Research article Special Issues

Fixed point theorems in controlled $ J- $metric spaces

  • Received: 12 October 2022 Revised: 25 November 2022 Accepted: 02 December 2022 Published: 08 December 2022
  • MSC : 46T99, 47H10, 54H25

  • In this article, we introduce a new extension to $ J- $metric spaces, called $ C_{J}- $metric spaces, where $ \theta $ is the controlled function in the triangle inequality. We prove some fixed point results in this new type of metric space. In addition, we present some applications to systems of linear equations to illustrate our results.

    Citation: Suhad Subhi Aiadi, Wan Ainun Mior Othman, Kok Bin Wong, Nabil Mlaiki. Fixed point theorems in controlled $ J- $metric spaces[J]. AIMS Mathematics, 2023, 8(2): 4753-4763. doi: 10.3934/math.2023235

    Related Papers:

  • In this article, we introduce a new extension to $ J- $metric spaces, called $ C_{J}- $metric spaces, where $ \theta $ is the controlled function in the triangle inequality. We prove some fixed point results in this new type of metric space. In addition, we present some applications to systems of linear equations to illustrate our results.



    加载中


    [1] N. Souayah, N. Mlaiki, A new type of three-dimensional metric spaces with applications to fractional differential equations, AIMS Math., 7 (2022), 17802–17814. https://doi.org/10.3934/math.2022980 doi: 10.3934/math.2022980
    [2] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [3] P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory, Applications in Science, Engineering and Behavioural Sciences, Springer, Singapore, 2021. https://doi.org/10.1007/978-981-16-4896-0
    [4] P. Debnath, H. M. Srivastava, P. Kumam, B. Hazarika, Fixed point theory and fractional calculus, Recent Advances and Applications, Springer Singapore, 2022. https://doi.org/10.1007/978-981-19-0668-8
    [5] T. Kamran, M. Samreen, Q. UL Ain, A generalization of $b-$metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [6] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in $S-$metric spaces, Mat. Vesnik, 64 (2012), 258–266.
    [7] N. Mlaiki, $\alpha-\psi-$contractive mapping on $S-$metric space, Math. Sc. Lett., 4 (2015), 9–12.
    [8] N. Mlaiki, Common fixed points in complex $S-$metric space, Adv. Fixed Point Theory, 4 (2014), 509–524.
    [9] N. Souayah, N. Mlaiki, A fixed point in $S_b-$metric spaces, J. Math. Comput. Sci., 16 (2016), 131–139. http://dx.doi.org/10.22436/jmcs.016.02.01 doi: 10.22436/jmcs.016.02.01
    [10] N. Souayah, A fixed point in partial $S_b-$metric spaces, An. Şt. Univ. Ovidius Constanţa, 24 (2016), 351–362. https://doi.org/10.1515/auom-2016-0062 doi: 10.1515/auom-2016-0062
    [11] N. Souayah, N. Mlaiki, A coincident point principle for two weakly compatible mappings in partial $S$-metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 2217–2223. https://doi.org/10.22436/jnsa.009.05.25 doi: 10.22436/jnsa.009.05.25
    [12] H. Aydi, W. Shatanawi, C. Vetro, On generalized weakly $G-$contraction mapping in $G-$metric spaces, Comput. Math. Appl., 62 (2011), 4222–4229. https://doi.org/10.1016/j.camwa.2011.10.007 doi: 10.1016/j.camwa.2011.10.007
    [13] F. Gu, W. Shatanawi, Some new results on common coupled fixed points of two hybrid pairs of mappings in partial metric spaces, J. Nonlinear Funct. Anal., 2019 (2019), 13. https://doi.org/10.23952/jnfa.2019.13 doi: 10.23952/jnfa.2019.13
    [14] S. Romaguera, P. Tirado, A characterization of quasi-metric completeness in terms of $\alpha$–$\Psi-$contractive mappings having fixed points, Mathematics, 8 (2020), 16. https://doi.org/10.3390/math8010016 doi: 10.3390/math8010016
    [15] W. Shatanawi, V. C. Rajić, S. Radenović, A. Al-Rawashhdeh, Mizoguchi-Takahashi-type theorems in tvs-cone metric spaces, Fixed Point Theory Appl., 2012 (2012), 106. https://doi.org/10.1186/1687-1812-2012-106 doi: 10.1186/1687-1812-2012-106
    [16] W. Shatanawi, On $w-$compatible mappings and common coupled coincidence point in cone metric spaces, Appl. Math. Lett., 25 (2012), 925–931. https://doi.org/10.1016/j.aml.2011.10.037 doi: 10.1016/j.aml.2011.10.037
    [17] H. Huang, V. Todorcevic, S. Radenovic, Remarks on recent results for generalized $F-$contractions, Mathematics, 10 (2022), 768. https://doi.org/10.3390/math10050768 doi: 10.3390/math10050768
    [18] I. Beg, K. Roy, M. Saha, $S^JS-$metric and topological spaces, J. Math. Ext., 15 (2021), 1–16.
    [19] S. Etemad, M. Souid, B. Telli, M. Kabbar, S. Rezapour, Investigation of the neutral fractional differential inclusions of Katugampola-type involving both retarded and advanced arguments via Kuratowski MNC technique, Adv. Differ. Equ., 2021 (2021), 214. https://doi.org/10.1186/s13662-021-03377-x doi: 10.1186/s13662-021-03377-x
    [20] F. Martínez, M. K. A. Kaabar, A noval theoretical investigation of the Abu-Shady-Kabbar fractional derivative as a modeling tool science and engeineering, Comput. Math. Methods Med., 2022 (2022), 4119082. https://doi.org/10.1155/2022/4119082 doi: 10.1155/2022/4119082
    [21] F. Martíneza, I. Martíneza, M. K. A. Kaabarb, S. Paredesa, Solving systems of conformable linear differential equations via the conformable exponential matrix, Ain Shams Eng. J., 12 (2021), 4075–4080. https://doi.org/10.1016/j.asej.2021.02.035 doi: 10.1016/j.asej.2021.02.035
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1562) PDF downloads(135) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog