In this paper we consider the Cauchy problem for the semilinear effectively damped wave equation
$ \begin{equation*} u_{tt}-u_{xx}+b(t)u_{t} = |u|^{3}\mu(|u|), \, \, \, u(0, x) = u_{0}(x), \, \, \, u_{t}(0, x) = u_{1}(x). \end{equation*} $
Our goal is to propose sharp conditions on $ \mu $ to obtain a threshold between global (in time) existence of small data Sobolev solutions (stability of the zero solution) and blow-up behaviour even of small data Sobolev solutions.
Citation: Abdelhamid Mohammed Djaouti, Michael Reissig. Critical regularity of nonlinearities in semilinear effectively damped wave models[J]. AIMS Mathematics, 2023, 8(2): 4764-4785. doi: 10.3934/math.2023236
In this paper we consider the Cauchy problem for the semilinear effectively damped wave equation
$ \begin{equation*} u_{tt}-u_{xx}+b(t)u_{t} = |u|^{3}\mu(|u|), \, \, \, u(0, x) = u_{0}(x), \, \, \, u_{t}(0, x) = u_{1}(x). \end{equation*} $
Our goal is to propose sharp conditions on $ \mu $ to obtain a threshold between global (in time) existence of small data Sobolev solutions (stability of the zero solution) and blow-up behaviour even of small data Sobolev solutions.
[1] | M. D'Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods Appl. Sci., 38 (2015), 1032–1045. https://doi.org/10.1002/mma.3126 doi: 10.1002/mma.3126 |
[2] | M. D'Abbicco, S. Lucente, A modified test function method for damped wave equations, Adv. Nonlinear Stud., 13 (2013), 867–892. https://doi.org/10.1515/ans-2013-0407 doi: 10.1515/ans-2013-0407 |
[3] | M. D'Abbicco, S. Lucente, M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping, J. Differ. Equ., 259 (2015), 5040–5073. https://doi.org/10.1016/j.jde.2015.06.018 doi: 10.1016/j.jde.2015.06.018 |
[4] | M. D'Abbicco, S. Lucente, M. Reissig, Semi-linear wave equations with effective damping, Chin. Ann. Math. Ser. B, 34 (2013), 345–380. https://doi.org/10.1007/s11401-013-0773-0 doi: 10.1007/s11401-013-0773-0 |
[5] | M. R. Ebert, G. Girardi, M. Reissig, Critical regularity of nonlinearities in semilinear classical damped wave equations, Math. Ann., 378 (2020), 1311–1326. https://doi.org/10.1007/s00208-019-01921-5 doi: 10.1007/s00208-019-01921-5 |
[6] | A. Friedman, Partial differential equations, Corrected reprint of the original edition, Robert E. Krieger Publishing Co., New York, 1976. |
[7] | R. Ikehata, M. Ohta, Critical exponents for semilinear dissipative wave equations in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 269 (2002), 87–97. https://doi.org/10.1016/S0022-247X(02)00021-5 doi: 10.1016/S0022-247X(02)00021-5 |
[8] | J. Lin, K. Nishihara, J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discrete Contin. Dyn. Syst., 32 (2012), 4307–4320. https://doi.org/10.3934/dcds.2012.32.4307 doi: 10.3934/dcds.2012.32.4307 |
[9] | A. Mohammed Djaouti, Semilinear systems of weakly coupled damped waves, Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2018. |
[10] | M. Nakao, K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z., 214 (1993), 325–342. https://doi.org/10.1007/BF02572407 doi: 10.1007/BF02572407 |
[11] | W. Nunes do Nascimento, A. Palmieri, M. Reissig, Semi-linear wave models with power non-linearity and scale invariant time-dependent mass and dissipation, Math. Nachr., 290 (2017), 1779–1805. https://doi.org/10.1002/mana.201600069 doi: 10.1002/mana.201600069 |
[12] | A. Palmieri, Global in time existence and blow-up results for a semilinear wave equation with scale-invariant damping and mass, Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2018. |
[13] | A. Palmieri, M. Reissig, Semi-linear wave models with power non-linearity and scale invariant time-dependent mass and dissipation, Ⅱ, Math. Nachr., 291 (2018), 1859–1892. https://doi.org/10.1002/mana.201700144 doi: 10.1002/mana.201700144 |
[14] | G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ. Equ., 174 (2001), 464–489. https://doi.org/10.1006/jdeq.2000.3933 doi: 10.1006/jdeq.2000.3933 |
[15] | J. Wirth, Asymptotic properties of solutions to wave equations with time-dependent dissipation, PhD Thesis, TU Bergakademie Freiberg, 2004. |
[16] | J. Wirth, Wave equations with time-dependent dissipation Ⅱ, Effective dissipation, J. Differ. Equ., 232 (2007), 74–103. https://doi.org/10.1016/j.jde.2006.06.004 doi: 10.1016/j.jde.2006.06.004 |