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Abstract: In this paper, we propose a numerical scheme to solve generalized space fractional partial
differential equations (GFPDEs). The proposed scheme uses Shifted Chebyshev fifth-kind polynomials
with the spectral collocation approach. Besides, the proposed GFPDEs represent a great generalization
of significant types of fractional partial differential equations (FPDEs) and their applications, which
contain many previous reports as a special case. The fractional differential derivatives are expressed
in terms of the Caputo sense. Moreover, the Chebyshev collocation method together with the finite
difference method is used to reduce these types of differential equations to a system of differential
equations which can be solved numerically. In addition, the classical fourth-order Runge-Kutta method
is also used to treat the differential system with the collocation method which obtains a great accuracy.
Numerical approximations performed by the proposed method are presented and compared with the
results obtained by other numerical methods. The introduced numerical experiments are fractional-
order mathematical physics models, as advection-dispersion equation (FADE) and diffusion equation
(FDE). The results reveal that our method is a simple, easy to implement and effective numerical
method.
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1. Introduction

Many phenomena such as biology, physics, and fluid mechanics can be modeled by certain
fractional order partial differential equations (FPDEs) [1–3]. So that, fractional calculus becomes a
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central branch of mathematical analysis. The importance of the numerical solution of FPDEs
becomes a major, because of the difficulty of obtaining their analytical solutions [4, 5].

Spectral methods have been developed through the past few decades by a huge number of
researchers see for example [6–8], and many others. The principal feature of these methods lies in
their ability to reach acceptably accurate results with substantially fewer degrees of freedom. In
recent years, Chebyshev polynomials have become increasingly important again in numerical
analysis, when a new two classes of polynomials appear, namely fifth and sixth kinds [9–14]. In the
Ph.D. thesis of Masjed-Jamei [15, 16], 2006 he introduces a generalized polynomial using an
extended Sturm-Liouville problem. These generalized polynomials generate Chebyshev polynomials
of the first, second, third, and fourth kinds, in addition to the two new classes fifth and sixth kinds
obtained at special values of a given parameters.

The objective of this research paper is to present a spectral scheme according to the collocation
method for the generalized space-fractional partial differential equations (GFPDEs) that we have
introduced. The proposed GFPDEs are chosen to be linear and the fractional derivatives are expressed
in terms of Caputo’s definition. The method of solution is to apply Shifted fifth kind Chebyshev
polynomials using the collocation method to discretize the proposed equation, and then generate a
linear system of ordinary differential equations (SODEs), which reduces the proposed problem.
Additionally, to treat the generated SODEs, the classical fourth-order Runge-Kutta method (RK4) and
the finite difference method (FDM) as well, are used. The proposed equation is presented as:

n∑
k=0

Qk(x)
∂γku(x, t)
∂γk x

+ P
∂u(x, t)
∂t

= f (x, t), (1.1)

on a finite domain 0 < x ⩽ L; 0 < t ⩽ T and the parameters γk refers to the fractional orders of a
special derivative with k < γk < (k+1) ⩽ n. The function f (x, t) is the source term, the functions Qk(x)
are well defined and known, in addition P is real constant. We also assume the initial condition (IC) as:

u(x, 0) = h(x), 0 < x ⩽ L, (1.2)

and the boundary conditions (BCs):

u(0, t) = z1(t), u(L, t) = z2(t), 0 < t ⩽ T. (1.3)

The introduced GFPDEs (1.1) represent a great generalization of a significant types of many physical
models. As a special cases: At γ1 , 0, γk = 0, Eq (1.1) reduces to space-fractional order diffusion
equation, and when γ0, γ1 , 0, γk = 0, then, (1.1) becomes space-fractional order advection-
dispersion equation, which they well study in the application section.

Concerning the existence and uniqueness of the solution of Eq (1.1), we refer the reader to
references [17–19], these studies considered the existence and uniqueness of the solution for
generalized linear and non-linear models of FPDEs, and we note that (1.1) represents a special case
from [19]. In particular, we mention the references which prove the existence and uniqueness of the
main examples mentioned in this work, the fractional order diffusion equation see [20, 21], and
advection-dispersion equation in [22].
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2. General notations

In this section, some definitions and properties for the fractional derivative and fifth kind Chebyshev
polynomials are listed [10, 15, 16, 23].

2.1. The Caputo fractional derivative

The Caputo’s fractional derivative operator Dγt (insted of C
0 Dγt for short) of order γ is characterize in

the following form:

DγtΨ (x) =
1

Γ(n − γ)

∫ x

0

Ψ (n)(t)
(x − t)γ−n+1 dt, γ > 0, (2.1)

where x > 0, n − 1 < γ ≤ n, n ∈ N0, and N0 = N − {0}.
Dγt

∑m
i=0 λiΨi(x) =

∑m
i=0 λi DγtΨi(x), where λi and γ are constants.

The Caputo fractional differentiation of a constant is zero.

Dγt xk =

 0, for k ∈ N0 and k < ⌈γ⌉
Γ(k+1) xk−γ

Γ(k+1−γ) , for k ∈ N0 and k ≥ ⌈γ⌉
, where ⌈γ⌉ denote to the smallest integer

greater than or equal to γ.

Remark 1. In this work we write the fractional Caputo’s operator symbol Dγ instead of C
0 Dγx for short.

2.2. Fifth-kind Chebyshev polynomials

The Chebyshev polynomials of the fifth-kind X̄n(x) defined as: an orthonormonal polynomials in
x of degree n defined on the closed interval [−1, 1], The polynomials X̄n(x) are orthogonal and the
orthogonality relation is:

∫ 1

−1
x2(1 − x2)

−1
2 X̄i(x)X̄ j(x)dx =


π

22i+1 , if i=j, and i even,
π(i+2)
i 22i+1 , if i=j, and i odd,
0, if j , i.

(2.2)

In [16] the authors normalize the monic Chebyshev polynomials of the fifth kind, and define Xn(x) as:

Xn(x) =
1
√
ℏi

X̄n(x), (2.3)

and

ℏi =

{
π

22i+1 , for even i,
π(i+2)
i 22i+1 , for odd i,

(2.4)

and (2.2) may rewrite using Xn(x) as:∫ 1

−1
x2(1 − x2)

−1
2 Xi(x)X j(x)dx =

{
1, if i=j,
0, if j , i.

(2.5)

By the usual transformation the Shifted Chebyshev polynomials of the fifth-kind Cn(x) defined as:

Cn(x) = Xn(2x − 1) =
1
√
ℏi

X̄n(2x − 1). (2.6)
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The Shifted Chebyshev fifth-kind Cn(x) are orthogonal polynomials on the closed interval [0, 1], and
they can be generated by using the following recurrence relation

Ci+1(x) = (2x − 1)

√
ℏi

ℏi + 1
Ci(x) + βi+1

√
ℏi−1

ℏi+1
Ci−1(x), (2.7)

with ℏi defined in (2.4) and βi+1 is

βi+1 = −
i2 + (i + 1) + (−1)i+1(2i + 1)

4i(i + 1)
,

from (2.5), it is not difficult to note that Cn(x), n ≥ 0, are orthonormal on [0, 1], and they have an
orthogonality relation as:∫ 1

0
(2x − 1)2(x − x2)

−1
2 Ci(x)C j(x)dx =

{
1, if i=j,
0, if j , i.

(2.8)

Proposition 1. The Shifted polynomials Cn(x) are defined through the Shifted first kind T ∗n(x) by the
following formula

Cn(x) =
n∑

k=0

gn,kT ∗k (x), (2.9)

where

gn,k = 2

√
2
π

(−1)
n−k

2


δk, if n and k even,
k
n , if n and k odd,
0, other,

and

δk =

{ 1
2 , if n=0,
1, if k > 0.

The proof of Proposition 1 is given in [16]. Nevertheless, the Shifted Chebyshev polynomials of
the first kind T ∗n(x) are defined on [0, 1], and they can be generated by using the following recurrence
relation:

T ∗n+1(x) = 2(2x − 1)T ∗n(x) − T ∗n−1(x), n = 1, 2, ... ,

where
T ∗0(x) = 1, T ∗1(x) = 2x − 1.

Therefore, the analytic form of T ∗n(x) of degree n is given by:

T ∗n(x) =
n∑

k=0

(−1)n−k n(n + k − 1)! 22k

(n − k)! (2k)!
xk. (2.10)

According to Proposition 1 the following Corollary is easy to prove.

Corollary 2.1. Shifted Chebyshev polynomials of the fifth-kind Cn(x) be explicitly expressed in terms
of T ∗n(x) in the following form:

C2n(x) = 2

√
2
π

n∑
k=0

(−1)n+kδkT ∗2k(x), (2.11)
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and

C2n+1(x) =
2
√

2
√
π(2n + 1)(2n + 3)

n∑
k=0

(−1)n+k(2k + 1)T ∗2k+1(x), (2.12)

where δk is defined before in Proposition 1.

Corollary 2.2. Shifted Chebyshev polynomials of the fifth-kind Cn(x) be explicitly expressed in terms
of xn, or the analytic form in the following form:

Cn(x) =
n∑

k=0

ρk,nxk, (2.13)

where

ρk,n =
22k+ 3

2

√
π(2k)!


2
∑ n

2

j=⌊ k+1
2 ⌋

(−1)
n
2 + j−k jδ j(2 j+k−1)!

(2 j−k)! , if n even,

1
√

n(n+2)

∑ n−1
2

j=⌊ k
2 ⌋

(−1)
n+1

2 + j−k(2 j+1)2(2 j+k)!
(2 j−k+1)! , if n odd,

where δk is defined before, and ⌊.⌋ is the floor function.

According to relations (2.9), (2.11) and (2.12) the first four terms of Cn(x) are:

C0(x) =

√
2
π
,

C1(x) = 2

√
2

3π
(−1 + 2x),

C2(x) = 2

√
2
π

(
−

3
2
+ 2(−1 + 2x)2

)
,

C3(x) = 2

√
2

15π

(
1 − 2x + 3

(
−3(−1 + 2x) + 4(−1 + 2x)3

))
,

where C0(x) and C1(x) are used as initials the recurance relation (2.7).
Proposition 1 gives the connection formulae of the fifth-kind Chebyshev polynomials and the

Shifted first kind Chebyshev polynomials, therefore, the fifth-kind inherits from them its ability,
boundness and convergence.

Lemma 2.1. The Shifted fifth-kind Y∗n(x) are bounded according to the following form:

|Cn(x)| <

√
2
π

(n + 2), f or all x ∈ [0, 1]. (2.14)

The full proof is in [16, 24], and it may directly given from the connection relation (2.9).

3. Procedures the approximate solution

In the spectral method, in contrast, the function ϕ(x) may be expanded by Chebyshev polynomials
of the fifth-kind series, which ϕ(x) is a square-integrable in [0, 1], [12, 25]:

ϕ(x) =
∞∑

n=0

anCn(x). (3.1)
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Lemma 3.1. The infinite series (3.1) is convergent uniformly to ϕ(x), and the following relation holds:

|an| <

√
2πL

2n3 , f or all n > 3, (3.2)

therefore, L is some positive constant provided from:

|ϕ(x)(3)| ≤ L. (3.3)

Lemma 3.2. The global error eN(x) for the function ϕ(x) defined in (3.1), such that:
eN(x) =

∑∞
n=N+1 anCn(x), is bounded and the following relation is valid:

|eN(x)| <
3L
N
. (3.4)

The proofs of Lemma 3.1 and Lemma 3.2 are found in [16,24], and it refers to that the error almost
tends to zero in the case of a large N. Subsequently, by truncate series (3.1) to N < ∞, then the
approximate ϕ(x) by a finite sum of (n + 1)−terms expressed in the following form:

ϕ(x) �
N∑

k=0

akCk(x) = ϕN(x). (3.5)

The coefficients an in relation (3.5) are given by the following relation:

an =

∫ 1

0
(2x − 1)2(x − x2)

−1
2 ϕ(x)Cn(x)dx. (3.6)

Lemma 3.3. The local error ẽN(x) for the function ϕ(x) defined in (3.1), such that: ẽN(x) = |ϕN+1(x) −
ϕN(x)|, is of order N3.

The proof of Lemma 3.3 is completed in [16], and Gangi et al. [24] are increase in proof the form
of the supremum for the local error.

Theorem 1. The fractional derivative of order γ for the polynomials Cn(x) according to Caputo’s
operator is given by:

DγCn(x) =
{ ∑n

k=⌈γ⌉ ϱk,nxk−γ, when n ≥ ⌈γ⌉,
0, when n < ⌈γ⌉,

(3.7)

and
ϱk,n =

Γ(k + 1)ρk,n

Γ(k + 1 − γ)
, (3.8)

where, ϱk,n defined in Corollary 2.2.

Proof. According to (2.1) (the Caputo’s operator) and the relation given in Corollary 2.2 it is easy to
obtain the result, for more details see [16, 24]. □

Theorem 2. Assume that, ϕN(x) be approximated function of ϕ(x) in terms of Shifted Chebyshev
polynomials of the fifth kind as (3.5), then the Caputo fractional derivative of order γ when operating
ϕN(x) is given by:

DγϕN(x) =
N∑

k=⌈γ⌉

k∑
j=⌈γ⌉

akϱ j,kx j−γ, (3.9)

where, ϱk,n defined in Corollary 2.2.
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Proof. According to Theorem .1 and relation (3.5) one optians:

DγϕN(x) = Dγ
N∑

k=0

akCk(x)

=

N∑
k=⌈γ⌉

akDγCk(x)

=

N∑
k=⌈γ⌉

k∑
j=⌈γ⌉

akϱ j,kx j−γ,

(3.10)

then the result (3.9) easily obtained, for more details see [16, 24]. □

4. Numerical scheme

Consider the generalized space fractional partial differential equations of the type given in Eq (1.1)
with their given conditions. In order to use the Chebyshev collocation method, let us approximate
u(x, t) as follows [26–28]:

u(x, t) � uN(x, t) =
N∑

k=0

ϕk(t)Ck(x), (4.1)

substituting (4.1) in (1.1) we obtain:

n∑
k=0

Qk(x)
N∑

i=0

ϕi(t)
dγkCi(x)

dγk x
+ P

N∑
i=0

Ck(x)
dϕi(t)

dt
= f (x, t), (4.2)

with the help of Theorem 1 then:

n∑
k=0

Qk(x)
N∑

i=0

ϕi(t)
i∑

j=⌈γk⌉

ϱ j,ix j−γk + P
N∑

i=0

Ck(x)
dϕi(t)

dt
= f (x, t). (4.3)

Now, we turn to collocate equation (4.3) at (N + 1) points, the collocation points are defined in the
following form:

xl =
l
N
, l = 0, 1, 2, ...,N. (4.4)

By substituting the collocation points (4.4) in (4.3) we get:

n∑
k=0

Qk(xl)
N∑

i=0

ϕi(t)
i∑

j=⌈γk⌉

ϱ j,ix
j−γk
l + P

N∑
i=0

Ck(xl)
dϕi(t)

dt
= f (xl, t). (4.5)

Also, two additional equations may generate from the boundary conditions using relation (4.1) in (1.3)
as:

N∑
k=0

ϕk(t)Ck(0) = z1(t),
N∑

k=0

ϕk(t)Ck(L) = z2(t), 0 < t ≤ T. (4.6)
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The collocated equation (4.5), together with the generated equations of the boundary conditions (4.6),
give us an ordinary system of differential equations with ϕk(t) as the unknowns, which can be solved
by a suitable technique. Using the initial conditions (1.2) and by the help of relation (4.1) and the
orthogonality (2.8) we can generate initial conditions for the proposed system of differential equations,
the IC may take the form:

N∑
k=0

ϕk(0)Ck(x) = h(x), (4.7)

consequently, by expanding h(x) in terms of Ck(x) and comparing the coefficents of Eq (4.7), then, we
can find the constants ϕk(0). The produced system of ordinary differential equations according to (4.5)
is linear and generally has the following matrix form:

Q̄Φ + PCΦ′ = F, (4.8)

where

C =



C0(x0) C0(x1) C0(x2)... C0(xN)
C1(x0) C1(x1) C1(x2)... C1(xN)
C2(x0) C2(x1) C2(x2)... C(xN)
...

...
...

...

CN(x0) CN(x1) CN(x2)... CN(xN)


,

Φ =



ϕ0(t)
ϕ1(t)
ϕ2(t)
...

ϕN(t)


, F =



f (x0, t)
f (x1, t)
f (x2, t)
...

f (xN , t)


,

and Q̄ is a square constant matrix represent the coefficients of the unknowns ϕk(t), which is featured
by the first column is null. Additionally, (4.8) may written as:

Φ′ = −
1
P

(
C−1Q̄Φ −C−1F

)
, (4.9)

now, the system (4.9) is ready to solve with a suitable solver technique with the subjected initial
conditions (4.7).

5. Numerical applications

In this section, several numerical applications (physical models) have been given to illustrate the
accuracy and effectiveness of the method.

Example 1:

Consider the following space fractional order PDE:

Q0(x)
∂γ0u(x, t)
∂γ0 x

+ P
∂u(x, t)
∂t

= f (x, t). (5.1)
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The IC is:
u(x, 0) = x2, 0 < x ≤ 1, (5.2)

and the BCs:
u(0, t) = 0, u(1, t) = (t + 1), 0 < t ≤ T. (5.3)

Equation (5.1) is obtained when γ0 , 0, γk = 0, in Eq (1.1), and 0 < γ0 < 1 where the exact solution
of Eq (5.1) under conditions (5.2) and (5.3) is u(x, t) = x2(t + 1), with Q0(x) = P = 1 and the function
f (x, t) is (1.91116 + 1.91116t)x1.1 + x2 at γ0 = 0.9. At N = 3 according to (4.1) we have:

u3(x, t) =
3∑

k=0

ϕk(t)Ck(x). (5.4)

By the same proccess as: Eq (4.2) to (4.9) we have:

C =



√
2
π
−2

√
2

3π

√
2
π

−4
√

2
15π√

2
π
−2

3

√
2

3π −
23
9

√
2
π

52
9

√
2

15π√
2
π

2
3

√
2

3π −23
9

√
2
π
−52

9

√
2

15π√
2
π

2
√

2
3π

√
2
π

4
√

2
15π


,

F =


0

−1
9 − 0.298653(1.91116 + 1.91116t)
−4

9 − 0.640176(1.91116 + 1.91116t)
−2.91116 − 1.91116t

 ,

Q̄ =


0 0 0 0
0 1.73535 −4.73627 −2.9363
0 1.8599 2.73334 −4.87541
0 1.93686 10.9792 17.1213

 ,

(5.5)

and by expanding h(x) = x2 in terms of Ck(x) according to (2.8) and comparing the coefficients then,
we get the initial conditions of the differential system as:

(ϕ0(0), ϕ1(0), ϕ2(0), ϕ3(0)) =

7
√
π
2

16
,

1
4

√
3π
2
,

√
π
2

16
, 0

 . (5.6)

Two additional equations may generate from the boundary conditions (5.3) using relation (4.1) in (5.3),
then:

ϕ0(t)C0(0) + ϕ1(t)C1(0) + ϕ2(t)C2(0) + ϕ3(t)C3(0) = 0,
ϕ0(t)C0(1) + ϕ1(t)C1(1) + ϕ2(t)C2(1) + ϕ3(t)C3(1) = (t + 1), 0 < t ≤ T.

(5.7)

System (4.9) with matrices (5.5) and the initial conditions (5.6) is a system of differential equations,
(Eq (5.7) may replace with the last two equations in (4.9)) the Runge-Kutta method of the fourth-order
(RK4) is used here with h step size equal to 0.01 with 100 iterations means that 0 ≤ t ≤ 1, (the regular
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algorithm for RK4 is coded by the authors using Mathematica.10. package) the numerical results
obtained as:

(ϕ0(0.2), ϕ1(0.2), ϕ2(0.2), ϕ3(0.2)) =
(
0.65799, 0.651241, 0.0939986, 1.12525 × 10−17

)
,

(ϕ0(0.5), ϕ1(0.5), ϕ2(0.5), ϕ3(0.5)) =
(
0.822487, 0.814051, 0.117498, 1.96399 × 10−17

)
,

(ϕ0(1), ϕ1(1), ϕ2(1), ϕ3(1)) =
(
1.09665, 1.0854, 0.156664, − 3.4969134 × 10−17

)
.

(5.8)

According to (5.4) one obtains the approximate solution u3(x, 1) (at t = 1 ) using the last row in (5.8) as:

u3(x, 1) = 1.09665×C0(x)+1.0854×C1(x)+0.156664×C2(x)−3.49691340698×10−17×C3(x). (5.9)

As references [27–29], their numerical results were obtained using finite difference method (FDM) for
the differential system, we turn to solve the system (4.9) with matrices (5.5) using FDM. Then,

ϕk(tn) = ϕn
k , ϕ

′n
k =
ϕn

k − ϕ
n−1
k

∆t
.

Therefore, the system in Eq (4.9) with matrices (5.5), is discretized in the time and have the following
form:

Φn = Φn−1 −
∆t
P

(
C−1Q̄Φn −C−1F

)
, (5.10)

or

Φn = MΦn−1 − OF, (5.11)

where

M =
(
I +
∆t
P

C−1
)−1

, O =
∆t
P

(
I +
∆t
P

C−1
)−1

C−1.

Hense, a sample of the numerical results for FDM obtained as:

(ϕ0(0.5), ϕ1(0.5), ϕ2(0.5), ϕ3(0.5)) =
(
0.822487402, 0.81405141, 0.1174982, 1.9944994 × 10−16

)
,

(ϕ0(1.5), ϕ1(1.5), ϕ2(1.5), ϕ3(1.5)) =
(
1.37081233, 1.35675235, 0.19583033, 2.493124 × 10−16

)
,

(ϕ0(2), ϕ1(2), ϕ2(2), ϕ3(2)) =
(
1.6449748, 1.62810282, 0.234996, 9.9724971 × 10−17

)
.

(5.12)

In Table 1 the comparison of the absolute errors for the present method with both RK4 and FDM at
N = 3, ∆t = 0.01 where γ0 = 0.9, also, shows the numerical values of the approximate solution using
the proposed method (using both RK4 and FDM) with the exact solution. Also, Table 2 shows the L2

error norm [26] at N = 3 at different values of T . In Figures 1 and 2 the comparison of the exact and
the approximate solutions with both RK4 and FDM methods for example 1 with N = 3 and T = 1, 2.
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Figure 1. The exact and the approximate solutions with RK4 and FDM for example 1 with
N = 3 and T = 1.
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Figure 2. The exact and the approximate solutions with RK4 and FDM for example 1 with
N = 3 and T = 2.

Table 1. Numerical results of example 1 for N = 3 and the absolute error.

xi Exact present method present method RK4 FDM
solution with RK4 with FDM absolute error absolute error

0 0.0 −4.080 × 10−15 −8.326 × 10−17 4.080 × 10−15 8.326 × 10−17

0.2 0.08 0.0799 0.08 3.497 × 10−15 6.106 × 10−16

0.4 0.32 0.3199 0.32 3.219 × 10−15 6.106 × 10−16

0.6 0.72 0.7199 0.72 2.220 × 10−15 2.220 × 10−16

0.8 1.28 1.2799 1.28 1.776 × 10−15 4.440 × 10−16

1.0 2.0 1.999 2.0 8.881 × 10−16 4.440 × 10−16
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Table 2. L2 error norm for example 2 at N = 3.

T PM with RK4 PM with FDM
0.5 6.65457 × 10−30 5.54345 × 10−31

1.0 2.62764 × 10−29 6.09276 × 10−31

1.5 7.43675 × 10−29 2.46256 × 10−30

2.0 1.18792 × 10−28 5.73722 × 10−30

Example 2:

Consider the following generalized space fractional order diffusion equation of the following type:

Q1(x)
∂γ1u(x, t)
∂γ1 x

+ P
∂u(x, t)
∂t

= f (x, t), (5.13)

if 1 < γ1 < 2, at Q1(x) = −Γ(1.2)x1.8, P = 1, f (x, t) = −3x2(−1 + 2x)e−t, then, Eq (5.13) has the exact
solution of of the form u(x, t) = x2(1 − x)e−t at γ1 = 1.8, which mentiented in [27–29]. The IC is:

u(x, 0) = x2(1 − x), 0 < x ≤ 1, (5.14)

and the BCs:
u(0, t) = u(1, t) = 0, 0 < t ≤ T. (5.15)

At N = 3, according to (4.1), (using same prosses (4.2)–(4.9)), we have:

F =


0
e−t

9
−4e−t

9
−3e−t

 , Q̄ =


0 0 0 0
0 0 −0.127088 × (22.3225) 0.127088 × (46.1092)
0 0 −0.442546 × (25.6418) −0.442546 × (13.2414)
0 0 −0.918169 × (27.8079) −0.918169 × (86.1595)

 , (5.16)

and C not changed for N = 3 as example 1. In addition, by expanding h(x) = x2(1− x) in terms of Ck(x)
according to (2.8) and comparing the coefficents then, we get the initial conditions of the differential
system as:

(ϕ0(0), ϕ1(0), ϕ2(0), ϕ3(0)) =

 √
π
2

32
,

√
π
6

32
, −

√
π
2

32
, −

1
64

√
5π
6

 . (5.17)

The generated equations from the homogenuous boundary conditions (5.15) using relation (4.1) are:

ϕ0(t)C0(0) + ϕ1(t)C1(0) + ϕ2(t)C2(0) + ϕ3(t)C3(0) = 0,
ϕ0(t)C0(1) + ϕ1(t)C1(1) + ϕ2(t)C2(1) + ϕ3(t)C3(1) = 0, 0 < t ≤ T.

(5.18)

System (4.9) with matrcies (5.16) and the initial conditions (5.17) is a system of differential equations,
by repleceing equtions (5.18) with the last two equations in (4.9) the RK4 method used as example 1
with 0 ≤ t ≤ 2. The RK4 method’s numeric results at t = 1, t = 2, N = 3 obtained as:

(ϕ0(1.0), ϕ1(1.0), ϕ2(1.0), ϕ3(1.0)) = (0.0144084, 0.00831869,−0.0144084,−0.00930058),
(ϕ0(2.0), ϕ1(2.0), ϕ2(2.0), ϕ3(2.0)) = (0.00530055, 0.00306028,−0.00530055,−0.00342149).

(5.19)
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As example 1 we turn to solve the system (4.9) with matrices (5.16) using FDM. Then, using same
process as (5.10), (5.11) the results are obtained. In Table 3 the comparison of the absolute errors for
the present two schemes at N = 3, T = 2 with the methods mentioned in [27–29]. Also, the numeric
absolute errors are represent in Table 3 for the collocation method with Chebyshev first [29] second [27]
and third [28] kinds. These values show that the fifth kind gives a more accurate approximate solution
using the proposed method with RK4, but less accuracy is given when using regular FDM with the
present method. Table 4 shows the L2 error norm at N = 3 at two values of T . In Figures 3 and 4 the
comparison of the exact and the approximate solutions with both RK4 and FD methods for example 2
with N = 3 and T = 1, 2.
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Figure 3. The exact and the approximate solutions with RK4 and FDM for example 2 with
N = 3 and T = 1.
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Table 3. Comparing absolute errors for present technique at N = 3, T = 2 with different
methods.

xi 1st kind [29] 2nd kind [27] 3rd kind [28] PM with RK4 PM with FDM
0 2.74 × 10−5 0 0 2.44 × 10−16 3.68 × 10−17

0.2 3.76 × 10−5 6.25 × 10−7 5.65 × 10−6 4.09 × 10−11 1.89 × 10−5

0.4 3.27 × 10−5 7.97 × 10−7 7.64 × 10−6 3.27 × 10−10 1.53 × 10−4

0.6 1.94 × 10−5 6.58 × 10−7 6.80 × 10−6 1.106 × 10−9 5.21 × 10−4

0.8 4.92 × 10−5 3.45 × 10−7 3.98 × 10−6 2.62 × 10−9 1.23 × 10−3

1.0 7.73 × 10−5 0 0 5.12 × 10−9 2.42 × 10−3

Table 4. L2 error norm for example 2 at N = 3.

PM with RK4 PM with FDM
L2 at T = 1 7.31 × 10−22 8.4077 × 10−12

L2 at T = 2 1.64 × 10−17 3.66015 × 10−6

Example 3:

Consider the following space fractional-order advection-dispersion equation of the following type:

Q1(x)
∂γ1u(x, t)
∂γ1 x

+ Q0(x)
∂γ0u(x, t)
∂γ0 x

+ P
∂u(x, t)
∂t

= f (x, t), (5.20)

if 1 < γ1 < 2 and 0 < γ0 < 1 at Q1(x) = −1, Q0(x) = 1, P = 1 and
f (x, t) = e−2t

(
−2 (xγ1 − xγ0) − (Γ(γ1 + 1) + Γ(γ0 + 1)) + Γ(γ1+1)

Γ(1−γ0+γ1) xγ1−γ0
)
, then, Eq (5.20) has the exact

solution of the form u(x, t) = (xγ1 − xγ0)e−2t, this case mentiented in [30–32] with γ1 = 2, γ0 = 1,
where, the IC is:

u(x, 0) = xγ1 − xγ0 , 0 < x ≤ 1, (5.21)

and the BCs are homogenuous as:

u(0, t) = u(1, t) = 0, 0 < t ≤ T. (5.22)

At N = 3, γ1 = 2, γ0 = 1, according to (4.1), (using same prosses (4.2)–(4.9)), we have:

F =


3e−2t

17e−2t

9
11e−2t

9
−3e−2t

 , Q̄ =


0 4
√

2
3π −48

√
2
π

104
√

2
15π + 192

√
6

5π

0 4
√

2
3π −

112
3

√
2
π

56
√

6
5π

0 4
√

2
3π −80

3

√
2
π

−72
√

6
5π

0 4
√

2
3π −16

√
2
π

104
√

2
15π − 192

√
6

5π


, (5.23)

and C not changed for N = 3 as examples 1 and 2. In addition, by expanding h(x) = xγ1 − xγ0 in terms
of Ck(x) according to (2.8) and comparing the coefficients then, we get the initial conditions of the
differential system at N = 3, γ1 = 2, γ0 = 1 as:

(ϕ0(0), ϕ1(0), ϕ2(0), ϕ3(0)) =

− √
π
2

16
, 0,

√
π
2

16
, 0

 . (5.24)
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The generated equations from the homogenuous boundary conditions (5.22) are same as (5.18) using
relation (4.1) in example 2. The system (4.9) with matrices (5.23) and the initial conditions (5.24) is a
system of differential equations, by replacing the generated equations from the homogenous boundary
conditions with the last two equations in (4.9), the RK4 method may be used as examples 1 and 2
with 0 ≤ t ≤ 2. As references [31, 32] the numerical results obtained using FDM except [30] used the
non-standard FDM for the differential system. As examples 1 and 2 we turn to solve the system (4.9)
with matrices (5.23) using FDM. Then we use same elements as example 2, as system (5.10), (5.11)
but using matrices (5.23). In Table 5 the comparison of the absolute errors for the present method
(using the two proposed schemes) at N = 3, where γ1 = 2, γ0 = 1, T = 2 with the methods mentioned
in [30–32]. Also, it shows the numerical values of the proposed method gives best approximate solution
except [30] which uses a modified technique (the non-standard FDM with Vieta-Lucas polynomials),
where [31] uses Legendre polynomials FDM and [32] uses fourth kind Chebyshev polynomials with
FDM. Table 6 gives the L2 error norm along the interval [0, 1] at N = 3 with two values of T . In
Figures 5 and 6 the comparison of the exact and the approximate solutions with both RK4 and FD
methods for example 3 with N = 3 and T = 1, 2.
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Table 5. Comparing absolute errors for present technique at N = 3, T = 2 with different
methods.

xi Vieta-Lucas [30] Legendre [31] 4th kind [32] PM with RK4 PM with FDM
0 2.553 × 10−19 2.726 × 10−5 2.198 × 10−5 1.524 × 10−13 1.419 × 10−6

0.2 5.664 × 10−17 3.810 × 10−5 2.606 × 10−5 1.425 × 10−13 1.176 × 10−6

0.4 8.651 × 10−17 3.514 × 10−5 2.865 × 10−5 1.329 × 10−13 9.795 × 10−7

0.6 8.814 × 10−17 2.387 × 10−5 2.915 × 10−5 1.239 × 10−13 8.286 × 10−7

0.8 5.849 × 10−17 1.120 × 10−5 2.704 × 10−5 1.153 × 10−13 7.239 × 10−7

1.0 2.553 × 10−19 7.257 × 10−7 2.489 × 10−5 1.071 × 10−13 6.653 × 10−7

Table 6. L2 error norm for example 3 at N = 3.

PM with RK4 PM with FDM
L2 at T = 1 1.88809 × 10−26 3.38589 × 10−12

L2 at T = 2 5.85778 × 10−26 7.2941 × 10−10

Example 4:

Consider the following space fractional-order advection-dispersion equation, semilar to example 3,
but γ1 = 1.5, γ0 = 1 which found at [30, 32, 33]:

Q1(x)
∂γ1u(x, t)
∂γ1 x

+ Q0(x)
∂γ0u(x, t)
∂γ0 x

+ P
∂u(x, t)
∂t

= f (x, t), (5.25)

with Q1(x) = −1, Q0(x) = 2, P = 1 and f (x, t) = −4(−1+t)t
√

x
√
π
+(−1+2t)(−1+x)x+2(−1+t)t(−1+2x), then,

Eq (5.25) has the exact solution of of the form u(x, t) =
(
x2 − x

) (
t2 − t

)
, where, the IC is homogenuous

as:
u(x, 0) = 0, 0 < x ≤ 1, (5.26)

also, the BCs are homogenuous as:

u(0, t) = u(1, t) = 0, 0 < t ≤ T. (5.27)

Equation (5.25) according to (4.1), by using the same prosses (4.2)–(4.9) where C not changed for
N = 3 as the pervuose examples, we have:

F =



2(−1 + t)t
2
9

(
−1 + 2t + 3(−1 + t)t + 6

√
3
π
(−1 + t)t

)
2
9

(
−1 + 2t − 3(−1 + t)t + 6

√
6
π
(−1 + t)t

)
2
(
−1 + 2

√
π

)
(−1 + t)t


,

Q̄ =



0 8
√

2
3π −32

√
2
π

208
√

2
15π

0 8
√

2
3π −

32(2
√

6+
√

2π)
3π

16
√

2
5 (40−3

√
3π)

3π

0 8
√

2
3π

32(−4
√

3+
√

2π)
3π

16(16−3
√

6π)
3
√

5π

0 8
√

2
3π

32
√

2(−2+
√
π)

π

16
√

2
15 (−24+13

√
π)

π


.

(5.28)
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Additionally, by the homogenety of the IC, then, we get zero initial conditions of the differential
system as:

(ϕ0(0), ϕ1(0), ϕ2(0), ϕ3(0)) = (0, 0, 0, 0) . (5.29)

The generated equations from the homogenous boundary conditions (5.27) are the same as given in
examples 2 and 3. The system (4.9) with matrices (5.28) has zero ICs, by replacing the generated
equations from the homogenous boundary conditions with the last two equations in (4.9), the RK4 used
as examples 2, 3 with 0 ≤ t ≤ 2. As ref [30] the numerical results were obtained using the non-standard
FDM for the differential system with the aid of Vieta-Lucas polynomials. Therefore, as example
3 we turn to solve the system (4.9) with matrices (5.23) using FDM. Then we use same elements
as examples 2, 3, for systems (5.10), (5.11) but using matrices (5.28). The numerical comparisons
will hold only with [30] because the results in [32, 33] (collocation method with fourth and second
Chebyshev kinds) are less than 10−5, it is much less accurate than indicated in our results. In Table 7
the comparison of the absolute errors for the present two schemes (PM with RK4 and FDM) at N = 3,
where γ1 = 1.5, γ0 = 1, T = 0.5 with [30], while same comparison given in Table 8 but T = 0.5. Also,
it shows the numerical values of the proposed method gives a highly accurate approximate solution with
RK4, and [30] which uses a modified technique gives accuracy near PM with FDM. Table 9 gives the
L2 error norm along the interval [0, 1] at N = 3 with three values of T . In Figures 7–9 the comparison
of the exact and the approximate solutions with both RK4 and FD methods for example 1 with N = 3
and T = 0.3, 0.5, 0.9. In the end, we conclude that the Chebyshev fifth-kind series approximation
gives a great accuracy when using high appropriate accurate methods, and the Runge-Kutta method
remains one of the best methods in dealing with linear systems, as was shown in the last two examples.
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Figure 9. The exact and the approximate solutions with RK4 and FDM for example 4 with
N = 3 and T = 0.9.

Table 7. Comparing absolute errors for present technique at N = 3, T = 0.5 with different
methods.

xi Vieta-Lucas [30] PM with RK4 PM with FDM
0 3.469 × 10−18 5.926 × 10−14 2.905 × 10−8

0.2 3.165 × 10−9 6.094 × 10−14 3.008 × 10−8

0.4 6.119 × 10−9 2.869 × 10−14 2.191 × 10−8

0.6 7.490 × 10−9 1.645 × 10−14 9.700 × 10−9

0.8 5.908 × 10−9 5.349 × 10−14 1.440 × 10−9

1.0 3.469 × 10−18 6.135 × 10−14 6.372 × 10−9
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Table 8. Comparing absolute errors for present technique at N = 3, T = 0.9 with different
methods.

xi Vieta-Lucas [30] PM with RK4 PM with FDM
0 0.000 6.706 × 10−14 1.267 × 10−7

0.2 2.519 × 10−9 6.976 × 10−14 1.257 × 10−7

0.4 5.121 × 10−9 3.585 × 10−14 5.493 × 10−8

0.6 6.461 × 10−9 1.288 × 10−14 3.790 × 10−8

0.8 5.202 × 10−9 5.464 × 10−14 1.051 × 10−7

1.0 0.000 6.762 × 10−14 9.926 × 10−7

Table 9. L2 error norm for example 4 at N = 3.

PM with RK4 PM with FDM
L2 at T = 0.3 5.90736 × 10−27 3.72935 × 10−16

L2 at T = 0.5 8.4948 × 10−27 3.72935 × 10−15

L2 at T = 0.9 1.0388 × 10−26 3.31062 × 10−14

6. Conclusions

A numerical study for a generalized form of linear space-fractional partial differential equations is
introduced using the Chebyshev fifth kind series. The suggested general form represents many
fractional-order mathematical physics models, as advection-dispersion equation and diffusion
equation. Additionally, the proposed scheme uses the Shifted Chebyshev polynomials of the
fifth-kind, where the fractional derivatives are expressed in terms of Caputo’s definition. Therefore,
the collocation method is used to reduce the GFPDE to a system of ordinary differential equations
which can be solved numerically. In addition, the classical fourth-order Runge-Kutta method is used
to treat the differential system as well as the finite difference method which obtains a great accuracy.
We have presented many numerical examples, where represent mathematical physical models, that
greatly illustrate the accuracy of the presented study to the proposed GFPDE, and also show how that
the fifth-kind polynomials are very competitive than others.
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