Research article

A solution of a nonlinear Volterra integral equation with delay via a faster iteration method

  • Received: 21 May 2022 Revised: 02 September 2022 Accepted: 15 September 2022 Published: 27 September 2022
  • MSC : 34B10, 34B15, 26A33

  • The purpose of this article is to study the convergence, stability and data dependence results of an iterative method for contractive-like mappings. The concept of stability considered in this study is known as $ w^2 $-stability, which is larger than the simple notion of stability considered by several prominent authors. Some illustrative examples on $ w^2 $-stability of the iterative method have been presented for different choices of parameters and initial guesses. As an application of our results, we establish the existence, uniqueness and approximation results for solutions of a nonlinear Volterra integral equation with delay. Finally, we provide an illustrative example to support the application of our results. The novel results of this article extend and generalize several well known results in existing literature.

    Citation: Godwin Amechi Okeke, Austine Efut Ofem, Thabet Abdeljawad, Manar A. Alqudah, Aziz Khan. A solution of a nonlinear Volterra integral equation with delay via a faster iteration method[J]. AIMS Mathematics, 2023, 8(1): 102-124. doi: 10.3934/math.2023005

    Related Papers:

  • The purpose of this article is to study the convergence, stability and data dependence results of an iterative method for contractive-like mappings. The concept of stability considered in this study is known as $ w^2 $-stability, which is larger than the simple notion of stability considered by several prominent authors. Some illustrative examples on $ w^2 $-stability of the iterative method have been presented for different choices of parameters and initial guesses. As an application of our results, we establish the existence, uniqueness and approximation results for solutions of a nonlinear Volterra integral equation with delay. Finally, we provide an illustrative example to support the application of our results. The novel results of this article extend and generalize several well known results in existing literature.



    加载中


    [1] M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik, 66 (2014), 223–234.
    [2] R. P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79.
    [3] F. Ali, J. Ali, Convergence, stability, and data dependence of a new iterative algorithm with an application, Comput. Appl. Math., 39 (2020), 1–15. https://doi.org/10.1007/s40314-020-01316-2 doi: 10.1007/s40314-020-01316-2
    [4] F. Akutsah, O. K. Narain, K. Afassinou, A. A. Mebawondu, An iterative scheme for fixed point problems, Adv. Math. Sci. J., 10 (2021), 2295–2316. https://doi.org/10.37418/amsj.10.5.2 doi: 10.37418/amsj.10.5.2
    [5] Y. Atalan, V. Karakaya, Iterative solution of functional Volterra-Fredholm integral equation with deviating argument, J. Nonlinear Convex Anal., 18 (2017), 675–684.
    [6] V. Berinde, On the approximation of fixed points of weak contractive mapping, Carpath. J. Math., 19 (2003), 7–22. Available from: https://www.jstor.org/stable/43996763.
    [7] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl., 2004 (2004), 97–105.
    [8] V. Berinde, Iterative approximation of fixed points, Berlin, Heidelberg: Springer, 2007. https://doi.org/10.1007/978-3-540-72234-2
    [9] T. Cardinali, P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces, Fixed Point Theory, 11 (2010), 3–10.
    [10] F. Ö. Çeliker, Convergence analysis for a modified SP iterative method, Sci. World J., 2014 (2014), 1–5. https://doi.org/10.1155/2014/840504 doi: 10.1155/2014/840504
    [11] F. Gürsoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, 2014.
    [12] A. M. Harder, T. L. Hicks, A stable iteration procedure for nonexpansive mappings, Math. Japon, 33 (1988), 687–692.
    [13] A. M. Harder, T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japon, 33 (1988), 693–706.
    [14] A. Hudson, O. Joshua, A. Adefemi, On modified Picard-S-AK hybrid iterative algorithm for approximating fixed point of Banach contraction map, MathLAB J., 4 (2019), 111–125.
    [15] C. O. Imoru, M. O. Olantiwo, On the stability of Picard and Mann iteration processes, Carpath. J. Math., 19 (2003), 155–160.
    [16] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5
    [17] H. Iqbal, M. Abbas, S. M. Husnine, Existence and approximation of fixed points of multivalued generalized $\alpha$-nonexpansive mappings in Banach spaces, Numer. Algorithms, 85 (2020), 1029–1049. https://doi.org/10.1007/s11075-019-00854-z doi: 10.1007/s11075-019-00854-z
    [18] V. Karakaya, Y. Atalan, K. Dogan, N. E. H. Bouzara, Some fixed point results for a new three steps iteration process in Banach spaces, Fixed Point Theory, 18 (2017), 625–640. https://doi.org/10.24193/FPT-RO.2017.2.50 doi: 10.24193/FPT-RO.2017.2.50
    [19] E. Karapınar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 1–25. https://doi.org/10.1186/s13662-019-2354-3 doi: 10.1186/s13662-019-2354-3
    [20] S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 2013 (2013), 1–10. https://doi.org/10.1186/1687-1812-2013-69 doi: 10.1186/1687-1812-2013-69
    [21] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
    [22] A. A. Mebawondu, O. T. Mewomo, Fixed point results for a new three steps iteration process, Ann. Univ. Craiova Math. Comput. Sci. Ser., 46 (2019), 298–319.
    [23] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
    [24] A. E. Ofem, U. E. Udofia, Iterative solutions for common fixed points of nonexpansive mappings and strongly pseudocontractive mappings with applications, Canad. J. Appl. Math., 3 (2021), 18–36.
    [25] A. E. Ofem, D. I. Igbokwe, An efficient iterative method and its applications to a nonlinear integral equation and a delay differential equation in Banach spaces, Turkish J. Ineq., 4 (2020), 79–107.
    [26] A. E. Ofem, D. I. Igbokwe, A new faster four step iterative algorithm for Suzuki generalized nonexpansive mappings with an application, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 482–506.
    [27] A. E. Ofem, H. Ișik, F. Ali, J. Ahmad, A new iterative approximation scheme for Reich-Suzuki-type nonexpansive operators with an application, J. Inequal. Appl., 2022 (2022), 1–26. https://doi.org/101186/s13660-022-02762-8
    [28] A. E. Ofem, U. E. Udofia, D. I. Igbokwe, A robust iterative approach for solving nonlinear Volterra delay integro-differential equations, Ural Math. J., 7 (2021), 59–85. https://doi.org/10.15826/umj.2021.2.005 doi: 10.15826/umj.2021.2.005
    [29] G. A. Okeke, M. Abbas, A solution of delay differential equations via Picard-Krasnoselskii hybrid iterative process, Arab. J. Math., 6 (2017), 21–29. https://doi.org/10.1007/s40065-017-0162-8 doi: 10.1007/s40065-017-0162-8
    [30] G. A. Okeke, Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications, Afr. Mat., 30 (2019), 817–835. https://doi.org/10.1007/s13370-019-00686-z doi: 10.1007/s13370-019-00686-z
    [31] G. A. Okeke, M. Abbas, M. de la Sen, Approximation of the fixed point of multivalued quasi-nonexpansive mappings via a faster iterative process with applications, Discrete Dyn. Nat. Soc., 2020 (2020), 1–11. https://doi.org/10.1155/2020/8634050 doi: 10.1155/2020/8634050
    [32] G. A. Okeke, A. E. Ofem, A novel iterative scheme for solving delay differential equations and nonlinear integral equations in Banach spaces, Math. Methods Appl. Sci., 45 (2022), 5111–5134. https://doi.org/10.1002/mma.8095 doi: 10.1002/mma.8095
    [33] M. O. Osilike, A. Udomene, Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings, Indian J. Pure Appl. Math., 30 (1999), 1229–1234.
    [34] A. M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech., 47 (1967), 77–81. https://doi.org/10.1002/zamm.19670470202 doi: 10.1002/zamm.19670470202
    [35] Ş. M. Şoltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive like operators, Fixed Point Theory Appl., 2008 (2008), 1–7. https://doi.org/10.1155/2008/242916 doi: 10.1155/2008/242916
    [36] B. S. Thakur, D. Thakur, M. Postolache, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat, 30 (2016), 2711–2720. https://doi.org/10.2298/FIL1610711T doi: 10.2298/FIL1610711T
    [37] B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065 doi: 10.1016/j.amc.2015.11.065
    [38] I. Timis, On the weak stability of Picard iteration for some contractive type mappings and coincidence theorems, Int. J. Comput. Appl., 37 (2012), 9–13. https://doi.org/10.5120/4595-6549 doi: 10.5120/4595-6549
    [39] K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U
    [40] X. L. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc., 113 (1991), 727–731. https://doi.org/10.1090/S0002-9939-1991-1086345-8 doi: 10.1090/S0002-9939-1991-1086345-8
    [41] T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math., 23 (1972), 292–298. https://doi.org/10.1007/BF01304884 doi: 10.1007/BF01304884
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1693) PDF downloads(185) Cited by(12)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog