.doi.org/10.1016/j.chaos.2015.01.010 doi: 10.1016/j.chaos.2015.01.010
    [28] N. H. Sweilam, A. M. Nagy, A. A. El-Sayed, On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind, J. King Saud Univ.-Sci., 28 (2016), 41–47. http://dx.doi.org/10.1016/j.jksus.2015.05.002 doi: 10.1016/j.jksus.2015.05.002
    [29] M. M. Khader, On the numerical solutions for the fractional diffusion equation, Commun. Nonlinear Sci., 16 (2011), 2535–2542. http://dx.doi.org/10.1016/j.cnsns.2010.09.007 doi: 10.1016/j.cnsns.2010.09.007
    [30] P. Agarwal, A. A. El-Sayed, Vieta-Lucas polynomials for solving a fractional-order mathematical physics model, Adv. Differ. Equ., 2020 (2020), 1–18. http://dx.doi.org/10.1186/s13662-020-03085-y doi: 10.1186/s13662-020-03085-y
    [31] M. M. Khader, N. H. Sweilam, Approximate solutions for the fractional advection-dispersion equation using Legendre pseudo-spectral method, Comput. Appl. Math., 33 (2014), 739–750. http://dx.doi.org/10.1007/s40314-013-0091-x doi: 10.1007/s40314-013-0091-x
    [32] V. Saw, S. Kumar, Fourth kind shifted Chebyshev polynomials for solving space fractional order advection-dispersion equation based on collocation method and finite difference approximation, Int. J. Appl. Comput. Math., 4 (2018), 1–17. http://dx.doi.org/10.1007/s40819-018-0517-7 doi: 10.1007/s40819-018-0517-7
    [33] V. Saw, S. Kumar, Second kind Chebyshev polynomials for solving space fractional advection-dispersion equation using collocation method, Iran. J. Sci. Technol. Trans. Sci., 43 (2019), 1027–1037. http://dx.doi.org/10.1007/s40995-018-0480-5 doi: 10.1007/s40995-018-0480-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1308) PDF downloads(114) Cited by(2)

Article outline

Figures and Tables

Figures(9)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog